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The renormalized next-to-leading-order chiral low-energy constant, Lr
10, is determined in a complete

next-to-next-to-leading-order (NNLO) analysis, using a combination of lattice and continuum data for the
flavor ud V − A correlator and results from a recent chiral sum-rule analysis of the flavor-breaking
combination of ud and us V − A correlator differences. The analysis also fixes two combinations of NNLO
low-energy constants, the determination of which is crucial to the precision achieved for Lr

10. Using the
results of the flavor-breaking chiral V − A sum rule obtained with current versions of the strange hadronic τ
branching fractions as input, we find Lr

10ðmρÞ ¼ −0.00346ð32Þ. This result represents the first NNLO
determination of Lr

10, having all inputs under full theoretical and/or experimental control, and the best
current precision for this quantity.

DOI: 10.1103/PhysRevD.89.094510 PACS numbers: 12.38.Gc, 11.30.Rd, 11.55.Fv, 11.55.Hx

I. INTRODUCTION

Chiral perturbation theory (ChPT) provides a framework
for implementing, in the most general possible way, the
constraints placed on the light hadronic degrees of freedom
by the symmetries and approximate chiral symmetry of
QCD [1–3]. Because the underlying arguments are sym-
metry based, the resulting effective chiral Lagrangian
contains as parameters the coefficients (usually called
low-energy constants, or LECs) multiplying all terms
allowed by the symmetry constraints. The LECs, which
are not determined by the symmetry arguments, encode the
effects of heavier degrees of freedom such as resonances
and are, in principle, calculable in the full underlying
theory. A key goal in making the ChPT framework as
predictive as possible is the determination of all LECs
appearing up to a given order in the chiral expansion. In this
paper, we focus on the renormalized SUð3Þ × SUð3Þ next-
to-leading-order (NLO) LEC Lr

10. L
r
10 is closely related to

the SUð2Þ × SUð2Þ LEC lr
5, and thus also determines the

small QCD contribution to the S parameter [4].

Previous determinations of Lr
10, both continuum [5–8]

and lattice [9–11], were produced by analyses of the low-
Q2 behavior of the difference of the flavor ud vector (V)
and axial-vector (A) correlators,

ΔΠV−AðQ2Þ≡ Πð0þ1Þ
ud;V ðQ2Þ − Πð0þ1Þ

ud;A ðQ2Þ: ð1Þ

Here ΠðJÞ
ud;V=AðQ2Þ are the scalar, spin J components of the

standard flavor ud V and A current-current two-point
functions, Πμν

V=AðQ2Þ, defined by

Πμν
ud;V=Aðq2Þ≡ i

Z
d4xeiq·xh0jTðJμud;V=AðxÞJ†νud;V=Að0ÞÞj0i

¼ ðqμqν − q2gμνÞΠð1Þ
ud;V=AðQ2Þ

þ qμqνΠð0Þ
ud;V=AðQ2Þ; ð2Þ

where Jμud;V ¼ Vμ and Jμud;A ¼ Aμ are the standard flavor

ud V and A currents, and Q2 ¼ −q2. The individual Πð0;1Þ
ud;A

have kinematic singularities at Q2 ¼ 0, but their sum,

Πð0þ1Þ
ud;A , is kinematic singularity free. In what follows, the

standard notation, ρðJÞud;V=AðsÞ, with s ¼ −Q2, will be

employed for the spectral functions of the ΠðJÞ
ud;V=AðQ2Þ.
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ΔρV−AðsÞ≡ ρð0þ1Þ
ud;V ðsÞ − ρð0þ1Þ

ud;A ðsÞ is then the spectral func-
tion of ΔΠV−AðQ2Þ. It is also useful to define the π-pole-

subtracted versions, Π̄ud;A, ΔΠ̄V−A, ρ̄
ðJÞ
ud;A and Δρ̄V−A, of

Πud;A, ΔΠV−A, ρ
ðJÞ
ud;A and ΔρV−A.

As explained in more detail below, the ρðJÞud;V=AðsÞ are
determinable from experimental hadronic τ decay distri-
butions. Since ΔΠV−A satisfies an unsubtracted dispersion
relation, this allows a continuum determination of
ΔΠV−AðQ2Þ, and hence also ofΔΠ̄V−AðQ2Þ, to be achieved.
For Q2 > 0, ΔΠV−AðQ2Þ can also be determined directly

on the lattice. The results of course depend on the input
quark masses used in the lattice simulation. The freedom to
vary these masses is a useful feature for the purpose of
determining chiral LECs. Wework below with lattice ensem-
bles covering a range of mu¼md and ms. Ensemble mπ and
fπ values then also yield the corresponding ΔΠ̄V−AðQ2Þ.
The continuum determination of ΔΠ̄V−AðQ2Þ is very

precise in the low-Q2 region. Since, to NLO in the chiral
expansion, the Q2 dependence of ΔΠ̄V−AðQ2Þ is LEC
independent, the continuum results allow a direct determi-
nation of the only free parameter, Lr

10, entering the Q2-
independent part of the NLO representation. Unfortunately,
there is now clear evidence that the NLO representation is
inadequate in the low-Q2 region [8]. The Q2-independent
part of the next-to-next-to-leading-order (NNLO) repre-
sentation of ΔΠ̄V−AðQ2Þ, however, involves two combina-
tions of NNLO LECs, Cr0 and C

r
1, in addition to L

r
10, making

a NNLO determination of Lr
10 impossible without input on

the values of these combinations. While the coefficients of
Lr
10, Cr0 and Cr1 depend differently on the pseudoscalar

masses, the fact that all three coefficients are independent
of Q2 means the Q2 dependence of the continuum
ΔΠ̄V−AðQ2Þ data is of no use in disentangling the Lr

10

contribution. This problem precludes the possibility of a
fully data-driven continuum NNLO determination of Lr

10.
The fact that the coefficients of Lr

10, C
r
0 and Cr1 in the

NNLO representation of ΔΠ̄V−AðQ2Þ depend differently
on the pseudoscalar masses raises the possibility of using
lattice data to disentangle the different Q2-independent
contributions, and hence determine Lr

10. Unfortunately,
because the signal for the lattice two-point function vanishes
in the limitQ2 → 0, errors on the lattice data forΔΠ̄V−AðQ2Þ
are large in the low-Q2 region—too large, as it turns out, to
allow a purely lattice NNLO analysis to be carried out.
In this paper, we show how the complementary advan-

tages of the continuum and lattice approaches can be
combined to produce a NNLO determination of Lr

10 which
would not be possible using either approach alone. The rest
of the paper is organized as follows. In Sec. II, we expand
on the background outlined above, providing technical
details and notation of relevance to the analysis to follow.
In Sec. III, we recall briefly certain key results from the
continuum analysis of ΔΠ̄V−AðQ2Þ reported in Ref. [8],
also of relevance to the analysis below. Details of the lattice

simulations are provided in Sec. IVA, and an outline of the
procedure for generating the V and A two-point functions
on the lattice in Sec. IV B. Section IV C presents the
resulting ΔΠ̄V−AðQ2Þ lattice data, and provides further
detail on the problems encountered in attempting to carry
out a NNLO analysis of the lattice data alone. In Sec. V, we
discuss how to combine lattice data, continuum data, and a
continuum constraint on ΔΠ̄V−Að0Þ to produce determi-
nations of all three LECs Lr

10, C
r
0 and C

r
1, and how to further

improve these determinations by incorporating a constraint
from the recent inverse-moment finite energy sum rule
analysis of the flavor-breaking difference of ud and us
V − A correlators reported in Ref. [12]. Finally, in Sec. VI,
we provide a brief summary and discussion of our results.

