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Facilitated Diffusion on Mobile DNA: Configurational Traps and Sequence Heterogeneity

C.A. Brackley, M. E. Cates, and D. Marenduzzo
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We present Brownian dynamics simulations of the facilitated diffusion of a protein, modeled as a sphere

with a binding site on its surface, along DNA, modeled as a semiflexible polymer. We consider both the

effect of DNA organization in three dimensions and of sequence heterogeneity. We find that in a network

of DNA loops, which are thought to be present in bacterial DNA, the search process is very sensitive to the

spatial location of the target within such loops. Therefore, specific genes might be repressed or promoted

by changing the local topology of the genome. On the other hand, sequence heterogeneity creates traps

which normally slow down facilitated diffusion. When suitably positioned, though, these traps can,

surprisingly, render the search process much more efficient.

DOI: 10.1103/PhysRevLett.109.168103 PACS numbers: 87.10.Mn, 87.16.af

In living cells, proteins routinely need to reach a target
positioned on the DNA, e.g., to initiate transcription of one
gene, or to silence or suppress another. Importantly, the
search for the target has to be both rapid and efficient. Most
experimental results suggest that, within bacterial cells,
this process takes about 2 orders of magnitude less time
than one would estimate by assuming unbiased 3D protein
diffusion [1–3]. How is such an efficient search realized in
practice? The commonly accepted theory is that when
seeking their target, proteins alternate between phases of
free diffusion through the cytoplasm, and phases in which
they slide along the DNA, effectively performing 1D dif-
fusion along its backbone [4–6]. This combined strategy is
known as facilitated diffusion [7–12].

A simple scaling argument [8] to predict the magnitude
of the mean search time, �s, that a protein needs to find a
target on the DNA is as follows. The key parameters are the
DNA length L, the volume of the cell V, the 3D and 1D
diffusion coefficients, respectively, D3 and D1 (experi-
ments suggest D1 <D3 [13]), and, crucially, the sliding
length, ls. This is defined as the typical length of DNA
which the protein explores during one episode of 1D
diffusion. Via dimensional analysis, one can estimate a
typical time spent on a 3D excursion as �3D � V=D3L,
while a typical sliding time is �1D � l2s=D1. Furthermore,
the mean number of 1D-3D search rounds is Ns � L=ls
[14]. One can combine these formulas to estimate �s by
summing the time spent performing 3D and 1D diffusion,

�s ¼ Nsð�1D þ �3DÞ � A
V

D3ls
þ B

Lls
D1

; (1)

where A and B are geometry-dependent constants which
cannot be inferred from simple scaling [8,15]. The most
important result from the theory is that there is an optimal

sliding length which minimizes �s, given by l�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAD1VÞ=ðBD3LÞ

p

. With typical parameters for bacteria,
and assuming A ’ B, one finds that ls is a few tens of
nanometers.

While appealing, theoretical approaches building on
Eq. (1) commonly rely on several approximations in order
to make progress. Analytical models usually schematize
DNA as a structureless polymer (or assume that the poly-
mer configuration changes on a time scale much quicker
than that of the protein movement [12]), and also neglect
intersegmental transfers, whereby the protein moves di-
rectly (i.e., without a 3D excursion) between two DNA
regions which are close in 3D space, but can be far apart
along the DNA backbone. On the other hand, simulations
[15–19] usually treat the DNA as frozen (an exception is
the lattice study in Ref. [18]), and disregard the base pair
sequence of DNA.
Here we present a coarse-grained simulation of the

search process where we relax these two drastic approx-
imations: we include the dynamics of all components
(DNA and proteins), and we consider a heterogeneous
DNA. We find that both aspects are crucial players in
determining how fast facilitated diffusion is. First, we
analyse the search process on a string of rosettes, which
better represents the conformation of prokaryotic DNA as
inferred from experiments [20,21]. We find that the relative
position of the target with respect to the network may
change �s by orders of magnitude. This giant effect cannot
be captured by the theory in Eq. (1), in which the target
placement is immaterial. These findings suggest that by
changing the local DNA conformation it should be possible
to silence or express a given gene. Second, if the DNA-
protein interaction is sequence dependent [22], in general
this slows down facilitated diffusion. However, through a
careful design of the DNA sequence we show that one can
create a diffusional funnel that drives the protein to its
target much more quickly.
In this work we used Brownian dynamics simulations

in which we coarse grained DNA as a bead-and-spring
polymer. Each of the N beads in the DNA had a diameter
�� 2:5 nm, and neighbouring beads were connected by
finitely extensible nonlinear elastic springs. Proteins were
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modeled as spherical particles with a diameter of 3�, with
a spherical patch of radius � centred 1:1� away from the
protein center [Fig. 1(a)]. Only the latter was sticky for the
DNA, via a (truncated) Lennard-Jones (LJ) interaction. All
other coarse-grained beads interact via a purely repulsive
potential which captures steric effects (this is achieved by

truncating a LJ potential at a mutual distance of 21=6�).
Finally, three neighboring beads along the DNA are sub-
jected to an additional force which models DNA semi-
flexibility. Such a force comes from the gradient of the
Kratky-Porod potential [23]; this can be expressed as
K cos�, where K ¼ kBTlp=� (lp ¼ 20 � for DNA), and

