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Activity-induced clustering in model dumbbell swimmers:

The role of hydrodynamic interactions
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Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic in-
teractions on the collective dynamics of active suspensions within a simple model for bacterial
motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed
dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the
separation between swimmers is comparable to their size, the swimmers’ motions are strongly af-
fected by activity-induced hydrodynamic forces. To further understand these effects, we investigate
semi-dilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison
between simulations with and without hydrodynamic interactions shows these to enhance the dy-
namic clustering at a relatively small volume fraction; with our chosen model the key ingredient
for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the
active forces. Furthermore, the density dependence of the motility (of both the translational and
rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interac-
tions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that
hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause
major changes in their steady state properties.

PACS numbers: 47.63.Gd, 87.18.Gh, 82.70.-y, 47.57.J-

I. INTRODUCTION

It is well established that various microorganisms, such
as bacteria and algae, propel themselves through a sus-
pending medium using a nonreciprocal cyclic motion
[1, 2]. Despite the progress that has been made in elu-
cidating the self-propulsion mechanisms of various mi-
croorganisms in isolation, an understanding of their col-
lective dynamics is still elusive. Recent experimental and
simulation studies have shown that complicated interac-
tions arising from the microorganisms’ activity produce
diverse nonequilibrium cooperative phenomena, whose
behaviors are notably different from those observed in
passive systems. Such fascinating aspects of active sys-
tems are suggestive of new underlying principles; the
search for these is the current focus of intense study
among the soft matter physics community (see recent
reviews [3–5] and references therein).

Hydrodynamic interactions (HIs), and their dynamic
coupling to activity, are thought to be among the key
elements that govern transport and rheological proper-
ties in suspensions of swimming microorganisms (see [6]
for a review). The hydrodynamic interactions between a
pair of microorganisms have been extensively studied and
their general features have been well revealed in certain
simple situations; for example, when two microorganisms
are far apart compared to their sizes, a weak attractive
interaction acts between them. This is because the dom-
inant contribution is of a dipole-dipole character (which
is attractive for particles that are free to rotate).

However, we are still far from a thorough understand-
ing of the role of HIs in nondilute systems of active par-

ticles. When the distances between microorganisms are
comparable to their sizes, HIs in the near field become im-
portant, but the effects of such interactions are not easy
to understand in general. This is because the details of
both the swimming mechanisms and the particle shapes
come into play with increased proximity (where not just
dipolar terms but higher order multipoles contribute), so
that the HIs among microorganisms at moderate or high
density are more complicated and less universal than the
dilute case. Thus, it is interesting and important to ex-
amine many-body HIs through simulations of minimal
microorganism models. From such models it may be
possible to extract some generic features of cooperative
phenomena in active suspensions of various types.
It is well recognized that, in a wide variety of systems,

activity produces marked dynamic interactions, resulting
in collective fluctuations or structure formation. Exam-
ples include giant number fluctuations [7–9], clustering
(or swarming) [10, 11], and bulk phase separation [12–19].
These phenomena can occur without any direct poten-
tial interactions, and therefore have a purely dynamical
origin. In systems manifesting such a dynamic cooper-
ativity, a fundamental question is how HIs influence or
change the activity-induced interactions.
Although certain collective effects characteristic of ac-

tive systems are believed to be greatly influenced by HIs,
there is still no general consensus on their roles in such
phenomena. Indeed, for the reasons given above, this
can depend on particle shape and/or swimming mech-
anism so that such questions must be asked within the
context of well defined models. One popular model is
that of squirmers: spherical particles with a prescribed
surface velocity field [20, 21]. For squirmers in two di-
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mensions it was found that the phase separation, other-
wise caused by a collisional reduction in mean propulsion
speed of swimmers at high density [19], is switched off by
HIs [22]. Another popular model is based on dumbbell
shaped swimmers subject to a set of discrete forces acting
on the two solid particles and on the fluid [23–25]. As we
explain further below, this model may need to be sup-
plemented by an ad hoc rule to govern the case where a
second swimmer is about to occupy the spatial position
at which the active force from a first swimmer acts on
the fluid. Even with such a rule, the model seems a bet-
ter starting point than squirmers when modeling suspen-
sions of rod-like motile bacteria. Specifically, squirmers
can only exert active torques on each other, whereas rod-
like swimmers can exert both active and passive torques.
Note that torques are particularly important in active
systems (e.g. [22]) since they rotate not just the particle,
but also its swimming direction.
In this study, to further understand the role of HIs in

collective dynamics for nonspherical swimmers, we nu-
merically investigate the dynamics of non-dilute active
suspensions of self-propelled dumbbells in three dimen-
sions. We especially focus on activity-induced clustering
at modest concentrations [10, 11]. This can be seen as
a precursor to activity-induced phase separation. How-
ever we do not address full phase separation, which can
only be simulated accurately with enormous system sizes
[26], such that a study of the role of near-field HIs in
active phase separation remains out of reach with cur-
rent computers. (Some far-field effects might instead be
represented within a continuum model [27].)
Our simulation method fully takes into account the

solvent dynamics and thus is suitable for the investiga-
tion of HIs, as will be explained in the next section. In
Sec. III, we demonstrate that the activity-induced HIs
can strongly alter both the translational and rotational
dynamics at modest densities. At a relatively small vol-
ume fraction, an activity-induced hydrodynamic attrac-
tion dominates the collective dynamics of the swimmers,
resulting in a stronger slowing down, and hence enhanced
clustering, compared to the case without HIs. The vol-
ume fraction dependence of the motility is found to be
much stronger with HIs than without them; this also in-
fluences the clustering tendency, as we discuss in Sec. IV.
Section V gives our conclusions and a further discussion.

II. NUMERICAL METHODS

Many-body hydrodynamic interactions in semidilute
regimes are difficult to deal with even using simula-
tions because of their intrinsically long-range and time-
dependent character; in principle we must solve the
Navier-Stokes equation with moving boundary conditions
at the solvent-particle interfaces. To confront these dif-
ficulties, in the past decade, several hybrid simulation
techniques [28–32] as well as other mesoscopic methods
[33, 34] for the dynamics of complex colloidal suspen-

sions have been developed. Of these methods, we here
adopt the fluid-particle-dynamics (FPD) method [30, 31]
to incorporate HIs into the study of a model active sus-
pension.
Within the framework of the FPD method, HIs can

be approximately taken into account (i) by treating a
rigid colloidal particle as a nondeformable but highly
viscous fluid particle, and (ii) by replacing the particle-
fluid boundary with a smoothed boundary. This simple
scheme considerably reduces the numerical cost and the
mathematical complexity of the computation even while
preserving the basic nature of HIs in many-body colloidal
systems. The validity of this method has been examined
by several authors [30, 31, 35–38]. It is good at capturing
both far-field and intermediate-field aspects of the HIs,
though like many other methods it cannot (at reason-
able computational cost) also resolve the divergence of
lubrication forces that occurs when hard suspended par-
ticles come into very close contact [30, 31]. In practice
the model can be considered to describe colloids whose
hard-core radius (set by the interparticle pair potential)
slightly exceeds their hydrodynamic radius, so that thin
lubrication films never dominate.

A. Model swimmer system

FIG. 1: (Color online) Schematic of a model swimmer. Here,
a swimming bacterium is represented by two spherical par-
ticles with radius aH = aT = a and a “phantom” spherical
particle with radius aP = b. The center-to-center distance be-
tween the head and tail particles and that between the phan-
tom and tail particles are fixed at ℓ0 and ℓ1, respectively.
The back-to-back (a) and face-to-face (b) force configurations
correspond respectively to the pusher (extensile) and puller
(contractile) swimming mechanisms. The (green) solid and
(purple) dashed arrows respectively indicate schematically the
swimming direction and the flow field around the swimmer.