II. BACKGROUND

Continuum results for ΔΠV−AðQ2Þ can be obtained via
the unsubtracted dispersion relation

ΔΠV−AðQ2Þ ¼
Z

∞

0

ds
ΔρV−AðsÞ
sþQ2

: ð3Þ

The corresponding result for ΔΠ̄V−AðQ2Þ is obtained by
replacingΔΠV−A withΔΠ̄V−AðQ2Þ,ΔρV−A withΔρ̄V−A and
the lower limit on the rhs with the continuum threshold,
4m2

π, in Eq. (3).
For s < m2

τ , the ρ
ðJÞ
ud;V=AðsÞ are accessible experimentally

through the normalized differential nonstrange hadronic τ
decay distributions, dRud;V=A=ds, where

Rud;V=A≡Γ½τ− → ντ hadronsud;V=AðγÞ�=Γ½τ−→ ντe−ν̄eðγÞ�:
ð4Þ

Explicitly [13]

dRud;V=A

ds
¼ 12π2jVudj2SEW

m2
τ

½wτðyτÞρð0þ1Þ
ud;V=AðsÞ

− wLðyτÞρð0Þud;V=AðsÞ� ð5Þ
with yτ¼s=m2

τ , wτðyÞ¼ð1−yÞ2ð1þ2yÞ, wLðyÞ¼2yð1−
yÞ2, SEW a known short-distance electroweak correction
[14], and Vud the flavor ud element of the Cabibbo-
Kobayashi-Maskawa matrix.

Apart from the π-pole contribution to ρð0Þud;AðsÞ, which is

not chirally suppressed, all other contributions to ρð0Þud;V=AðsÞ
are proportional to ðmd ∓ muÞ2, and hence numerically

negligible. The combination ρð0þ1Þ
ud;VþAðsÞ is thus directly

determinable from the nonstrange differential decay dis-
tribution. To form the V − A difference requires a V=A
separation. The bulk of this separation can be performed
using G parity, which is unambiguous for nπ states. The
main remaining uncertainty, in the region covered by the τ
decay data, is that associated with contributions to the
inclusive spectrum from KK̄π states, for which G parity
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cannot be used. The separation in this case could, in
principle, be accomplished through a relatively simple
angular analysis [15], but this has yet to be done. The
publicly accessible OPAL [16] versions of the inclusive V
and A spectral distributions have been obtained assuming a
maximally conservative, fully anticorrelated 50� 50%

V=A breakdown of the K̄Kπ and much smaller K̄Kππ
contributions. ALEPH data is also available, the 2005
version employing an improved V=A separation of K̄Kππ
contributions obtained using the conserved vector current
relation and isovector K̄Kπ electroproduction cross-section
results [17].
The continuum results we employ below are those

reported in Ref. [8], obtained using the updated version
of the OPAL data [16] detailed in Ref. [18]. (An error in the
publicly accessible version of the ALEPH covariance
matrix prevented the use of the nominally higher-precision
ALEPH data [19], the recently released corrected version
[20] having not been posted until after the work reported
here was completed.) The τ decay data covers the region
only up to s ¼ m2

τ in the dispersive representation. Above
this point, ΔρV−AðsÞ was obtained using a phenomeno-
logically successful, experimentally constrained model for
duality violations (DVs) investigated extensively in
Refs. [18,21]. In the region of low Q2 relevant to the
chiral analysis, the resulting DV contributions to the
dispersive result for ΔΠ̄V−AðQ2Þ are numerically very
small, making the result an essentially entirely experimen-
tally determined one. The key output from this analysis, for
our purposes below, is the very precise determination [8],

ΔΠ̄V−Að0Þ ¼ 0.0516ð7Þ: ð6Þ

The chiral expansion of ΔΠ̄V−AðQ2Þ to NLO has the
form [2,22]

½ΔΠ̄V−AðQ2Þ�NLO ¼ −8Lr
10 þRNLOðQ2Þ; ð7Þ

where Q2 ¼ −q2, and RNLOðQ2Þ, which contains all
contributions from 1-loop graphs with only leading-order
(LO) vertices, is completely fixed, for a given Q2, by the π
and K masses and the chiral renormalization scale μ. Lr

10 of
course also depends on μ. At NLO, ΔΠ̄V−Að0Þ is thus
determined by the single parameter Lr

10, and, as noted
above, a determination of ΔΠ̄V−Að0Þ translates into a NLO
determination of Lr

10.
ΔΠ̄V−Að0Þ can be obtained either from the dispersive

representation, or through the use of inverse-moment finite
energy sum rules (IMFESRs). These are sum rules based on
the integration, over the contour shown in Fig. 1, of the
product wðsÞ ~ΠðsÞ, where wðsÞ is any function analytic in
the region of the contour and ~ΠðsÞ≡ ΠðQ2Þ (with
Q2 ¼ −s) any correlator free of kinematic singularities.
With ρðsÞ the spectral function of ΠðQ2Þ, the resulting
IMFESR relation is

wð0ÞΠð0Þ ¼ 1

2πi

I
jsj¼s0

ds
wðsÞ
s

ΠðQ2Þ

þ
Z

s0

th
ds

wðsÞ
s

ρðsÞ; ð8Þ

where th is the threshold shown in Fig. 1. For large enough
s0, the operator product expansion (OPE) representation of
ΠðsÞ can be used in evaluating the first term on the rhs. The
IMFESR relation is based on the same analyticity proper-
ties as the basic dispersion relation, the information on the
integral from s0 to∞ in the dispersive representation being
replaced, in the IMFESR approach, by the OPE approxi-
mation to the integral around the circle jsj ¼ s0. The added
advantage of the IMFESR formulation lies in the freedom
to choose the weight wðsÞ in such a way as to improve
various features of the evaluation of the rhs of Eq. (8).
Early continuum NLO determinations of Lr

10, using the
IMFESR approach, were performed in Refs. [5,6]. Two
NLO lattice determinations, based on analyses of low-
Euclidean-Q2 lattice data for ΔΠV−AðQ2Þ, also exist [9,10].
The only Q2 dependence of ΔΠ̄V−AðQ2Þ at NLO lies in the
loop contribution, RNLOðQ2Þ. It is now known that this
dependence provides a very poor representation of the
actual low-Q2 behavior of ΔΠ̄V−AðQ2Þ [8] [a similar
observation was also made regarding the NLO representa-
tion of the ud V correlator, Πud;VðQ2Þ, relevant to lattice
determinations of the LO hadronic vacuum polarization
contribution to the muon anomalous magnetic moment
[23]]. This raises obvious questions for the earlier NLO Lr