� is the angle between the three neighboring beads.
We will refer to the full potential, including both LJ,

Kratky-Porod, and elastic spring terms, as U. If we denote
the position of the ith sphere in the simulation as xi,
its evolution is determined by the following Langevin
equation,

mi

d2xi

dt2
¼ ��i

dxi

dt
�riUþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT�i

p

�iðtÞ; (2)

where �i is the friction felt by the particle, ri ¼ @
@xi

, kB is

the Boltzmann constant, T is the temperature, mi is the
mass of the ith bead, and �iðtÞ is an uncorrelated Gaussian
noise with zero mean and unit variance [24]. All simula-
tions were performed via the LAMMPS code [25].

Fig. 1(b) shows the mean search time as a function of the
DNA-protein affinity � (the depth of the attractive LJ

potential, measured in units of kBT), for the cases in which
the DNA is either frozen (into a randomly chosen equilib-
rium configuration) or mobile. Since the sliding length
increases with � [Fig. 1(c)], our results are consistent
with Eq. (1) but now there is an optimal value �� which
minimizes �s. Unlike in the theory, we also observe a
dependence of D1 on � [Fig. 1(c)], which comes from
the presence of energy barriers felt by the protein while
sliding—in our case these are mainly due to the granularity
of our polymer description, but they are likely to be present
for real DNA as well, due to the modulations in the major
and minor grooves, and the curvature of the DNA.
Experimentally, D1 has been shown to vary over a
large range of values for different conditions, and DNA
sequences [4].
Intriguingly, freezing the DNA leads to a much slower

search, especially for large �. Our simulations also show
that increasing the amount of genome available in the
search volume, i.e., increasing L at a fixed V, hinders,
rather than helps, facilitated diffusion, unless the affinity
is very small [Fig. 1(d)]. While the latter effect can be
readily predicted from Eq. (1), understanding the differ-
ence between the frozen and moving DNA cases requires a
more detailed analysis of the protein trajectories in our
numerical experiment. As one might expect, the 3D search
time, �3D, which is dominant for small �, is larger (a�40%
difference) for the frozen DNA; however, we also observe
an almost twofold larger value of �1D for the frozen case.
Fig. 1(c) shows that while ls is similar for the cases of
mobile and frozen DNA,D1 changes significantly, i.e., it is
smaller in the case of frozen DNA. We ascribe this differ-
ence to the fact that, when mobile, the DNA is able to
adjust locally to the presence of the protein, and hence can
smooth out some of the energy barriers which slow down
the 1D sliding. Once the measured values of ls, D1, A, and
B [26] are put into Eq. (1), this actually provides a good fit
to our data, for both mobile and frozen DNA, as shown in
Fig. 1(b). The small residual error may arise from the
presence of the previously mentioned intersegmental
transfers, which are neglected by the theory—indeed their
presence somewhat changes the meaning of ls. While
traditionally ls is the length over which the protein slides
during each encounter with the DNA, we here define it
simply as the number of distinct DNA beads visited during
the encounter—whether consecutive along the contour, or
separated due to intersegmental transfers. Such events are
present in our simulations, and are more common in the
mobile DNA case.
The DNA conformations found in vivo in bacteria, while

not yet well characterized, are likely to be quite far from
those of the self-avoiding polymer normally considered in
the theories for this process, and which we studied in
Fig. 1. Within the prokaryotic cytosol, DNA is known to
be highly looped, due to the presence of DNA-binding
architectural proteins such as condensins—this helps to
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FIG. 1 (color online). (a) Snapshot of a DNA segment and a
model protein. (b) Mean search time �s for frozen and mobile
DNA, as a function of DNA-protein affinity, �. Parameters are
L ¼ 500�, V ’ 50 000�3 (the fraction of the volume occupied
by the DNA is therefore ’ 1%), while data were averaged over
500 search runs. The lines are a fit of the data with Eq. (1) [26].
(c) Plots of the 1D diffusion coefficient, D1, and the sliding
length, as a function of �. (d) Dependence of �s on affinity for
various DNA lengths, L (in units of �), with fixed V ’ 50 000�3.
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achieve the compaction which is required to fit the whole
genome within the narrow volume of a single cell.
Therefore, we consider in Fig. 2 the dynamics of a protein
searching for its target on a DNA which is made up of a
string of rosettes, each of which consists of a series of loops
joined together [see Fig. 2(a)]. This idealized conformation
gives a realistic local view of bacterial DNA according to a
number of biological models (see, e.g., Ref. [21]) and is
simple enough to be included in our modeling.