Our model of a swimming microorganism comprises a
dumbbell with a prescribed dipolar force pair, which is
essentially the same as the models used in Refs. [23, 24]
and later in Ref. [39]. Each dumbbell is composed of two
real particles plus one “phantom” particle – so called be-
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cause (a) it merely follows the motion of the pair of real
particles to which it is attached and (b) it can overlap
with the other real particles in nearby swimmers. The
phantom particle can be thought of as modeling the ef-
fect of a thin flagellar bundle, whereby a force is exerted
on the fluid at a position displaced from the rod-like bac-
terial body (represented by the dimer of real particles).
The positions Rm and the radii am of the particles

and the distances of separation between them determine
the shape of the swimmer, where the subscripts m = H
and T denote the head and tail particles of the dumb-
bell, respectively, and m = P denotes the phantom par-
ticle (see Fig. 1). The swimmer’s orientation is charac-
terized by a unit vector n̂ = (RH − RT)/|RH − RT|.
The propulsion force −factn̂ is exerted on the fluid via
the phantom particle; an equal and opposite force factn̂
is exerted on the tail particle, which ensures the dipolar
character of the swimming mechanism. Hence there is
no net external force on a box of fluid that fully encloses
the swimmer. Face-to-face (fact > 0) and back-to-back
(fact < 0) force configurations correspond to “pusher”
(extensile) and “puller” (contractile) microorganisms re-
spectively (Fig. 1). Although, in this paper, we limit our
study to the dynamics of pushers such as motile bacteria,
it would be straightforward to perform a corresponding
simulation for pullers of the same geometry.
A similar dumbbell model, and its hydrodynamic in-

stabilities, were theoretically investigated in Ref. [40] by
analyzing hydrodynamic equations derived by a coarse-
graining approach. It is one of several models, used to ad-
dress active suspensions, in which surface stresses or force
configurations are prescribed [41–45]. An alternative ap-
proach is to specify a surface slip velocity, which is usu-
ally done for spherical particles resulting in the squirmer
model mentioned previously [20, 21, 46]. Recently, sev-
eral groups have investigated many-body HIs in squirmer
suspensions [22, 47–52]. Although both force-prescribed
(rodlike) and velocity-prescribed (spherical) particles ex-
hibit some similar effects, such as an enhancement of the
particle diffusion, their differences in shapes and swim-
ming mechanisms may cause important changes in the
transport properties [42]. For example, these models
show distinct flow responses, largely owing to the dif-
ference in the shapes, resulting in different rheological
properties [42, 47]. The intrinsic difference in the mod-
els can cause strong variations in the nature of near-field
HIs as well as in the interparticle torques at close ap-
proach, both of which will alter cooperative behaviors
at finite density. We will draw attention to these differ-
ences occasionally in what follows, in relation to recent
simulations of squirmers [22].

B. Basic equations

We now briefly explain how to adapt the FPD method
to the case of self-propelled dumbbells. The two real par-
ticles in each dimer are represented by a smooth position-

dependent viscosity so that

η(r) = η0 +
∑

α

∑

m=H,T

(ηp − η0)φ
α
m(r), (1)

where η0 and ηp are the viscosities of the solvent liq-
uid and of the (nearly) rigid particles, respectively. The
phantom particle (m = P) does not alter the local viscos-
ity. The function φαm(r) represents the smoothed profile
of the m-th particle of the α-th swimmer,

φαm(r) =
1

2

[

1 + tanh

(

am − |r −R
α
m|

ξm

)]

, (2)

where ξm is the interface thickness. The rigidity of the
real particles is approximately sustained by the large vis-
cosity difference, ηp/η0 ≫ 1.
With η(r) obeying Eq.(1), FPD describes the dynam-

ics by simply solving the usual Navier-Stokes equation
for the velocity field:

ρ
( ∂

∂t
+ v · ∇

)

v = ∇ ·
[↔
σ − p

↔

δ +
↔
σR

]

+ F rev + F act, (3)

where

↔
σ = η(∇v

† +∇v) (4)

is the viscous stress tensor, p is the pressure, and
↔

δ is the
unit tensor. The hydrostatic pressure p is determined by
the incompressibility condition

∇ · v = 0. (5)

In (3),
↔
σR is the random stress tensor which, in three

dimensions, satisfies the fluctuation-dissipation relation
as follows

〈σR,ij(r, t)σR,i′j′(r
′, t′)〉

= 2η(r)T

(

δii′δjj′ + δij′δji′ −
2

3
δijδi′j′

)

δ(r − r
′)δ(t− t′),

(6)

where T is the temperature in units of the Boltzmann
constant. In (3), F rev(r) is the (volumetric) reversible
force density arising from the direct interaction potential
between the real particles. With the total potential en-
ergy U , whose explicit form is provided below, F rev(r)
is uniquely determined as [30, 31, 35]

F rev = −
∑

α

∑

m=H,T

φαm
Ωα

m

∂U

∂Rα
m

, (7)

where Ωα
m =

∫

drφαm is the particle volume. Finally,
F act(r) is the active force density represented as

F act =
∑

α

∑

m=T,P

φαm
Ωα

m

factn̂α(δm,T − δm,P), (8)
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where δm,l (m, l = T,P) is the Kronecker δ. Notice that
the volume integral of F act(r) is equal to zero, which
ensures the conservation of the total momentum.
In FPD, the velocity of a particle is defined as the

following average value:

V
α
m =

1

Ωα
m

∫

drφαmv. (9)

It is worth noting that without external forces, active
forces, or thermal fluctuations, the time derivative of the
total energy of the system, which is the sum of U and the
kinetic energy FK{v} =

∫

drρv2/2, is negative definite:
d(U + FK)/dt = −

∫

dr[(η/2)
∑

i,j(∇ivj +∇jvi)
2] ≤ 0.

To complete the model of a microswimmer, we must
introduce suitable dynamical rules for the phantom par-
ticles. We assume that such a particle merely follows
the motion of the dimer of real particles to which it is
attached. In other words, the position R

α
P(t) obeys

R
α
P(t) = R

α
T(t)− ℓ1n̂α(t), (10)

where ℓ1 is the constant center-to-center distance be-
tween the tail and phantom particles. We assume that
there is no interaction between the phantom particles
which therefore can overlap each other. On the other
hand, an overlap between the real and phantom particles
leads to an unphysical effect: In our model, the real par-
ticle is regarded as a rigid particle, and the volumetric
force acting on the rigid particle is treated as a homo-
geneous force density. However, any penetration of the
phantom particle into the real particle results in an in-
homogeneity of the force density within the rigid particle
region, creating a contradiction between the required dy-
namics and the precepts of the FPD numerical scheme.
There are at least two possible ways to avoid any such

effect [53]. The first one is to introduce an additional
dynamical rule, by which the active force is switched off,
when the phantom particle of one swimmer overlaps on
the body part of the other. The second one is to introduce
additional repulsive interactions involving the phantom
particles, which directly prevent such overlaps without
losing the propulsive force (thus, in this case, the “phan-
tom” particle is not exactly a phantom). In this study,
we mainly investigate the first of these models, but the
second will be discussed in the Appendix with some sim-
ulation results presented there for comparison. We find
that in the present dumbbell model, the qualitative pic-
ture regarding the role of hydrodynamic interactions is
relatively insensitive to such model details (although they
do alter the quantitative results): the nonlocal and long-
range nature of HIs allows them to dominate some im-
portant aspects of the collective dynamics.
Here, we detail the dynamical rule employed in the

main text: when |Rα
m −R

α′

P | < a+ b, where m = (H,T)
and α 6= α′, the α′-th swimmer becomes passive. That is,
if a swimmer’s phantom particle overlaps with the real-
particle ‘body’ of another swimmer, the propulsive force
pair attached to the first swimmer becomes switched off

until its phantom particle once again lies in a purely fluid
region. Although somewhat ad hoc, this dynamical rule
could reflect a physical situation in which the motility of a
bacterium is weakened if its flagellar bundle encounters
the body of a second bacterial body. This behavior (a
slowing of propulsion in the neighborhood of other parti-
cles) will cause an effective attraction between swimming
particles [12] and will therefore promote clustering. How-
ever, such an effective attraction is already present, even
for dynamical rules in which the propulsive force is main-
tained throughout a collision, since the hard-core repul-
sions still cause swimming particles to slow down at high
densities. The effects of the rule- and collision-induced
slowing are both relevant for the clustering as shown in
Sec. III C. The important aspect for our study is not the
local details of our overlap rule but the fact that, at all
times, momentum conservation is still satisfied. This will
allow us below to make direct comparisons between the
chosen dynamics with and without HIs.
The total potential energy of the system is written as

U{Rα
m} =

∑

α

w(|Rα
H −R

α
T|)

+
1

2

∑

α6=α′

∑

m,m′

u(|Rα
m −R

α′

m′ |), (11)

where m =H,T. The first and second terms correspond
to the intra-swimmer and inter-swimmer interactions, re-
spectively, between the real particles. The head and tail
particles in the same swimmer are stiffly connected by
the following harmonic potential:

w(r) =
1

2
E1

(

r

ℓ0
− 1

)2

, (12)

where E1 is a positive energy constant and ℓ0 is the nat-
ural length of the dumbbell, which is regarded below as
the swimmer size. We assume the following form of u:

u(r) = E2

(

2a

r

)24

, (13)

where E2 > 0 is introduced to prevent the overlap of real
particles on different swimmers.
The numerical calculations are performed as follows.