10

determinations.
The NNLO representation of ΔΠ̄V−AðQ2Þ, needed to

extend the NLO continuum dispersive/IMFESR determi-
nations to NNLO, has the form [22]

½ΔΠ̄V−AðQ2Þ�NNLO ¼ RNNLOðQ2Þ þ c9ðQ2ÞLr
9 þ c10Lr

10

þ Cr0 þ Cr1 − 16Cr
87Q

2; ð9Þ

where RNNLOðQ2Þ is the sum of 1- and 2-loop contribu-
tions involving only LO vertices,

0s =s

th

s−plane

Im s

Re s

FIG. 1 (color online). The contour underlying the chiral sum
rules of Eq. (8).
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c10 ¼ −8ð1 − 8μπ − 4μKÞ; ð10Þ

with μP ¼ m2
P

32π2f2π
logðm2

P
μ̂2
Þ the usual chiral logarithm and

fπ ≃ 92.2 MeV, c9ðQ2Þ involves both chiral log and
standard 1-loop, 2-propagator contributions, and

Cr0 ¼ 32m2
π½Cr

12 − Cr
61 þ Cr

80�
Cr1 ¼ 32ðm2

π þ 2m2
KÞ½Cr

13 − Cr
62 þ Cr

81�: ð11Þ

The Cr
k here are the renormalized, dimensionful NNLO

LECs defined in Ref. [24]. The expression forRNNLOðQ2Þ,
which is rather lengthy and hence not presented here, is
readily reconstructed from the results quoted in Secs. 4, 6
and Appendix B of Ref. [22], as is that for c9ðQ2Þ. c10 and,
for given Q2, RNNLOðQ2Þ and c9ðQ2Þ are all fixed by the
chiral scale μ and pseudoscalar decay constants and masses.
The NNLO LECs in Cr0 are LO in 1=Nc, while those in Cr1
are 1=Nc suppressed.
The NLO LEC Lr

9 has been accurately determined in a
NNLO analysis of π and K electromagnetic form factors
[25], and will be considered known in what follows. To
simplify notation, we combine the known terms on the rhs
of (9), defining

R̂NNLOðQ2Þ≡RNNLOðQ2Þ þ c9ðQ2ÞLr
9: ð12Þ

Even with Lr
9 known, the NNLO representation of

ΔΠ̄V−Að0Þ depends on the two NNLO LEC combinations,
Cr0 and C

r
1, in addition to L

r
10. L

r
10 is thus no longer fixed by

a determination of ΔΠ̄ð0ÞV−A. Considering the Q2 depend-
ence of ΔΠ̄V−AðQ2Þ does not help resolve this problem
since the terms involving Lr

10, C
r
0 and C

r
1 in Eq. (9) are allQ

2

independent. Additional input on Cr0 and C
r
1 is thus required

to achieve a determination of Lr
10.

The Cr0 contribution to ΔΠ̄V−Að0Þ is proportional to m2
π

and expected to be small. In Ref. [7], existing determi-
nations of Cr

12 [26] and Cr
61 [27], and resonance ChPT

(RChPT) estimates for Cr
80 [22,28], were used to confirm

this expectation. Neglect of the Cr1 contribution is far less
safe since the ratio, ðm2

π þ 2m2
KÞ=m2

π ≃ 26, of the prefac-
tors in Cr1 and Cr0 more than compensates for the 1=Nc
suppression of the NNLO LECs Cr

13;62;81 appearing in Cr1.
Even more problematic is the fact that previous determi-
nations exist for none of Cr

13;62;81, and that standard RChPT
approaches yield no estimates for any of these LECs.
This problem was dealt with in Ref. [7] by assigning to
the 1=Nc-suppressed combination Cr

13ðμ0Þ − Cr
62ðμ0Þ þ

Cr
81ðμ0Þ (with μ0 the conventional chiral scale choice

μ ¼ 0.77 GeV) a central value zero and error equal to
1=3 ¼ 1=Nc of the value of the corresponding non-1=Nc-
suppressed combination Cr

12ðμ0Þ − Cr
61ðμ0Þ þ Cr

80ðμ0Þ
appearing in Cr0. Given the rather strong cancellations in
the latter combination, this assumption is a far from
conservative one. The uncertainty on the result for Lr

10

obtained after implementing this assumption in the NNLO
representation of ΔΠ̄V−Að0Þ turns out to be completely
dominated by the assumed error on Cr

13ðμ0Þ − Cr
62ðμ0Þ þ

Cr
81ðμ0Þ. Improvements to this unsatisfactory situation

can be achieved only through an independent determina-
tion of Cr1.
The fact that the coefficients of Lr

10, Cr
12ðμ0Þ −

Cr
61ðμ0Þ þ Cr

80ðμ0Þ and Cr
13ðμ0Þ − Cr

62ðμ0Þ þ Cr
81ðμ0Þ in

Eq. (9) depend differently on the pseudoscalar meson
masses suggests that disentangling the Lr

10, Cr0 and Cr1
contributions to ΔΠ̄V−AðQ2Þ might be possible on the
lattice, where variations in the pseudoscalar masses are
easily accomplished through variations in the input quark
masses. This paper shows how this possibility can be
realized practically in an analysis using a combination of
lattice and continuum results.

III. INFORMATION FROM THE CONTINUUM
ANALYSIS OF ΔΠ̄V−AðQ2Þ

The LECs Lr
10, C

r
0 and Cr1 are very tightly constrained by

(6). Inputting the results of Ref. [22] for RNNLOð0Þ, and
Lr
9ðμ0Þ ¼ 0.00593ð43Þ from Ref. [25], this constraint takes

the form [8]

Lr
10ðμ0Þ − 0.0822½Cr0ðμ0Þ þ Cr1ðμ0Þ�
¼ −0.004098ð59Þexpð74ÞLr

9
ð13Þ

where the subscripts exp and Lr
9 label contributions to the

error on the rhs associated with that in (6), and the
uncertainty on Lr

9ðμ0Þ, respectively.
Other information from the continuum analysis of

Ref. [8] relevant to the analysis below concerns the range
of validity of the NNLO representation. Crucial to the use
of the lattice data is the ability to perform a chiral fit to the
lattice data at nonzero EuclideanQ2 and then use the results
of that fit to reliably extrapolate toQ2 ¼ 0. This needs to be
done for a range of pseudoscalar meson masses in order to
allow the contributions of Lr

10, C
r
0 and C

r
1 toΔΠ̄V−Að0Þ to be

disentangled. One thus needs to restrict one’s attention to
lattice data at Q2 for which the chiral representation being
employed is reliable, and, of particular importance for our
purposes, for which one knows the fit will produce a
reliable determination of the Q2-independent part of the
representation, or, equivalently, ΔΠ̄V−Að0Þ.
As we will see in the next section, lattice errors on