Fig. 2(b) shows the mean search time �s as a function of
�, for three different target positions (i) in the center of a
rosette, (ii) in the middle of a loop in a rosette, and
(iii) between rosettes. Our results show that when the
affinity between the protein and the DNA is small, so
that 3D diffusion dominates over 1D diffusion during the
search, it takes much longer to find a target in the center of
a rosette. Such a target is more difficult to reach as the
surrounding loops are in the way. Interestingly, this trend
reverses for larger values of the affinity. To understand this,
we observe that in the large � regime each of the rosettes
acts as a trap for the protein, i.e., it spends a large amount
of time in a rosette, before moving to another one [see
Fig. 2(c)]. Since sliding is the dominant transport mecha-
nism, rather than acting as a shield, the loops allow the
protein to slide into the centre of the rosette. Once there
intersegmental transfers are more likely to keep the protein
near that centre than take it elsewhere. Such a mechanism
then renders it easier to find the target if it is close to one of
the traps.

Fig. 2 therefore demonstrates that DNA topology and
target positioning, together with DNA-protein affinity, can

be used to control the relative ease with which different
regions of the genome can be accessed by proteins. We
highlight that this conclusion is outside the scope of most
facilitated diffusion theories based on arguments such as
that in Eq. (1), in which the position of the target does not
feature. More quantitatively, we have computed �3D and
�1D, as well as D1, and ls from our data, and found that
while �3D � V=D3L still holds, it is not possible to fit �1D
to the functional form Bl2s=D1 throughout the � range
considered here (not shown). This is because the rosette
structure introduces large correlations between the points
where the protein leaves and rejoins the DNA for each 3D
excursion, meaning that Ns is very sensitive to the target
position and poorly predicted by Eq. (1) [see Fig. 2(b)].
We now turn to the discussion of another aspect found

in real DNA and commonly neglected in theoretical work:
sequence heterogeneity. The DNA sequence leads to a
nonuniform free energy landscape for a protein sliding
along it. In order to describe such a landscape, we allow
the DNA-protein interaction to vary from one DNA bead
to another, with the bead-dependent affinity set as pre-
scribed by the model proposed in Ref. [27]. There it was
postulated that there exists two possible states for a
protein attached to the genome: it can either bind in
a nonspecific mode—with constant affinity �ns, or in a
sequence-dependent, specific, mode—with affinity larger
than �ns. The model in Ref. [27] assumes that the two
states are in equilibrium, so the protein will be found in
whichever state offers a stronger interaction. In our simu-
lations, for DNA bead s we choose a specific interaction
strength �sðsÞ according to an appropriate distribution
[10,27]; the affinity for that bead is then taken to be
whichever is the larger of �sðsÞ and �ns. In practice this
leads to a free energy profile with most beads favouring
the nonspecific interaction strength �ns, with a small
number of traps with a greater interaction energy.
Unlike those of the rosettes considered in Fig. 2, which
are determined by the 3D structure of the DNA, such
traps are encoded in the 1D sequence of bases.
Figure 3 shows the dependence of �s on �ns for a DNA

chain with L ¼ 1000� (corresponding to �7350 base
pairs), where the trap strength and number of traps have
been determined on the basis of the statistics for the
binding of a typical bacterial transcription factor (TF)
[10,22,28]. We focused on the case in which the target-
protein interaction energy is larger than the affinity with
any of the traps, which is the most common for real TFs
[10]. We compared the case of homogeneous DNAwith a
nonspecific interaction �ns, with two inhomogeneous se-
quences: (i) that in which the position of the traps is
random, leading to a golf-course free energy landscape;
and (ii) that in which the DNA sites with enhanced affinity
for the proteins are clustered around the target (alternating
nonspecific and enhanced binding beads) so as to provide a
potential funnel driving the protein to it [see Fig. 3(b)]. We
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FIG. 2 (color online). (a) Snapshot of a string of rosettes.
(b) Mean search time for a protein on a string of 3 rosettes
with 5 loops (each of length 20�) on a DNA of length L ¼ 380�
with V ’ 36 000�3 (1% DNA volume fraction), for different
positions of the target: (i) between rosettes (bead 130), (ii) in
the middle of a loop in a rosette (bead 190), and (iii) in the center
of a rosette (bead 180), as indicated in (a). The curve is the fit to
the theory in Eq. (1) [26]. (Choosing a different number and size
of loops leads to qualitatively similar results.) (c) Time series of
the DNA bead (s) nearest to the protein at a given instant,
showing trapping close to a rosette center (� ¼ 5:9kBT).
Dashed lines separate beads belonging to different rosettes.
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refer to these two situations as the golf-course and funnel
case, respectively.