First, the (off-lattice) particle position R
α
m(t) at time t

is given. Next, from Eqs. (1) and (2), we obtain the
on-lattice fluid velocity field at time t + ∆t by solving
the Navier-Stokes equation, Eq. (3). Finally, we update
the particle position as follows: Rα

m(t +∆t) = R
α
m(t) +

∆tV α
m(t+∆t), where V α

m(t+∆t) = (1/Ωα
m)

∫

drφαmv(t+
∆t).
In implementing our simulations, we first make the

equations dimensionless by measuring space and time re-
spectively in units of λ, which is the discretization mesh
size used when solving Eq.(3), and τ = ρλ2/ηℓ. (The
latter represents the momentum diffusion time across
the unit length.) A mass unit is then chosen to make
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λ/τ , σ̄ = ρ(λ2/τ2) and ǫ = σ̄λ3 the units of veloc-
ity, stress and energy, respectively. We set E2 = 10ǫ
and E1 = 3.2 × 105ǫ. Because E1 ≫ E2, ℓ0 is nearly
constant for the particle densities studied here. In ad-
dition, the temperature is, unless stated otherwise, set
as T = 0.125E2. This value ensures that the effective
hard-core particle radius set by Eq.(13) stays close to a
and, in combination with subsequent parameter choices,
sets the swimmers’ Péclet number to a reasonable value
(see Sec.III C below). To avoid cumbersome notation
we use the above-defined units for the rest of the pa-
per, so that the relevant symbols from now on represent
scaled variables. Throughout our simulations we choose
aH,T = a = 3.2, aP = 0.75a = 2.4, ξH = ξT = ξP = 1,
ℓ0 = 2.5a, and ℓ1 = 3a. The viscosity ratio is ηp/η0 = 50.
The simulation boxes used are of size 643 and 1283.

III. SIMULATION RESULTS

A. Flow field induced by a single swimmer

Before proceeding to the many-body results, we inves-
tigate hydrodynamic effects in a few-body system, and
show that the present model can reproduce the general
features of the flow field induced by a single swimmer and
by a pair of swimmers. The simulation box used here is
L3 = 1283. To assist this comparison we set T = 0 so
that the dynamics is deterministic. Figure 2(a) shows
the time evolution of the swim speed v(t) when the ac-
tive force fact is suddenly applied at t = 0. In the inset of
Fig. 2(a), the steady-state velocity v0 is plotted against
fact. Here, we define the Reynolds number of a swimmer
as Re=ρv0ℓ0/η0, which varies from 0.0024 to 0.24 as fact
changes from 0.1 to 10. These are unrealistically large
Reynolds numbers for actual bacteria but, so long as they
remain well below unity, the resulting physics should not
be strongly affected (see [54] for a fuller discussion in the
colloidal context).

The results for a passive dumbbell with an external
force fex of the same magnitude exerted on the tail par-
ticle (namely, without the phantom particle) are also
shown in Fig. 2 (a). The active swimmer is found to
reach the steady-state velocity faster than does the pas-
sive dumbbell. Because of the dipolar nature of the swim-
mer, the distorted region of the velocity field in the steady
state is smaller than that caused by the passive dumbbell,
and therefore, the time necessary to reach the steady-
state velocity field via momentum diffusion is shorter.
The scaled friction coefficient along the axis is defined as
ζ̃|| ≡ ζ||/πη0ℓ0 = (Fact(ex)/v0)/πη0ℓ0 for an active (pas-

sive) dumbbell, where Fact(ex) = fact(ex)
∫

drφ2T/ΩT =

0.59fact(ex) [55]. We find ζ̃|| ∼= 7.8 for active and ∼= 3.1

for passive particles. ζ̃|| of the active dumbbell is larger
than that of the passive one, which is because the phan-
tom particle, behaving as a model flagellum, pulls the
fluid surrounding the dumbbell backwards for fact > 0.

FIG. 2: (Color online) (a) The time evolution of the velocity
of an isolated swimmer. Its steady-state value for various val-
ues of fact is shown in the inset. The results for the passive
dumbbell with an unbalanced external force of the same mag-
nitude are also plotted. (b) The velocity field v(x, y, z = 0) in
the steady state at fact = 5, where the axis of the swimmer is
in the plane. The color bar represents the value of the velocity
field scaled by the steady-state swimmer velocity. The purple
arrow indicates the swimming direction. The simulation box
used is 1283 and the frame size shown is 322.

Figure 2(b) shows the velocity field around a swimmer
in the steady state for fact = 5, where the axis of the
swimmer n̂ lies in the plane along the x direction.
In the steady state, the force balances for the head and

tail particles are given by

Fvis
H + F sp

H = 0, (14)

Fvis
T + F sp

T + Fact
T = 0, (15)

where Fvis
m , F sp

m (m =H,T), and Fact
T are the viscous

drag, constraining spring, and active forces, respectively
[56]. Because of Newton’s third law, F sp

H +F sp
T = 0, and

thus, F sp
H = [Fact − (Fvis

H − Fvis
T )]/2 and F sp

T + Fact =
[Fact + (Fvis

H − Fvis
T )]/2. Note that these expressions for

F sp
H and F sp

T in the steady state do not depend on the
method of decomposing the active force into the head and
tail particles. In our model the active force acts only on
the tail particle, and because of the front-back asymme-
try of the streamlines, an imbalance in the hydrodynamic
drag between the head and tail particles arises. That
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is, the hydrodynamic drag acting on the tail particle is
stronger than that of the head particle, |Fvis

T | > |Fvis
H |,

which is caused by the active force exerted through the
phantom particle, resulting in |F sp

T +Fact| > |F sp
H |. This

is not the case for a passive dumbbell subject to an ex-
ternal force: there, because of the front-back symmetry
of the streamlines, the viscous drag forces acting on the
head and tail particles are then the same.

B. Flow field induced by a pair of swimmers

The hydrodynamic pair interactions of swimmers have
been extensively studied by many authors in several
dumbbell models [39, 57, 58] and in squirmers [46, 48].
We here investigate the HIs between two swimmers in

several situations relevant to our subsequent results on
many-body suspensions.

1. Swimming side by side

At t = 0, two swimmers are placed in parallel in the
(z = 0) plane, and active forces parallel to the x-axis
are suddenly applied. In Fig. 3(a), we plot the tra-
jectories of the head and tail particles of one swimmer
for several different initial distances ∆ between the two
swimmers. Although both the head and tail particles are
initially attracted, they eventually change direction and
repel one another. This behavior has been previously
observed by several authors [39, 48]. A snapshot of the
resulting flow field is shown in Fig. 3(d). For a symmetric
dumbbell swimmer [23, 24], for which the streamlines ex-
hibit front-back symmetry, the hydrodynamic attraction
acts equally on both the head and tail particles in the
situation considered here. The repulsion we observe is
caused by the front-back asymmetry of the streamlines;
the hydrodynamic attraction acting on the tail particle
is stronger than that on the head particle, and this im-
balance results in a torque, causing outward rotation of
the swimming direction.

For ∆/ℓ0 ≫ 1 the characteristic rotation time of the
swimmer can be estimated using the usual Stokeslet
point-force approximation as follows: Here, we suppose
that the two swimmers are placed in the xy plane and
swim in parallel in the x direction. The y component of
the velocities of the head and tail particles of swimmer 1
created by swimmer 2 are given by

V y
H,1 = Gyx(ℓ0,∆)(F sp

T,2 + Fact
T,2) +Gyx(ℓ0 + ℓ1,∆)Fact

P,2,

(16)

V y
T,1 = Gyx(−ℓ0,∆)F sp

H,2 +Gyx(ℓ1,∆)Fact
P,2, (17)

where Gyx(x, y) = xy/8πη0(x
2 + y2)3/2 is the yx-

component of the Oseen tensor, and F sp
m,2 (m =H,T) and

Fact
m,2 (m =T,P) are the constraining spring and active

forces acting on the swimmer 2, respectively. The rota-
tion is given by

ω =
1

ℓ0
(V y

H,1 − V y
T,1), (18)

which behaves as ω ∼ (v0/ℓ0)(ℓ0/∆)4 for ∆/ℓ0 ≫ 1.
Here, v0 ∼ fact/ζ|| is the swim speed, ζ|| is the fric-
tion coefficient along the swimming axis of the dumb-
bell estimated in the previous subsection, and the rela-
tions, ℓ0 = 2.5a and ℓ1 = 3a, are made use of. Thus, for
∆/ℓ0 ≫ 1, initially parallel swimmers can keep moving
in their original directions for a distance much greater
than ℓ0. However, extrapolating this result to ∆/ℓ0 ≃ 1
indicates that during the time τa = ℓ0/v0, over which the
swimmers travel distances of order their own size, their
swimming directions are strongly altered. This is visi-
ble in the results for ∆/ℓ0 = 1.6 shown in Fig. 3(a). In
Figs. 3(b) and 3(c), we show the time dependence of the
angular velocity around the center of mass and its max-
imum value, respectively. This tendency is maximized
for ∆/ℓ0 ≃ 1.6; down to this value, decreasing ∆/ℓ0 en-
hances the rotation. Our rough estimation of the charac-
teristic rotation ω ∼ (∆/ℓ0)