ΔΠ̄V−AðQ2Þ turn out to be too large to allow the range of
validity to be assessed using lattice data alone. Moreover,
because, for Euclidean Q2, Q2 ¼ 0 requires all components
of Q to be zero, the signal for the current-current two-point
function vanishes on the lattice as Q2 → 0. This means that
ΔΠ̄V−Að0Þ cannotbemeasured directly on the lattice, and that
errors on ΔΠ̄V−AðQ2Þ are necessarily large for very low Q2.
The continuum dispersive approach, which produces

significantly smaller errors on ΔΠ̄V−AðQ2Þ in the low-Q2
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region relevant to the chiral analysis, and has no problem in
determining ΔΠ̄V−Að0Þ directly, is complementary in this
regard. From Eq. (9), it is evident that, since RNNLOðQ2Þ
and c9ðQ2ÞLr

9 are known, the NNLO form is characterized
by two parameters, Cr

87 and the combination c10Lr
10þ

Cr0 þ Cr1. In Ref. [8] it was found that the NNLO form
produces a very accurate fit to the continuum data in a fit
window covering the range from Q2 ¼ 0 to ∼0.1 GeV2,
one which, moreover, nicely reproduces the known value
of ΔΠ̄V−Að0Þ. Extending the upper edge of the fit window
beyond∼0.1 GeV2, one starts to see signs of curvature with
respect to Q2 beyond that present in the NNLO represen-
tation. This is especially evident in a drift in the fitted value
for Cr

87ðμ0Þ as the fit window is opened up, but also shows
up in an accompanying small downward drift in the fitted
result for ΔΠ̄V−Að0Þ [8]. Curvature of ΔΠ̄V−AðQ2Þ with
respect to Q2, beyond that produced by the nearly linear
RNNLOðQ2Þ contribution, would first appear at NNNLO in
the chiral expansion, where it would be represented by a
term of the formCQ4, with the coefficientC independent of
the pseudoscalar meson masses at this order. Adding such a
term to the NNLO form stabilizes the fit results for Cr

87 as a
function of the upper edge of the fit window, and restores
the success of the resulting representation in reproducing
the known value of ΔΠ̄V−Að0Þ for fit windows with upper
edges extending up to ∼0.3 GeV2 [8]. This information
motivates the restriction on the lattice data to be used in our
analysis, described in the next section, to Q2 < 0.3 GeV2.

IV. THE LATTICE DATA FOR ΔΠ̄V−AðQ2Þ
A. Simulation details

We consider data on ΔΠ̄V−AðQ2Þ obtained from five
RBC/UKQCD nf ¼ 2þ 1 domain wall fermion (DWF)
ensembles: three with Iwasaki gauge action, inverse lattice
spacing 1=a ¼ 2.31 GeV, pion masses mπ ¼ 293, 349 and
399 MeV, and mπL ¼ 4.1, 4.8, 5.5, respectively; and two
with Iwasakiþ DSDR gauge action, 1=a ¼ 1.37 GeV,
mπ ¼ 171 and 248 MeV and mπL ¼ 4.0, 5.5, respectively.
The simulation parameters for the lattice calculations

are summarized in Table I. Along with the bare lattice
simulation parameters, we also list the associated values of
mπ , mK and Fπ ≡

ffiffiffi
2

p
fπ , as well as the minimum Q2 value

attainable for each lattice, which is governed by its physical
volume. Further details of the simulations for the three fine

and two coarse ensembles may be found in Refs. [29] and
[30], respectively.
The fine ensembles provide only three Q2 values in the

region Q2 < 0.3 GeV2 employed in the current analysis.
At the lowest of these, Q2 ∼ 0.05 GeV2, the errors on
ΔΠ̄V−AðQ2Þ, moreover, are so large that the result at thisQ2

plays no functional role in the analysis. The constraints
obtained using these ensembles thus come from the two
intermediate-Q2 points. The coarse ensembles have
improved low-Q2 coverage, providing seven Q2 values
below 0.3 GeV2, four with errors small enough that the
corresponding data play a role in the analysis.

B. The current-current two-point functions
on the lattice

In this work we will need to consider the standard lattice
current-current two-point correlation functions, defined, in
momentum space, for the V and A currents, by

Πμν
ud;VðQ2Þ≡ ZV

X
x

eiQ·xh0jVμðxÞVνð0Þj0i; ð14Þ

Πμν
ud;AðQ2Þ≡ ZA

X
x

eiQ·xh0jAμðxÞAνð0Þj0i; ð15Þ

where we use the standard flavor udDWF conserved vector
(Vμ) and axial-vector (Aμ) currents [31] at the sink. At the
source we use the corresponding local currents, Vμ and Aμ,
and have hence included the vector and axial-vector
renormalization constants, ZV and ZA, in Eqs. (14) and
(15). The values of ZV and ZA for each of our ensembles
were determined in [29,30].
The two-point functions in Eqs. (14) and (15) can be

decomposed into longitudinal (J ¼ 0) and transverse
(J ¼ 1) components,

Πμν
ud;V=A ¼ ðQ2δμν −QμQνÞΠð1Þ

ud;V=AðQ2Þ
−QμQνΠ

ð0Þ
ud;V=AðQ2Þ: ð16Þ

On the lattice momenta are discretized,Qμ ¼ 2πnμ
Lμ

where nμ
is a 4-tuple of integers, and Lμ is the length of the lattice in
the μ direction. In what follows, we will use the lattice
momentum

TABLE I. Parameters of the lattice ensembles used in our study. mπ , mK and Fπ are from [29] (E3–E5) and [30] (E1, E2).

Ensemble V β a−1½GeV� Q2
×min ½GeV2� ams amu mπ ½GeV� mK ½GeV� Fπ ½GeV�

E1 323 × 64 1.75 1.37(1) 0.018 0.045 0.001 0.171(1) 0.492(1) 0.130(2)
E2 323 × 64 1.75 1.37(1) 0.018 0.045 0.0042 0.248(1) 0.509(1) 0.139(2)
E3 323 × 64 2.25 2.31(4) 0.05 0.03 0.004 0.293(1) 0.561(1) 0.142(1)
E4 323 × 64 2.25 2.31(4) 0.05 0.03 0.006 0.349(1) 0.578(1) 0.148(1)
E5 323 × 64 2.25 2.31(4) 0.05 0.03 0.008 0.399(1) 0.596(1) 0.154(1)
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Q̂μ ¼
2

a
sin

�
πnμ
Lμ

�
ð17Þ

and associate the quantity Q̂2 ¼ P
μQ̂

2
μ with the continuum

spacelike squared-momentum Q2.
The two-point correlators used here are the same as those

used previously in studies of the QCD S parameter [10] and
the hadronic contribution to the anomalous magnetic
moment of the muon [32], and we refer the interested
reader to those papers for more technical details.