A general Kramers’ argument suggests that the time the

protein spends in a trap may be estimated as �trap ¼
�0e

ð�trap��nsÞ=kBT , where �0 � �2=D1 is the time it takes a
protein to move from one nonspecifically interacting DNA
bead to the next. It is therefore not surprising that this case
leads to a far larger mean search time with respect to the
homogeneous DNA case, where the binding of the protein
to the genome is always nonspecific [see Fig. 3(a)]. If the
search involved 1D sliding along the DNA contour alone,
one might expect that if the nonspecific interaction �ns
were increased at fixed �trap then this would lead to an

exponential decrease in the search time (in line with the
decrease in trap depth); however, for facilitated diffusion,
this is balanced by the increase in ls (above its optimum
value) which leads to a slower search.

The Kramers’ argument does not apply to the funnel
case, which eliminates traps other than near the target—
intersegmental transfers from one trap to the next provide
an alternative transport mechanism which avoids slow-
down due to the rugged 1D potential. One may then expect
that �s should be similar to the one observed with uniform
DNA, with some enhancement due to the binding gradient
which drives the protein towards the target once it is in its
close proximity. Strikingly, the speed up with respect to the
uniform case may instead reach about one order of magni-
tude (and more than two with respect to the golf-course
case). This is probably because the presence of the funnel
can decrease the likelihood of the protein being transported
away from the vicinity of the target, even for small �ns [29].

The dramatic difference between search efficiency in the
golf-course and funnel case is a consequence of the assump-
tion (from Ref. [27]) that proteins can bind to DNA either
nonspecifically or specifically, and the two states are in
thermodynamic equilibrium so that the optimal binding
for each site can be selected quickly. It is currently not clear

whether this is a correct assumption—an alternative sug-
gestion [22,30] is that what matters may be the energy
barrier between the specific and nonspecific bound states,
rather than their absolute binding energy. If the energy
barrier between the states was very large for all sites except
the target, then our funnel sequence should not lead tomuch
enhancement in the efficiency with respect to the random
case. That is to say, the protein would see only a flat (non-
specific) landscape irrespective of the sequence, and the
‘‘funnel’’ would not be accessible to it. It would therefore be
interesting to perform in vitro single molecule experiments
analogous to those of Ref. [2], where the DNA sequence is
either random or designed so as to create the funnel we
considered in Fig. 3. In this way one may directly test
whether the predictions from our simulations hold, and
hence determinewhich of the two theoriesmentioned above
for DNA-protein binding applies in reality.
In conclusion, we have presented Brownian dynamics

simulations of the facilitated diffusion of a protein on DNA.
Unlike previous numerical work, we have focused on the
impact of 3D DNA conformation and sequence heteroge-
neity on the search dynamics. We have found that the
presence of loops in the DNA may provide a way to tune
the accessibility of a target on the genome, which cannot be
accounted for by existing analytical theories. By consider-
ing a string of rosettes for the DNA conformations, we have
seen that when the target is in the centre of a rosette and the
DNA–protein affinity is small, the time needed to find it is
larger than in the casewhen the target is positioned between
rosettes. This effect reverses for high affinity—in this re-
gime each of the rosettes acts as a configurational trap, in the
vicinity of which the protein lingers for a long time. While
the conformation of prokaryotic genomes may adopt far
more complicated topologies than the string of rosettes
which we have considered, our results are generic in pre-
dicting a dependence on the relative positioning of loops
and targets. Hence, we expect they should also apply to
more disordered loop networks. Finally, we have consid-
ered the case of a heterogeneous DNA, where the affinity
between genome and protein is site dependent, thereby
introducing traps in the facilitated diffusion of the protein.
When the sequence is random, these traps severely slow
down the search process. However, when the sequence is
designed so as to provide a funnel-like landscape around the
target, the search may become much faster. Experiments to
test this latter prediction should lead to a better understand-
ing of the way proteins bind to DNA.
We acknowledge EPSRC Grant EP/I034661/1 for fund-
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