−4 is qualitatively consistent
with the simulation results in this range.
However, as ∆/ℓ0 decreases further, this repelling ten-

dency gets weaker, which is evident in the last panel
(∆/ℓ0=1.0) of Fig. 3(a) and in Figs. 3(b) and 3(c). This
happens for two reasons. First, near-field hydrodynamic
interactions generically prevent two nearly contacting
tail or head particles from changing their separations:
this “squeeze-film” lubrication drag becomes stronger for
smaller ∆/ℓ0. This results in slower rotations, and hence
a slower onset of the resulting repulsions. Second, once
the tail particles closely approach one another, their di-
rect interparticle repulsion itself prevents further motion.
Because of these two effects, when two initially parallel
swimmers lie very close to one another, their rotational
velocity becomes much smaller than the far-field esti-
mate. As a result they stay close to each other for a
time much larger than τa = ℓ0/v0.

2. Passing each other

Suppose that at t = 0 two swimmers lie anti parallel in
a staggered coplanar configuration; the active forces are
now suddenly applied. Figure 4(a) shows the trajectories
of the head and tail particles of two such swimmers for
several different initial positions. At a large enough sepa-
ration (∆/ℓ0 ≫ 1), the two swimmers pass by each other
without a strong distortion of their trajectories. How-
ever, with decreasing ∆/ℓ0, the HIs drastically influence
their mutual dynamics. When the two swimmers are ap-
proaching, they initially repel each other, because the
repulsive HIs act on them. Then, when they are passing
each other, the head particle of one swimmer is strongly
attracted to the streamline induced by the other swim-
mer, which is also evident in the behavior of the swim-
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FIG. 3: (Color online) (a) The left-most panel represents the trajectories of the center of mass of the swimmers 1 and 2, where
the swimming direction is from left to right and the initial configuration of the two swimmers is shown below this panel. The
right four panels represent the trajectories of the head and tail particles of the swimmer 1 for each of the initial separations,
where the positions at several times are explicitly indicated and the ratio of the horizontal scale to the vertical one is about
1/14. Here, the initial position of the tail particle of the swimmer 1 is set to the origin; that is, ∆x = x − R1

T,x(0) and

∆y = y − R1
H,y(0). In (b) and (c), the time dependence of the angular velocity (angles measured in radians) around the

center of mass and its maximum value are shown, respectively. For ∆/ℓ0 ≫ 1, the swimmers hardly change their swimming
directions while traveling a distance of their own size (∼ ℓ0). However, with decreasing the separation between the swimmers,
stronger distortions of the swimming directions are found: In the present case, the hydrodynamic attraction acting on the
tail particle is stronger than that on the head particle, and this asymmetry is enhanced for smaller ∆, which leads to faster
rotation. However, as ∆ decreases further (∆/ℓ0 <

∼ 1.6), this repelling tendency gets weaker, which may be ascribed to the
near-field hydrodynamic and steric effects (see the text for discussion). (d) Snapshot of two swimmers swimming side by side
for fact = 10 and ∆/ℓ0 = 1.6 at t ∼= τa. At t = 0, they are parallel. We also show the velocity field v(x, y, z = 0), where the
axes of the two swimmers lie in the plane. The color bar represents the magnitude of the fluid velocity scaled by the value of
v0 at fact = 10 shown in the inset of Fig. 2(a).

ming speed shown in Fig. 4(b). Therefore at small ∆/ℓ0,
the speed of the swimmer first reduces and then accel-
erates. A snapshot of the swimmers at ∆/ℓ0 = 1.6 is
shown in Fig. 4(c).

Similarly to the analysis presented in Sec. III B 1, by
using the far-field Stokeslet point-force approximation,
for ∆/ℓ0 ≫ 1, we can roughly estimate the rotation rate
as (v0/ℓ0)(ℓ0/∆)4. The passing time is on the order of
ℓ0/v0. Thus, for ∆/ℓ0 ≫ 1 , the original swimming di-
rections are not much changed during the encounter. On
the contrary, an extrapolation of this far-field estimation
to a near-field ∆/ℓ0 ∼ 1 predicts a strong realignment of
the swimming directions. This is certainly confirmed by
our simulationsas shown in Fig. 4.

C. Dynamics in the semi-dilute regime:

Activity-induced clustering

So far, we have investigated one and two-body systems
and shown that when the distance between two swimmers
is comparable to their sizes, the motion of the swimmer is
strongly influenced by the flow field caused by the other
swimmer. Here, we investigate how such near-field HIs
affect the many-body dynamics by simulations in semidi-
lute regimes with thermal fluctuations. The simulations
presented in this subsection contain N = 320 swimmers
(960 real and phantom particles) in a simulation box with
a size of L3 = 1283, and thus the volume fraction of real
particles is Ψ = N(ΩH+ΩT)/L

3 =0.052. In the next sec-
tion, we will discuss the density dependence of the motil-
ity in a smaller simulation box (L3 = 643). In a randomly
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FIG. 4: (Color online) (a) Trajectories of the head and tail particles of the two swimmers for several initial positions. Here,
∆ = R1

H,y − R2
H,y at t = 0. The swimmer 1(2) is swimming from left(right) to right(left). For ∆/ℓ0 = 1.2, the head particle

of each swimmer touches the phantom particle of the other swimmer, and thus, due to the dynamical rule introduced in the
present model, the two swimmers stop moving completely. (This would not happen for asymmetric initial conditions, nor in the
presence of thermal fluctuations, or disturbance by the flow caused by other swimmers.) In (b), the velocity of the swimmer
1 along the x axis, V 1

H,x, is plotted against R1
H,x. Initially, when the two swimmers are approaching, they repel each other,

because the repulsive HIs due to the incompressibility of the solvent are dominant. Then, when they are passing each other,
an activity-induced hydrodynamic attraction dominates; that is, one swimmer is attracted to the streamline induced by the
other swimmer, resulting in an acceleration of the swim speed. It is evident from the trajectories that such (configuration-
dependent) HIs are stronger for smaller separation distances. (c) Snapshot of two swimmers passing each other for ∆/ℓ0 = 1.6
and fact = 10. We also show the velocity field v(x, y, z = 0), where the axes of the two swimmers lie in the plane. The color
bar represents the value of the fluid velocity scaled by the value of v0 at fact = 10 shown in the inset of Fig. 2(a).

distributed state, the average distance between the swim-
mers is approximately (L3/N)1/3 ∼ 2ℓ0. For compari-
son we have made equivalent simulations without HIs,
using the same parameters for the particle interactions
and temperature; without HIs the friction coefficient of
a particle is set to ζ||/2 (whose value was evaluated in
Sec. III A). This gives the same value of the swim speed
of an isolated swimmer both with and without HIs.

In the presence of thermal fluctuations, the active
Péclet number is defined as Pe0 = v0τ

0
R/ℓ0 (so that

Pe0 ∼ ζ||v0ℓ0/T ∼ factℓ0/T ), taking values 8.4 and 16.8
for fact = 7 and 14, respectively, as used in the following
simulations. Here, τ0R ∼ η0ℓ

3
0/T is the rotational relax-

ation time of the swimming orientation measured in bulk.
Although large Pe0 suggests that active effects dominate
over thermal fluctuations, it should be noted that in di-
lute solution rotational Brownian motion is essential to
allow reorientation of the swimming direction. Another
mechanism involves the “tumbling” of bacteria at ran-
dom intervals, causing sudden non-Brownian reorienta-
tion; this is not in our model which therefore describes
only “smooth swimming” bacteria. For these, the cho-
sen Péclet numbers are within the achievable range [59].
Notice also that Pe0 and v0 are values for an isolated
swimmer; in the semidilute regime, due to many-body
interactions, a marked slowdown occurs, which will be
discussed below.