C. The lattice V − A results

In Table I we provide the values of mπ , mK and Fπ for
each of the lattice ensembles. These are needed both for
the π-pole subtraction, required to convert ΔΠV−AðQ2Þ to
ΔΠ̄V−AðQ2Þ, and in evaluating the 1- and 2-loop contri-
butions to the NNLO representation of ΔΠ̄V−AðQ2Þ for
each of the ensembles. The error on the π-pole subtraction,
produced by uncertainties in the ensemble values of Fπ and
mπ , and that on ΔΠV−AðQ2Þ, are treated as independent in
computing the error on ΔΠ̄V−AðQ2Þ. Results for further
observables for the three fine ensembles may be found in
Ref. [29] and for the two coarse ensembles in Ref. [30]. In
what follows, we identify individual ensembles using the
labels (E1–E5) introduced to specify them in the table.
A comparison of the continuum (dispersive) results for

ΔΠ̄V−AðQ2Þ to those for ensemble E1 (whose mπ value,
171 MeV, lies closest to the physical one) are shown in
Fig. 2. We would expect these to be in good agreement,
since the π-pole contribution, which depends more sensi-
tively on mπ , has been subtracted in forming ΔΠ̄V−AðQ2Þ.
The left panel shows the comparison in the low-Q2 chiral fit
region, 0 < Q2 < 0.3 GeV2; the right panel shows the
comparison for Q2 ∼ a few GeV2. The agreement in both
regions is good, suggesting lattice artifacts are well under
control.
Figure 3 illustrates the problems that would be encoun-

tered if one attempted a NNLO analysis involving lattice
data alone. The figure shows the values of Lr

10ðμ0Þ obtained

by assuming the validity of the NLO representation of
ΔΠ̄V−AðQ2Þ and using it to solve for Lr

10 at each Q2.
Results are shown for each of the four lightest mπ

ensembles (E1–E4). The measured values for the pseudo-
scalar masses and decay constants for the given ensemble
[29,30] (see Table I) are taken as inputs in all cases. Also
shown, for comparison, are the results obtained from a
similar NLO analysis of the continuum results. The
uncertainties on the continuum results (not shown explic-
itly) are small (∼2.5%) and strongly correlated in the region
of Q2 shown in the figure.
While the incompatibility of the NLO form and the

continuum results is immediately evident in the obvious
nonconstancy, within errors, of Lr

10 with respect to Q2, it is
far from clear that this would be the case if one had access
only to the lattice results. In fact, if one imposes as input the
(albeit nonconservative) assessment/assumptions of
Ref. [7] regarding Cr0 and Cr1, a NNLO fit does become
possible, and returns a value for the NNLO LEC Cr

87
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FIG. 2 (color online). Comparison of continuum and 1=a ¼ 1.37 GeV,mπ ¼ 171 MeV ensemble lattice results forΔΠ̄V−AðQ2Þ in the
low-Q2 (left panel) and high-Q2 (right panel) regions.
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FIG. 3 (color online). Point-by-point determinations of
Lr
10ðμ0Þ, with μ0 ¼ 0.77 GeV, obtained assuming the validity

of the NLO form, Eq. (7), for ΔΠ̄V−AðQ2Þ. Points with error bars
are obtained from the lattice data discussed in the text, while the
continuous curve results from applying the NLO form to the
continuum dispersive results for ΔΠ̄V−AðQ2Þ.
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[which accounts for the bulk of the Q2 dependence of
ΔΠ̄V−AðQ2Þ in the low-Q2 region] which is ∼2σ away from
zero [11], showing that the lattice data are capable of
distinguishing, to some extent, between the NLO and
NNLO forms. The lattice errors are, however, much too
large to allow a simultaneous fit of all four unknown LEC
combinations Lr

10, C
r
87, C

r
0 and Cr1.

To make progress, a way must be found to combine the
lattice and continuum results, and take advantage of their
complementary strengths. We discuss a practical way of
accomplishing this goal in the next section.

V. COMBINING LATTICE AND CONTINUUM
DATA TO IMPROVE THE DETERMINATION

OF Lr
10

It is convenient to reduce the number of unknown LECs
to be dealt with by working with the difference of the
physical-mass, continuum and corresponding lattice results
for ΔΠ̄V−AðQ2Þ, evaluated at the same Q2. With Lr

9

considered known [25], the resulting difference

δΔΠ̄ðQ2Þ≡ ½ΔΠ̄V−AðQ2Þ�latt − ½ΔΠ̄V−AðQ2Þ�cont; ð18Þ
depends only on the LECs Lr

10, C
r
0 and Cr0. Explicitly

δΔΠ̄ðQ2Þ ¼ ΔR̂EðQ2Þ þ ΔcE10Lr
10 þ δE0 C

r
0 þ δE1C

r
1; ð19Þ

where

ΔR̂EðQ2Þ≡ ½R̂NNLOðQ2Þ�Elatt − ½R̂NNLOðQ2Þ�phys
Δc10 ≡ ½c10�Elatt − ½c10�phys

δ0 ≡ ½m2
π�Elatt=½m2

π�phys
δ1 ≡ ½m2

π þ 2m2
K�Elatt=½m2

π þ 2m2
K�phys; ð20Þ

with the superscript E labeling the ensemble under con-
sideration and the subscripts phys and latt indicating the
values of the quantities in question obtained using physical
and lattice values for the relevant pseudoscalar masses and

decay constants, respectively. δR̂EðQ2Þ and ΔcE10 of course
also depend on the chiral scale μ.
With this notation, the combined lattice-continuum

constraints, for a given ensemble E, become

ΔcE10Lr
10 þ δE0 C

r
0 þ δE1 C

r
1 ¼ δΔΠ̄ðQ2Þ − ΔR̂EðQ2Þ
≡ ΔTEðQ2Þ: ð21Þ

Since both terms on the rhs areQ2 dependent, while the lhs
is Q2 independent, the versions of these constraints
corresponding to different Q2, but the same lattice ensem-
ble E can be used to provide checks on the self-consistency
of the data employed, as well as on the reliability of the
analysis framework. It turns out that the two constraints
with reasonable errors obtained for the ensemble E5 do not
pass this self-consistency test, while all of the available
constraints are consistent for the other four ensembles. We
thus exclude the ensemble E5 from the rest of the analysis.
E5 is the ensemble with the largest pion mass,
mπ ¼ 399 MeV, a value which may, in any case, have
been pushing the bounds of the chiral analysis. The
consistency of the constraints for the other four ensembles
is displayed in Fig. 4, which plots the ΔTEðQ2Þ for these
ensembles for the Q2 of interest to the chiral analysis. The
left panel shows the results for the fine 1=a ¼ 2.31 GeV
ensembles E3 and E4; the right panel shows the results for
the coarse 1=a ¼ 1.37 GeV ensembles E1 and E2. The
lowest Q2 points, at Q2 ¼ 0.018 GeV2, have been omitted
from the right panel since incorporating their absolutely
enormous errors would force a dramatic increase in the
range displayed on the vertical axis. In both panels, the Q2

values for the ensemble with heavier value ofmπ have been
shifted slightly to the right for presentational clarity.
For the remaining four ensembles employed in the

analysis, a final combined version, ΔT̄E, of the rhs of
the constraint for each ensemble is obtained by performing
a weighted average, over the points with Q2 < 0.3 GeV2

available for that ensemble, of the corresponding Q2-
dependent rhs’s. The average is more heavily weighted
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FIG. 4 (color online). ΔTEðQ2Þ as a function of Q2 for the 1=a ¼ 2.31 GeV ensembles E3 (mπ ¼ 293 MeV) and E4
(mπ ¼ 349 MeV) (left panel) and the 1=a ¼ 1.37 GeV ensembles E1 (mπ ¼ 171 MeV) and E2 (mπ ¼ 248 MeV) (right panel).
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to the upper portion of the Q2 analysis window, where the
main source of error, that on ΔΠ̄V−AðQ2Þ, is smaller, and,
given the good self-consistency, we assign to T̄E an
uncertainty typical of the errors in this region. The results
of this exercise are

ΔT̄1 ¼ 0.0007ð17Þ
ΔT̄2 ¼ 0.0039ð21Þ
ΔT̄3 ¼ 0.0062ð18Þ
ΔT̄4 ¼ 0.0070ð18Þ: ð22Þ

Performing a combined fit incorporating the continuum
ΔΠ̄V−Að0Þ constraint, Eq. (13), and the four lattice-
continuum constraints obtained by employing the results
of Eq. (22) on the rhs of Eq. (21), we find

Lr
10ðμ0Þ ¼ −0.0031ð8Þ
Cr0ðμ0Þ ¼ −0.0008ð8Þ
Cr1ðμ0Þ ¼ 0.014ð11Þ: ð23Þ

The size of the errors reflects the nontrivial size of the
uncertainties on the ΔT̄E in (22), and the fact that the
associated constraints, (21), are being required to provide
information on two additional fit parameters. While the
resulting errors, especially those on Cr0 and Cr1, are larger
than one might hope, they have, at least, the advantage of
being data based.
The errors on the ΔT̄E in (22) result largely from those

on the lattice data for ΔΠ̄V−AðQ2Þ. It is, unfortunately,
difficult to significantly improve these, and thus necessary
to look to additional continuum input for any further
improvement. The existence of strong correlations amongst
the fit parameters in (23) suggests that a single additional
constraint should be sufficient to achieve a reduction in the
errors for all three fit parameters. Fortunately, such an
additional constraint exists.
The source of this constraint is a recent IMFESR analysis

[12] of the flavor-breaking (FB) correlator difference

δFBΔΠ̄V−AðQ2Þ≡ Π̄ð0þ1Þ
ud;V−AðQ2Þ − Π̄ð0þ1Þ

us;V−AðQ2Þ; ð24Þ

from which the result

δFBΔΠ̄V−Að0Þ ¼ 0.0113ð15Þ ð25Þ

was obtained. The analysis employed (i) OPAL nonstrange
spectral data for the V and A channels [16], updated as in
Ref. [18]; (ii) us spectral data from ALEPH [33] and the
recent B-factory results for the exclusive mode K−π0 [34],
Ksπ

− [35], K−πþπ− [36] and Ksπ
−π0 [37] invariant mass

distributions measured in strange hadronic τ decays; and
(iii) PDG [38], FLAG [39], and additional lattice [40,41]
results for the treatment of, and input to, OPE contributions.

The us exclusive mode distributions are normalized to
current strange τ branching fractions. We refer the reader to
Ref. [12] for details of the analysis.
The result given in Eq. (25) is of interest for our purposes

because the NNLO LEC contributions to the NNLO
representation of δFBΔΠ̄V−Að0Þ appear in precisely the
combination Cr0. Explicitly,

½δFBΔΠ̄V−Að0Þ�NNLO ¼ RFBð0Þ þ dFB5 Lr
5 þ dFB9 Lr

9

þ dFB10 L
r
10 þ

�
m2

K −m2
π

m2
π

�
Cr0;

ð26Þ

where RFBðQ2Þ represents the sum of all 1- and 2-loop
contributions with only LO vertices. The (rather lengthy)
expression for RFBð0Þ, as well as those for the Q2-
independent coefficients dFB5;9;10, are obtainable from the
results quoted in Ref. [22] and not presented here. They are
fully fixed once the chiral scale μ and pseudoscalar masses
and decay constants are specified.
Unlike the case of the NNLO representation of

ΔΠ̄V−Að0Þ, where the coefficient c10 of Lr
10 in Eq. (9)

contains both NLO and NNLO contributions, NLO con-
tributions proportional to Lr

10 cancel in forming the FB
difference δFBΔΠ̄V−AðQ2Þ. The result is that dFB10 is purely
NNLO, and suppressed numerically compared to c10. The
coefficient of Cr0 in Eq. (26) is, in contrast, enhanced by the
factor ðm2

K −m2
πÞ=m2

π ≃ 11.6. The linear combination of
Lr
10 and C

r
0 appearing in (26) is thus very different from that

appearing in the continuum ΔΠ̄V−Að0Þ constraint. Since Lr
9

is well known [25], and Lr
5, which is also known [42], is

such that its contribution to the rhs of (26) is numerically
small, the result obtained by combining Eqs. (25) and (26),

2.12Lr
10ðμ0Þ þ 11.6Cr0ðμ0Þ ¼ −0.00346ð161Þ; ð27Þ

provides the additional independent constraint we need.
We now have the two continuum constraints, Eqs. (13)

and (27), and four combined lattice-continuum constraints,
Eq. (21). All of these can be cast in the form

aðkÞ10 L
r
10 þ aðkÞ0 Cr0 þ aðkÞ1 Cr1 ¼ dðkÞ � δdðkÞ; ð28Þ

with k labeling the different constraints, the aðkÞ10 , a
ðkÞ
0 and

aðkÞ1 all known, and δdðkÞ the relevant error. For the four
lattice-continuum constraints, δdðkÞ is totally dominated by
the error on the lattice determination of the ΔΠ̄V−AðQ2Þ for
the ensemble in question. For the continuum V − A con-
straint, Eq. (13), δdðkÞ is determined by the experimental
errors on the ud V − A spectral distribution. Finally, for the
FB continuum constraint, Eq. (27), δdðkÞ is dominated by
the experimental errors on the us spectral distribution and
us V=A separation uncertainties. Since the dominant
sources of error for the different constraints are
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independent, we fit Lr
10ðμ0Þ, C0ðμ0Þ and C1ðμ0Þ by mini-

mizing

χ2 ¼
X
k

½dk − ðaðkÞ10 L
r
10ðμ0Þ þ aðkÞ0 C0ðμ0Þ þ aðkÞ1 C1ðμ0ÞÞ�2

½δdðkÞ�2 :