The work done by the active force is transformed into
the kinetic energy of the solvent and of the swimmers,
which is eventually dissipated by viscosity. In the present

simulation, the increase of the average kinetic energy den-
sity of the solvent due to the active force is at most
approximately 1% of the prescribed value given by the
equipartition law, in which the velocity of a thermal fluid
obeys 〈vi(r)vj(r

′)〉 = Tδijδ(r− r′)/ρ [60], where i and j
denote Cartesian components of v.
Each simulation starts from a randomly distributed

state, and finally reaches a steady state with nontrivial
correlations. In Fig. 5, we show the radial distribution
function

gmm′(r) =
L3

4πN2r2

∑

α6=α′

δ(|Rα
m −R

α′

m′ | − r) (19)

in the steady state. Both with and without HIs, in an
active suspension (fact 6= 0), gmm′(r) increases with in-
creasing fact, suggesting that the swimmers transiently
form clusters. This clustering is more evident from the
structure factor given by

S(k) = 1 +
N

V

∑

m,m′=H,T

∫

dre−ik·rgmm′(r), (20)

which is shown in Fig. 6. However, there is a marked dif-
ference in the behavior with and without HIs; while with
HIs the increase is most pronounced in gTT(r), without
HIs it is more apparent in gHH(r). More significantly,
the overall clustering tendency is significantly enhanced
by the addition of HIs.
These different behaviors should directly reflect the dif-

ference in the clustering mechanism with and without
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FIG. 5: (Color online) The radial distribution function
gmm′(r) where (m,m′) = (H,T) with (a) and without (b)
HIs.

HIs. In order to further understand this difference, we
consider the following pair distribution function,

gmm′(r, θ) =
L3

4πN2r2

×
∑

α6=α′

δ[cos−1(n̂α · n̂α′)− θ]δ(|Rα
m −R

α′

m′ | − r),

(21)

where cos−1(n̂α · n̂α′) is the relative angle between α
th and α′ th swimmers, and the angular integral of
gmm′(θ, ψ) gives gmm′(r). Figures 7(a) and 7(b) repre-
sent the steady-state distribution of gmm′(θ, ψ) around
the first peak of gmm′(r) (1 < r/2a < 2), from which we
find that neighboring swimmers have different configura-
tions with and without HIs.
A key role in the clustering in the system without HIs

can be ascribed to collision-induced stalling of the swim-
mers when the head of one particle bumps into another.
From Fig. 6, we find that the present (on/off) dynami-
cal rule further promotes clustering: once swimmers are
inactive, the time needed to separate them from their
neighbors becomes longer, which promotes further ac-
cumulation. Notice, however, that rule-induced inactiv-
ity by itself cannot lead to clustering, because Brownian

FIG. 6: (Color online) The structure factor S(k) for various
values of fact. With increasing fact, S(k) grows at small k. For
fact 6= 0, S(k) for 2ak <

∼ 1 can be described by the Ornstein-
Zernike form, which is represented by the black solid curves
in the cases with and without HIs, respectively.The results
with neither the dynamical rule nor HIs are also shown.

dumbbells (f = 0) do not cluster without attractive in-
teractions. Clustering (and indeed phase separation) can
however result from a density dependence of the mean
activity [12, 13]. Though not a dominant effect at the
present density of Ψ = 0.052, at higher volume fractions
the proportion of the inactive swimmers becomes more
significant, resulting in a steep reduction of the motility
at what is still relatively modest volume fraction. This
point will be discussed in the following section. For a
perfectly head-to-head collision (θ = π) the stalling con-
tinues until Brownian motion changes the swimming di-
rections. But such collisions are rare; the dominant effect
is from those where the swimming directions are roughly
at right angles, giving a larger cross section for collisions
but only temporary stalling. The result is a sharp peak
of gHH(r, θ) and gHT(r, θ) at r ∼= 2a and θ ∼ π/2.

On the other hand, when HIs are included, these medi-
ate noncontact interparticle forces. As shown previously,
these create attractions at large distances, but at inter-
mediate separations cause torques that cause swimmers
to separate. At short distances, however, these torques
are suppressed and a parallel swimmer in close contact
will remain so for a long period. (For antiparallel config-
urations, there is also a long-lifetime state in which each
phantom particle lies on top of the tail particle of the
other swimmer, so propulsion is suppressed; unlike for
parallel alignment, the existence of this state depends
on the chosen propulsion rule.) Such mechanisms of HI-
induced trapping should still be effective for the semi-
dilute regime studied here. The observed broad peaks in
gmm′(r, θ) at θ <∼ π/2 corresponds to nearly aligned con-
figurations in parallel. On the other hand, the peak in
gTT(r, θ) at θ >∼ π/2 reflects antiparallel configurations.
These results confirm that the activity-induced clustering
is driven by different mechanisms depending on whether
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FIG. 7: (Color online) The pair distribution function

gmm′(r, θ) defined as gmm′ (r, θ) = L3

4πN2r2

∑
α6=α′ δ[cos

−1(n̂α ·

n̂
′
α) − θ]δ(|Rα

m − R
α′

m′ | − r) in the steady state at fact = 14
with (a) and without (b) HIs. The purple, green, and yellow
curves are the contours corresponding to 1/6, 3/6, and 5/6 of
the maximum value of gmm′(r, θ), respectively.

HIs are present. Without them, particles spend brief but
finite periods in close contact due to stalling of rectilinear
trajectories; with HIs, they spend longer periods in con-
tact because of trapping in parallel (and, with the chosen
swimming rule, also antiparallel) configurations.
This difference in the clustering mechanism is responsi-

ble for the contrasting steady-state properties of clusters,
such as their lifetime and the average size, which are di-
rectly visible from the sequential simulation snapshots of
the swimmers as shown in Fig. 8. When identifying clus-
ters, the α th and α′ th swimmers are considered to be
connected if

|Rα
m −R

α′

m′ | ≤ δR, (22)

for at least one combination of m and m′, where we set
δR = 0.6a which is approximately the first-peak width
of the radial distribution function. This choice of δR

is rather arbitrary, but a small change of its value does
not essentially change our conclusions. In Figs. 8(a) and
8(b), we show the typical time evolution of clusters with
and without HIs, respectively. Without HIs transient
clusters form due to the mixed effects of the collision-
and rule-induced stalling, but with the present param-
eters, the persistence time of contacts is approximately
the time τa = ℓ0/v0 for an isolated swimmer to move its
own length. Clusters therefore remain weak and tran-
sient. On the other hand, in the system with HIs, once
the swimmers are close enough they remain in bound-
state configurations for a time much longer than (τa),
resulting in stronger and longer-lived clusters.
We emphasize that many-body hydrodynamic effects

further reduce the average swimming speed of our dumb-
bells, defined as the instantaneous projection of their ve-
locity onto the swimming direction. In our semidilute
system (Ψ = 0.052), the average swim speed is evaluated
as 0.41v0 and 0.78v0 with and without HIs, respectively.
Without HIs, about 20% of the swimmers are inactive on
average; in this case the reduction of the swim speed is
largely owing to the dynamical rule. However, a further
large reduction is induced by HIs: with these nonlocal
effects switched on, about 35% of the swimmers are in-
active on average. This difference in the slowing-down
is also seen in Fig. 9, where the average time evolution
of the separation distance of a pair of swimmers is plot-
ted for various initial values. This clearly shows that
with HIs, prolonged trapping of swimmers becomes more
marked than without HIs. This hydrodynamic trap-
ping stimulates a further accumulation of the swimmers
and subsequently leads to an enhancement of the cluster
growth, which is evident in Fig. 8(c), where we show the
probability distribution for numbers in a cluster with and
without HIs. Although clusters are longer-lived with HIs,
they do finally break up: recall that the hydrodynamic
torque tends to misalign the swimming directions and
eventually a cluster will find a configuration where this
effect dominates long enough to cause its disintegration.
The tendency of HIs to promote clustering is strongly

linked to the near-field hydrodynamics, especially in its
effects on rotation of the swimming velocity. These ef-
fects can be expected to vary with particle shape and
swimming type, and indeed our observations are almost
the opposite of what happens in (neutral) squirmers [22],
where HIs act to suppress rather than enhance the for-
mation of density inhomogeneities.

IV. DENSITY DEPENDENCE OF THE

MOTILITY

In the previous section we showed that, for the swim-
mers at the chosen volume fraction Ψ = 0.052, there
is a distinct difference in the swimmers’ dynamics, and
especially their clustering mechanism, with and without
HIs. As the volume fraction increases, the effects of the
many-body interactions (and also of the dynamical rule)
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FIG. 8: (Color online) The typical time evolution of the cluster configuration in the steady state at fact = 14 with (a)
and without (b) HIs. Here, colored dumbbells represent the swimmers that compose a cluster at ∆t = 0. Different colors
represent different numbers of swimmers in a cluster (Nc). The swimmers which are isolated at ∆t = 0 are shown as white
semitransparent dumbbells, and the phantom particles are not shown here. The simulation box is 1283 = (40a)3 with periodic
boundary condition. (c) The probability distribution for a given cluster have Nc swimmers with and without HIs.

on the dynamics should be more pronounced, and thus
the dynamics is expected to be significantly slower at
high densities. Here, we investigate the volume fraction
dependence of the mean motility variables (swim speed
and rotational relaxation time) and discuss the influence
of these dependences on the clustering process. We use
the same simulation parameters as in Sec. III C except
for the box size, which is here L3 = (64)3. Note that we
checked that the essential results for Ψ = 0.052 shown in
Sec. III C are barely affected by this change.

A key observation on increasing the volume fraction far
beyond 0.052 is that the chosen dynamical rule (switching
off activity on overlap of phantom and real particles) has
an increasingly pronounced effect at high densities. This
motivated the simulations on an alternative model (de-
scribed in the Appendix) to clarify the role of HIs on the
collective behavior. The comparison of these approaches
suggests that in the present dumbbell model the details
of the local interactions do not qualitatively alter the
physical role played by the HIs. For while there are sig-
nificant near-field hydrodynamic effects which the local
interactions clearly do alter, the main role of HIs arises at
intermediate and large distances where they can directly
affect the collective dynamics.

In Fig. 10(a), we plot the dependence on the volume
fraction Ψ of the average swim speed, which is here de-
fined by

vs(Ψ) =
1

2N

∑

α
〈n̂α · (V α

H + V
α
T)〉, (23)

where (V α
H +V

α
T)/2 is the velocity of the center of mass

of the α th swimmer, 〈· · · 〉 represents the time average
in the steady state. Without HIs, upon increasing Ψ
to moderate values, vs(Ψ) decreases. This is largely be-
cause of the chosen dynamical rule, which causes an in-
crease in the number of inactive swimmers at high den-
sity: at Ψ = 0.31, nearly 90% of phantom particles over-
lap with the real particles of other swimmers and thus
become inactivated. (Note that the details of this de-
crease will depend on the swimmer’s shape.) On the
other hand, with HIs, vs(Ψ) drops sharply even at rather
small Ψ, in a regime where there are much fewer inacti-
vation events due to overlap. This reflects the long-range
character of HIs, which allow each swimmer’s motion to
be strongly influenced by that of its rather distant neigh-
bors, promoting collective motions even without direct
collisions. Such many-body hydrodynamic effects seem-
ingly increase the mean drag force, resulting in the steep
decrease of vs(Ψ).



12

FIG. 9: (Color online) The average separation of a pair of
swimmers as a function of its initial value and elapsed time
with and without HIs at fact = 14. Here, the separation

is defined as ∆Rα,α′(t) = |Rα
C(t) − R

α′

C (t)|, where R
α
C =

(Rα
H +R

α
T)/2 is the center of mass of the α th swimmer. The

colors represent the scaled value of ∆Rα,α′(t). With HIs, the
initially adjacent pairs [∆Rα,α′(∆t = 0) <

∼ ℓ0(= 2.5a)] stay
close to each other for a longer time than τa, although without
HIs, such swimmers separate themselves much quicker.

FIG. 10: (Color online) The average swim speed (a) and the
rotational relaxation time (b) for various volume fraction Ψ
at fact = 14. The red and green curves are for the cases with
and without HIs, respectively.

A strong effect of HIs is also seen in the rotational
dynamics, as characterized by the relaxation time of the
orientational correlator

H(t) = 〈n̂α(t) · n̂α(0)〉, (24)

which can be fit to an exponential form in the whole range
of Ψ studied here. In Fig. 10(b), the Ψ-dependent rota-
tional relaxation time, τR(Ψ), is shown. Without HIs, τR
is nearly constant for low Ψ(<∼ 0.2), but increases to ex-
ceed the Brownian relaxation time [τR(Ψ ∼= 0)] at higher
Ψ(>∼ 0.2). This increase is because steric hindrance to ro-
tation increases with crowding at higher Ψ; even in equi-
librium (fact = 0), deviations from the ideal-gas behavior
due to the excluded volume effects become pronounced
for Ψ >

∼ 0.2 (not shown here). On the other hand, upon

adding HIs, a striking change in the behavior of τR(Ψ)
is found: first a sharp decrease as Ψ rises towards about
0.05, and then a clear upturn at higher Ψ.
Both features can be ascribed to the cooperative na-

ture of HIs. As was discussed in the previous section,
HIs among the swimmers generate torques. At small
Ψ(<∼ 0.05), such hydrodynamic torques should enhance
rotational relaxation which would otherwise rely solely
on Brownian motion. This extra rotation results in the
sharply decreasing trend in τR(Ψ) for small Ψ. (Notice
that this effect depends on both the rodlike shape and
the front-back asymmetric streamlines around the swim-
mer within the present model.) However, with crowding,
the mean separation between swimmers decreases, which
should suppress reorientation while enhancing the hydro-
dynamic attractions. This presumably causes the rever-
sal of the decreasing trend in τR at around Ψ ∼ 0.05. In-
creasing the volume fraction further (Ψ >

∼ 0.15), one ex-
pects activity-induced flow fields to increasingly be sup-
pressed, reducing motility and increasing τR. Nonethe-
less, due to the incompressible nature of HIs, neighboring
swimmers push and pull one another even without direct
contact, causing the translational and rotational dynam-
ics to become slower than in the system without HIs.

FIG. 11: (Color online) The structure factor with (a) and
without (b) HIs for various Ψ at fact = 14.

These differences in the volume fraction dependence
of the motility with and without HIs affect the physics
of clustering. In Fig. 11, we show the structure factor
for various Ψ with and without HIs. Without HIs, the
clustering tendency increases with volume fraction until
Ψ ∼ 0.25. On the other hand, with HIs, this increase con-
tinues only until Ψ ∼ 0.15. These clustering tendencies
were also checked by direct visualization.
In recent theories for active Brownian particles

(ABPs), it was predicted that, if the swim speed de-
creases steeply enough with density, local densification
induces a further accumulation of particles, eventually
leading to unstable growth of fluctuations and phase sep-
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aration [4, 12, 13]. This mechanism for activity-induced
phase separation was confirmed by subsequent simula-
tions on self-propelled spherical particles with rotational
diffusion and no HIs [19]. Although the present dumbbell
swimmers can be categorized as ABPs, we have shown
that the physics of mutual slowing down depends on par-
ticle shape, so that even without HIs there is no exact
relationship to these earlier simulations. However, the
underlying theoretical analysis has some quite generic
features [4, 12, 13] so it is useful to discuss the clustering
behavior observed here in similar terms.

As shown in Fig. 10, without HIs and for Ψ <
∼ 0.2,

vs(Ψ) decreases almost linearly with Ψ, while the rota-
tional relaxation time τR(Ψ) decreases only slightly from
the value set by purely Brownian rotation. Within the
framework of the theory [4, 12, 13], the effective com-
pressibility S(0) should increase with Ψ, diverging at a
spinodal set by the condition dvs/dΨ < −vs/Ψ. This
condition holds for Ψ >

∼ 0.15 [evaluated from the fitting
of vs(Ψ) in Fig. 10]. In this evaluation, dvs/dΨ + vs/Ψ
is found to have a minimum (< 0) at Ψ ∼= 0.23. The
compressibility increase is certainly seen for Ψ <

∼ 0.25 as
shown in Fig. 11(b), but beyond this point, rather than
diverging, S(0) falls again even though the spinodal con-
dition is satisfied by the observed vs(Ψ). This suggests
that for the dumbbell system at this density, direct repul-
sion via excluded volume interactions (which are omitted
from the theory) are strong enough to overcome the effec-
tive attraction caused by the density-dependent motility.
However, we have performed additional exploratory sim-
ulations without HIs (in a simulation box of L3 = 1283)
using a larger self-propulsion force; these suggest that at
Ψ = 0.2 and 0.25 phase separation does occur at high
enough values of fact.