ð29Þ
Implementing this six-constraint fit, we find the signifi-

cantly improved results

Lr
10ðμ0Þ ¼ −0.00346ð29Þfitð13ÞLr

5;9

Cr0ðμ0Þ ¼ −0.00034ð13Þfitð3ÞLr
5;9

Cr1ðμ0Þ ¼ 0.0081ð35Þfitð7ÞLr
5;9
; ð30Þ

where we have separated out the contributions to the errors
from the uncertainties on the input values for Lr

5ðμ0Þ and
Lr
9ðμ0Þ. The resulting Cr0ðμ0Þ-Cr1ðμ0Þ, Cr0ðμ0Þ-Lr

10ðμ0Þ and
Cr1ðμ0Þ-Lr

10ðμ0Þ correlations are −0.045, 0.012 and 0.978,
respectively. The results (30) update the preliminary
versions presented in Ref. [43], and represent the best
determination of Lr

10 to date.1

VI. SUMMARY AND DISCUSSION

Our main results are those given in Eq. (30), where the
error labeled by the subscript fit is that resulting from the
errors on the two continuum and four lattice-continuum
constraints employed in the combined fit. The key result is
that for Lr

10ðμ0Þ, though that for Cr1ðμ0Þ provides a further

example of a NNLO LEC combination vanishing in the
large-Nc limit which cannot be neglected for Nc ¼ 3.
It is worth commenting on the absence of constraints

from the two RBC/UKQCD ensembles with 1=a ¼
1.75 GeV in our analysis.2 These ensembles provide five
Q2 < 0.3 GeV2, three with errors small enough to be useful
in assessing the self-consistency of the ΔTEðQ2Þ. The three
low-error ΔTEðQ2Þ for the ensemble withmπ ¼ 333 MeV,
unfortunately, fail the self-consistency test. Those for the
ensemble with mπ ¼ 423 MeV pass the self-consistency
test, but correspond to an mπ which is both potentially
rather large for use in a NNLO analysis and significantly
larger than the largest value, mπ ¼ 349 MeV, employed in
the analysis discussed above. We can, however, use the
results for the heavy mπ ensemble to further test that the
mπ < 350 MeV employed above lie safely within the range
of validity of the NNLO analysis framework. To do so we
have performed an extended version of the analysis above,
adding in the additional combined lattice-continuum
constraint ΔT̄6¼0.0048ð17Þ obtained for the 1=a¼
1.75GeV, mπ ¼ 423 MeV ensemble. The expanded fit
yields results, Cr0ðμ0Þ¼−0.0036ð12Þ, Cr1ðμ0Þ¼0.0070ð24Þ
and Lr

10ðμ0Þ ¼ −0.00355ð23Þ, in excellent agreement
with those of the main analysis. Since mπ ¼ 423 MeV is
rather large, we do not use the results of this extended
analysis as our main ones, but do argue that the stability of
the results with respect to such a large increase in the
maximum mπ employed provides strong evidence in
support of the reliability of our NNLO treatment of the
lower-mπ data.
The only other NNLO determination of Lr

10ðμ0Þ we are
aware of is that of Ref. [7]. The central value in this case,
Lr
10ðμ0Þ ¼ −0.00406ð39Þ, differs from ours by ∼2σ.3 The

difference results, essentially entirely, from the difference
in Cr1ðμ0Þ values, with Cr1ðμ0Þ (then unknown) having been
assigned the (assumed) central value 0 in [7], but fit, using
lattice data, in our analysis.4 The error on Lr

10ðμ0Þ in
Ref. [7], as stressed in that reference, is completely
dominated by the assumed uncertainty on Cr1ðμ0Þ. This
uncertainty is based on the assumption that

1The reader might worry about the compatibility of the
determination of Lr

9ðμ0Þ in Ref. [25], our result for Lr
10ðμ0Þ,

and the constraint on Lr
9ðμ0Þ þ Lr

10ðμ0Þ obtained from the NNLO
SUð3Þ × SUð3Þ analysis of radiative π decay data, reported in
Ref. [28]. One should, however, bear in mind that the latter
constraint is obtained employing large-Nc RChPT estimates for
the NNLO LECs entering the axial amplitude from which the
constraint is obtained. In particular, central values of zero are
used for all 1=Nc-suppressed LECs. It turns out that, as in the
case of the continuum ΔΠ̄V−AðQ2Þ constraint, a particular
combination, 4Cr

13 þ Cr
64 þ 2ðCr

13 − Cr
62 þ Cr

81Þ, of 1=Nc-sup-
pressed NNLO LECs appears with a large (2m2

K=m
2
π ≃ 25)

enhancement in its coefficient, relative to that of the non-
1=Nc-suppressed NNLO LECs. We have, in fact, determined,
as part of our fit, the 1=Nc-suppressed combination
Cr
13ðμ0Þ − Cr

62ðμ0Þ þ Cr
81ðμ0Þ. Shifting the central result 0 used

for this combination in Ref. [28] to the central value implied by
our fit, one finds a modified version of the radiative π decay
constraint on Lr

9 þ Lr
10 in excellent agreement with our result for

Lr
10 and that for Lr

9 in Ref. [25]. This exercise should, of course,
be treated as illustrative only, since the discussion makes no
attempt to account for the effect of the additional, but unknown,
1=Nc-suppressed combination 4Cr

13 þ Cr
64. What it does allow us

to do, however, is conclude that the NNLO SUð3Þ × SUð3Þ
radiative π constraint is subject to nontrivial uncertainties
associated with contributions from 1=Nc-suppressed NNLO
LECs, and, within these uncertainties, perfectly compatible with
our result for Lr

10.

2For further information on these ensembles, see Ref. [44].
3In terms of the error quoted in Ref. [7], the difference in

central values is only 1.5σ. If the assumption used to generate it
were updated using the improved determination of Cr0ðμ0Þ
obtained above, however, the error of Ref. [7] would be reduced
to 0.00023. The determination of Cr1 using lattice data is key to
bringing this type of difficult-to-quantify uncertainty under
control.