A broadly similar scenario holds in the presence of HIs,
as seen in Fig. 11(a). However the maximum compress-
ibility is significantly greater, and furthermore arises at
significantly lower density (Ψ ≃ 0.15). The peak coin-
cides with the state of most pronounced clustering as
observed by direct visualization. The data for vs(Ψ)
reported in Fig. 11(a) again suggest that the spinodal
condition dvs/dΨ < −vs/Ψ of [4, 12, 13] is satisfied for
Ψ >

∼ 0.06, yet once more we observe a maximum, not a
divergence, of S(0) near the state of maximal clustering
at Ψ ∼= 0.15. [Note that dvs/dΨ+ vs/Ψ now has a mini-
mum (< 0) at Ψ ∼= 0.12; above this density, the activity-
induced attraction itself becomes weakened.] The sub-
sequent decrease might be attributable to steric repul-
sions, but their effects would have to be stronger than in
the case without HIs to start dominating at this some-
what lower density. An additional factor could be the
effect of HIs on reducing τR, which is the mechanism
for avoidance of phase separation discussed by Fielding
[22]. We have performed additional exploratory simu-
lations with HIs [at the density Ψ = 0.15 in a simula-
tion box of L3 = (128)3] using a larger self-propulsion
force; the structure factor S(k) at small k is found to be
dramatically enhanced by formation of a space-spanning

structure of the order of the system size, which suggests
that bulk phase separation occurs for large enough fact.
Notice, however, that the formed structure is not com-
pact and exhibits large fluctuations, which may be due
to HIs and the relatively small system size of the present
simulation. To firmly assess whether bulk phase separa-
tion occurs, we need to perform simulations with larger
system sizes.
Thus we have shown the observed clustering tendency

of our dumbbells to be broadly consistent with a theory
in which collisional interactions are represented at mean-
field level by a density-dependent swim speed [4, 12, 13].
However, using the numerically obtained vs(Ψ) shown in
Fig. 10, this theory predicts bulk phase separation in a
regime where we see only clusters. (This applies both
with and without HIs.) Although steric repulsions of-
fer an obvious candidate mechanism for this discrepancy,
the detailed conditions for bulk phase separation in the
present dumbbell model are not well understood, and a
further systematic study will be needed to clarify them.

V. SUMMARY AND DISCUSSION

In this study, we have numerically investigated the ef-
fects of HIs on the collective dynamics of active suspen-
sions, modeling each micro-organism as a stroke-averaged
dumbbell swimmer with a prescribed force dipole (and an
overlap rule). Our results can be summarized as follows.
With HIs, when the separation distance between the

swimmers is comparable to their sizes, their swimming
motions are strongly influenced by one another. The
activity-induced flow field creates both attractive and re-
pulsive effects that depend on the relative positions and
orientations of the swimmers. These effects are signifi-
cantly more complex than could be expected for simpler
models of spherical particles (such as squirmers) in which
the nonhydrodynamic forces between particles are spher-
ically symmetric. Although in the far field swimming
dumbbells attract, at intermediate separations the HI-
induced torques tend to disalign the swimming directions
causing swimmers to move apart. Then, at closer dis-
tances, these repulsive effects are suppressed; hydrody-
namic forces promote preferred structures, in which the
swimmers are close to parallel alignment (or, with our
overlap rule, antiparallel). These states can last much
longer than the intrinsic characteristic time for an en-
counter, τa = ℓ0/v0. Our simulation results strongly sug-
gest that such activity-induced HIs should be significant
at rather smaller volume fraction (Ψ ∼ 5%), where they
cause strong enhancement of a clustering tendency that
is already apparent, albeit in a weaker form and by a
different mechanism, when HIs are absent.
Our simulation results for the density dependence

of motility parameters show distinctly different behav-
iors with and without HIs. At a relatively small vol-
ume fraction, with HIs, the translational swimming mo-
tion becomes slower, while rotational diffusion becomes
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faster; these are natural consequences of the far-field and
intermediate-range pair interactions just described, and
are stronger than the corresponding effects without HIs.
On the other hand, at large enough volume fractions, the
translational and rotational motions are both strongly
suppressed. With crowding, because less space is avail-
able around a swimmer, the ability of each force dipole
to set up a coherent propulsive flow field is diminished,
weakening both the motility and the HIs. However, due
to the incompressible nature of HIs, neighboring swim-
mers push and pull each other around even without di-
rect contact. This impedes both the translational and
rotational motions much more than is the case without
HIs, where only direct collisional forces act between the
swimmers.

The different volume fraction dependences of the motil-
ity with and without HIs influence the tendency to form
clusters. For our chosen interaction and propulsion pa-
rameters, clustering is maximal at an intermediate vol-
ume fraction in each case, but this volume fraction is
lower, and clustering stronger, with HIs than without.
The conditions under which bulk phase separation arises,
rather than just enhanced density fluctuations, remain
somewhat unclear; in particular steric or other interac-
tions at volume fractions above Ψ ≃ 0.15 (with HIs) or
Ψ ≃ 0.2 (without) apparently suppress phase separation
under conditions where the observed dependence of the
mean swim speed vs on Ψ might lead one to expect it
[4, 12, 13]. Such corrections to the theory have also been
reported for spherical self-propelled particles [19], but not
at such low densities.

In considering the effects of HIs on collective dynamics,
we note in addition important differences between alter-
native types of models. In a recent simulation of two-
dimensional squirming disks [22], it was found that the
activity-induced phase separation is strongly suppressed
by HIs. In that system, because the slip velocity is pre-
scribed at their surfaces, when two squirmers come very
close, they generally tend to strongly rotate and repel.
Thus, crowding enhances the reorientation of the swim-
mers and reduces their tendency to trap one another.
In contrast, in our model of force-prescribed dumbbells,
although the reorientation is enhanced at low enough
volume fractions, at higher ones both the translational
and rotational motions become much slower than without
HIs. Moreover, at a certain intermediate volume fraction,
the hydrodynamic trapping effect (and indeed the clus-
tering) is most pronounced. Further simulation studies
and analysis will be required to clarify the detailed con-
ditions for phase separation with and without HIs in our
dumbbell model.

In previous works by Graham and co-workers [23–
25], it was found that, in suspensions of force-prescribed
dumbbell pushers, HIs among them cause coherent fluid
motions with a correlation length larger than the swim-
mer size. Interestingly, such correlated motions are
hardly seen in suspensions of pullers. Saintillan and
Shelley [41–43] reported similar results by simulating a

similar model, where the active particle is modeled as
a stress-prescribed rigid rod. Furthermore, they also
found that an isotropic or aligned homogeneous state
becomes unstable due to HIs and some non-linear hy-
drodynamic effects lead to steady-state structure with
a pronounced density inhomogeneity and local orienta-
tional order of swimmers [61]. Although these previous
studies do not contradict our simulations, we found that,
at certain intermediate densities, the clustering caused by
activity-induced attractions (or hydrodynamic trapping)
is greater than previously reported, which, as already dis-
cussed, can be attributed to the effects of near-field HIs.
The advantage of the hybrid simulation methods such
as that used in the present study is that, by directly
taking the solvent dynamics into account, we can accu-
rately treat HIs among finite-sized particles at moderate
separations, and also capture some significant near-field
effects. In the previous studies, on the other hand, ac-
tive particles are essentially represented as pairs of point
forces and HIs are simply evaluated by using the usual
Stokeslet. However, such an approach based on far-field
hydrodynamics is not able to fully capture the collective
hydrodynamic effects in relatively dense active suspen-
sions. Thus, our present study should complement the
earlier works cited above.

Our dumbbell simulations include thermal fluctua-
tions, which act like a repulsion to prevent the swim-
mers from clustering. Similar to an analysis performed
in Sec. III B 1, we can use the Stokeslet point force ap-
proximation to estimate the energy scale of the dipolar
hydrodynamic forces as factℓ0/10, where the interaction
range is assumed to be from the core size (= 2a) to the
mean separation distance of the swimmers (∼ 2ℓ0 = 5a).
Thus the ratio of this energy scale to the temperature is of
order Pe0/10 where Pe0 is the Péclet number introduced
previously. By this rough estimate, thermal and hydro-
dynamic effects can compete in our simulations. (We
have done further exploratory simulations without ther-
mal fluctuations, and found that the clustering is cer-
tainly enhanced when these are absent.)

Some quantitative aspects of our results depend on
the nature of the local interactions between swimming
dumbbells, in particular the rule that causes propulsion
to be switched off when swimmers overlap. However,
by varying this rule (see the Appendix) we have found
a robust role for long-range hydrodynamic interactions
in controlling the collective behavior. The HIs promote
clustering through a collective slowing of propulsive mo-
tions at densities that are too low for the rules govern-
ing direct interparticle collisions to be their dominant
cause. In contrast, without HIs the slowing is collisional
and thus depends more strongly on the local interactions.
Our finding that HIs have significant effects on cluster-
ing physics is far from obvious; due to the dipole-dipole
nature of these interactions among self-propelled parti-
cles, they are much weaker than for particles subjected to
external forces, and under many conditions their effects
appear almost negligible [62]. Certainly one can argue
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that for situations where the main interaction between
particles involves well-separated two-body collisions, the
effects of HIs are indeed relatively weak; however this
argument is dangerous when applied to the many-body
collective behavior of swimmers at the fairly high densi-
ties actually arising within clusters.
We conclude with some further remarks on topics that

we hope to study in future:
(i) Collective hydrodynamic effects should strongly de-

pend not only on the shapes of the swimmers but on their
self-propulsion mechanism. We have done preliminary
studies for pullers (fact < 0); these show quite different
steady-state properties from the pushers studied in this
paper. At an equal volume fraction of Ψ = 0.052, the
near-field radial distribution functions (for separations
r <∼ ℓ0) are significantly smaller than those of the equilib-
rium (fact = 0) dumbbells. This indicates that for pullers
repulsive interactions dominate at these separations, in
contrast to the case of pushers. Accordingly, a very dif-
ferent density dependence of the motility (and therefore
different clustering and/or phase separation properties)
from that of pushers is expected to arise, whose details
remain to be explored.
(ii) In recent experiments on E. coli in the presence

of additional attractive forces (created via a depletion
potential due to polymer additives) it was shown ex-
perimentally and by simulation that activity produces
a significant shift of the phase boundary compared to
that of a passivated system with the same attractions
[63]. However the configurations favored by such an at-
traction need not coincide with those stabilized by the
activity-induced HIs. Therefore the case of active dumb-
bells with attraction requires separate investigation. One
very recent study suggests a mechanism whereby the
equilibrium phase separation caused by attractions is in-
terrupted by activity-induced cluster breakup [64], but
equilibrium attractions could equally interfere with the
motility-induced phase separation mechanism discussed
in Section IV.
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Appendix A

In the main text, we have avoided overlap between
the propulsive element of one swimmer, represented as
a phantom particle, and the bodies of others by intro-
ducing a dynamical switch-off rule for the propulsion. In
this Appendix, a different model is examined; instead of
using the dynamical rule, we introduce repulsive inter-

actions involving the phantom particles to directly pre-
vent such overlaps. So, the phantom particle is now not
exactly a “phantom”, but is still assumed to follow the
motions of its head and tail particles. Thus the pre-
scribed active forces are not affected by the presence of
surrounding swimmers, in contrast to the model with the
switch-off rule. The new model therefore provides an op-
posite limiting approach to handling the flagellar-body
interaction, thus complementing the study in the main
text. The new model also moves towards the physics of
squirmers, whose prescribed surface velocity is likewise
not affected by the surrounding squirmers.
The potential energy considered here is given by
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where w(r) is the intraswimmer potential given by Eq.
(12) and the interswimmer repulsive potential umm′(r) is
set to have the same functional form as that of u(r) [Eq.
(13)] as
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where aH = aT = a and aP = b. Note that Ũ is given
as the sum of U [Eq. (11)] and the repulsive interac-
tions involving the phantom particles. Since R
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an independent variable but is uniquely determined by
R

α
H and R

α
T according to Eq. (10), the force is given by

F α,m = −
∂Ũ
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where the second term of the last line is due to the ad-
ditional repulsive interactions, whose explicit forms are
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is the component of ∂Ũ/∂Rα
P perpendicular to the swim-

mer’s axis, where
↔

δ is the unit tensor and n̂α is the unit
vector along the swimming axis of the α th swimmer.
The physical meaning of these additional forces ∆Fα,m

(m =H,T) is as follows. The tail and phantom parti-
cles interact via hypothetical stretching and bending po-
tentials, which transmit a repulsive force acting on the
phantom particle; in the tight-binding limit of these in-
teractions, this force is immediately transformed into the
translational and rotational forces acting on the head and
tail particles (body part) according to Eqs. (A4) and
(A5). A schematic of this situation is shown in Fig. 12.
Note that the present treatment also conserves the total
momentum.

FIG. 12: (Color online) Schematic of the repulsive forces due
to the additional interactions.

In this Appendix, similarly to the analysis performed
in Sec. IV, we investigate the volume fraction dependence
of the mean motility and its influence on the clustering
behavior with the above-introduced additional interac-
tions (and without the dynamical rule). Here, we use the
same parameters and box size as those in Sec. IV.
In Figs. 13(a) and 13(b), we plot the dependence on

the volume fraction Ψ of the average swimspeed, vs(Ψ),
and the rotational relaxation time, τR(Ψ), respectively.
Similarly to the result shown in Sec. IV [Fig. 10(a)], with
HIs, vs(Ψ) exhibits a much faster decay than that without
HIs. The rotational relaxation also exhibits a similar
behavior to that shown in Fig.10(b). These observed
differences in the (mean) motility for systems with and
without HIs can be again attributed to the long-range
and cooperative natures of HIs (see the discussion in Sec.
IV). Notice that the reduction of τR(Ψ) at lower Ψ is
more significant than that observed in Fig. 10(b). This
may be because of both the addition of the repulsions
and the removal of the dynamical rule, which enhance
the collision-induced transfer of the angular momentum.
As is discussed in Sec. IV, these differences in the vol-

ume fraction dependence of the motility with and with-
out HIs should affect the clustering behavior. In Fig.
14, we show the structure factor for various Ψ with and
without HIs. Without HIs, the weak clustering occurs
at smaller volume fraction (Ψ <

∼ 0.2) but is highly sup-
pressed at higher Ψ. From the data of vs(Ψ), the condi-

FIG. 13: (Color online) The average swim speed (a) and the
rotational relaxation time (b) for various volume fraction Ψ
at fact = 14. The red and green curves are for the cases with
and without HIs, respectively. These curves exhibit similar
behaviors to those with the dynamical rule shown in Fig. 10
but with an overall shift to higher Ψ (due to the absence of
the rule-induced slowing down).

FIG. 14: (Color online) The structure factor with (a) and
without (b) HIs for various Ψ at fact = 14. With HIs, within
the range of Ψ investigated here, the structure factor at small
k(= L/2π) increases with increasing Ψ.

tion dvs/dΨ < −vs/Ψ holds for Ψ >
∼ 0.3, so that accord-

ing to the theory [4, 12, 13], the effective compressibility
is expected to be negative, leading to the instability of the
homogeneous state. However, as noticed in Sec. IV, for
the present dumbbell system, at such relatively large vol-
ume fractions, direct repulsions (which are omitted in the
theory) give a dominant contribution to the compressibil-
ity (or pressure). This stabilizes the homogeneous state.
Although the structure factor is found to grow signifi-
cantly on increasing the magnitude of the active force,
further numerical investigations are necessary to clarify
the detailed conditions for bulk phase separation, which
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remain the subject of a future study. On the other hand,
with HIs, as seen in Fig. 14(a), the clustering becomes
enhanced with increasing Ψ. The fitting of vs(Ψ) rep-
resented in Fig. 13(a) suggests that the spinodal condi-
tion dvs/dΨ < −vs/Ψ of Refs. [4, 12, 13] is satisfied for
Ψ >

∼ 0.1. Notice that the clustering tendency at relatively
larger volume fractions is much more enhanced than that
exhibited by the model with the switch-off rule [for com-
parison, see Fig. 11(a)]. In the model used here, the
active forces of the swimmers are not reduced at close
proximity, and therefore the activity-induced hydrody-
namic attractions are strong enough to overcome repul-
sive interactions even for larger Ψ.
In this Appendix, by performing an analysis similar to

that in Sec. IV, we have explored the clustering behavior
of the dumbbell model with a different treatment of the
phantom particle. Without HIs, some marked differences
arise between the two treatments; that is, the collective
behaviors are strongly dependent on the local rules or
interactions. On the other hand, because the long-range

and non-local natures of HIs govern the collective dy-
namics, the global picture regarding the hydrodynamic
effects is not much altered. This robustness to the lo-
cal interaction rules is an important result of the present
study. The above simulation results, along with those
shown in Sec. IV, show that theory can qualitatively ex-
plain the characteristic features of the effective attraction
caused by the density dependent motility, although there
are some discrepancies between the theory [4, 12, 13] and
the present simulation, especially at higher volume frac-
tions, where some effects omitted from the theory (for
example, steric repulsions due to the excluded volume)
can come to dominate. Although the effects of long-range
HIs are largely separable from near-field and collisional
effects, the latter are separately important, at least at the
quantitative level. Here one expects strong dependencies
both on particle shape and on whether the propulsion is
described by a force-prescribed or a velocity-prescribed
mechanism.
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