4A significant difference also exists between our result for
Cr0ðμ0Þ and that used in Ref. [7]. This results largely from an
overestimate, by a factor of more than 2 [12], in the RChPT value
for Cr

80ðμ0Þ employed in [7]. The smallness of the Cr0 contribu-
tions to the ΔΠ̄V−Að0Þ constraint, however, means that this
difference has a negligible impact on the results for L10ðμ0Þ.
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jCr
13ðμ0Þ − Cr

62ðμ0Þ þ Cr
81ðμ0Þj

< jCr
12ðμ0Þ − Cr

61ðμ0Þ þ Cr
80ðμ0Þj=3; ð31Þ

which turns out to be insufficiently conservative, and would
be even more so were the data-based result obtained above
for Cr0ðμ0Þ (which is ∼ − 0.6 times that employed in
Ref. [7]) to be used on the rhs. Our error has the advantage
not only of being smaller, but of being based entirely on
lattice and continuum data errors and independent of any
additional assumptions.
It is useful to clarify the relative roles of the lattice-

continuum and continuum constraint errors, since this
determines where best to focus future efforts to further
reduce the error on Lr

10. In this context, it is also relevant to
bear in mind that the δFBΔΠ̄V−Að0Þ constraint, Eq. (27),
which is crucial in achieving the reduced errors in (30),
relies on current strange hadronic τ decay mode branching
fractions for the normalizations of the exclusive strange
mode contributions to the us V − A spectral function.
These branching fractions, as well as the exclusive strange
distributions, remain the subjects of ongoing experimental
investigation. In addition, the V=A separation of the
exclusive Kππ mode spectral contributions, which is
currently done only approximately, can, in principle, be
improved through angular analyses [15] which are feasible
with B-factory data. Improvements to the FB IMFESR
analysis, and hence to the associated FB V − A constraint,
are thus likely to be accessible in the near future.
In order to illustrate the impact plausible changes in

the us V − A spectral data might have on Lr
10, we have

rerun the analysis described in Sec. V using as input to the
FB V − A IMFESR constraint, the alternate value,
δFBΔΠ̄V−Að0Þ ¼ 0.0098ð15Þ, obtained in Ref. [12] using
the alternate, still-preliminary BABAR results for the
branching fractions B½τ− → K−nπ0ντ�, n ¼ 1, 2, 3,
reported in Ref. [45]. The results of this exercise are
Lr
10ðμ0Þ ¼ −0.00356ð32Þ, Cr0ðμ0Þ ¼ −0.00024ð12Þ and

Cr1ðμ0Þ ¼ 0.0068ð32Þ. While the input constraint value
has been shifted by 1σ, L10ðμ0Þ has shifted by only
∼1=3 of the fit component of the error in the main result.
We learn from this exercise that, at present, it is the lattice
errors on ΔΠ̄V−AðQ2Þ which dominate the uncertainty on
Lr
10. Improvements in the error on the FB V − A IMFESR

constraint (the less precise of the two continuum con-
straints), though almost certainly feasible in the near future,
will not help to significantly reduce the error on Lr

10.
Further nontrivial improvement requires instead a reduction
in the errors on the lattice determinations of ΔΠ̄V−AðQ2Þ. A
natural target in this regard is a reduction in the errors on
the π-pole subtraction through a reduction in the errors on
fπ for the two coarse 1=a ¼ 1.37 GeV ensembles, where
these errors on the f2π factor entering this subtraction are
currently a factor of ∼2.3 larger than those for the fine
1=a ¼ 2.31 GeV ensembles.

Our determination of Lr
10 allows us to also fix the

corresponding SUð2Þ × SUð2Þ LEC, lr
5, whose relation

to Lr
10 at NNLO has been worked out in Ref. [46].

With F0 the π decay constant in the SUð3Þ chiral limit,

m̂K the K mass in the limit mu;d → 0, lK ≡ logðm̂2
K

μ2
0

Þ, νK ≡
1

32π2
ðlK þ 1Þ and X ≡ m̂2

K
16π2F2

0

, this relation takes the

form [46]

lr
5ðμ0Þ¼ð1−2XlKÞL10ðμ0Þþ

1

12
νK

þXð0.000339þ0.002243lK−0.000396l2
KÞ

−XlKLr
9ðμ0Þ−8m̂2

K½Cr
13ðμ0Þ−Cr

62ðμ0ÞþCr
81ðμ0Þ�;

ð32Þ

where, in writing the second line, we have converted the
dimensionless versions of the NNLO LECs used in
Ref. [46] to the dimensionful versions of Ref. [24] used
above. Note that the last term in this relation is proportional
to the combination Cr1 determined above. Estimating m̂K

using the LO relation m̂2
K ¼ m̄2

K − 1
2
m2

π (with m̄K the
average of the charged and neutral K masses), and taking
F0 ≃ 80 MeV from the nf ¼ 2þ 1 lattice results favored
by the FLAG assessment [39], we obtain

lr
5ðμ0Þ ¼ 1.430L10ðμ0Þ − 0.00046þ 0.215Lr

9ðμ0Þ

−
m̂2

K

4ð2m2
K þm2

πÞ
Cr1ðμ0Þ: ð33Þ

With the input of Ref. [25] for Lr
9ðμ0Þ, we obtain, taking

into account the 0.978 correlation between the fitted values
of Lr

10ðμ0Þ and Cr1ðμ0Þ,

lr
5ðμ0Þ ¼ −0.00507ð10Þ: ð34Þ

The uncertainty on Lr
9ðμ0Þ plays no role in the number of

significant figures quoted for the error. The result (34)
corresponds to the value

l̄5 ¼ 13.0ð2Þ ð35Þ

for the scale-invariant coupling l̄5 defined in Ref. [2]. This
is not only in excellent agreement with the results l̄6 ¼
16.0ð5Þð7Þ and l̄6 − l̄5 ¼ 3.0ð3Þ quoted in Ref. [47],
arising from the NNLO SUð2Þ × SUð2Þ analyses of the
π vector form factor [48] and πþ → eþνeγ [49], respec-
tively, but, when combined with l̄6 − l̄5 ¼ 3.0ð3Þ, in fact
yields the somewhat improved determination l̄6 ¼ 16.0ð4Þ
for l̄6.
We close by comparing our results to RChPT estimates

for the LECs/LEC combinations determined in our analy-
sis, RChPT being the framework most often used to make
such estimates in the literature. Large-Nc-based RChPT
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estimates [50] for Lr
10 are scale independent, and usually

taken to correspond to μ≃ μ0. The resulting Lr
10ðμ0Þ

(≃ − 0.0054) is significantly more negative than indicated
by our determination. The lack of scale dependence in the
large-Nc version of the RChPT LEC predictions can be
repaired by going beyond leading order in 1=Nc. This has
been done for the V − A correlator in Ref. [51], where 1=Nc
corrections were shown to lower the RChPT prediction for
Lr
10ðμ0Þ [51]. The resulting prediction, with the scale

dependence now fully under control, is −0.0044ð9Þ,
compatible within errors with our result above. Large-Nc
RChPT predictions for the NNLO LECs entering the
combination Cr0 [22,28,42,52,53] lead to a result
Cr0ðμ0Þ≃ −0.0004, in good agreement with the result
above. This agreement, however, results from a fortuitous
cancellation, with RChPT predictions for the individual
Cr
12; C

r
61 and Cr

80 differing significantly from the coupled
channel dispersive result of Ref. [26] for Cr

12ðμ0Þ, and the
results for Cr

61ðμ0Þ and Cr
80ðμ0Þ obtained in Ref. [12] using

FB IMFESRs in combination with the results of our fit

above. The large-Nc RChPT prediction for the 1=Nc-
suppressed LEC combination Cr1 is, of course, zero. To
the best of our knowledge, 1=Nc corrections have not yet
been investigated for any of the NNLO LECs.
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