

Edinburgh Research Explorer

Automatic Skeleton-Driven Memory Affinity for Transactional
Worklist Applications

Citation for published version:
Góes, LFW, Ribeiro, CP, Castro, M, Méhaut, J-F, Cole, M & Cintra, M 2014, 'Automatic Skeleton-Driven
Memory Affinity for Transactional Worklist Applications' International journal of parallel programming, vol.
42, no. 2, pp. 365-382. DOI: 10.1007/s10766-013-0253-x

Digital Object Identifier (DOI):
10.1007/s10766-013-0253-x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International journal of parallel programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1007/s10766-013-0253-x
https://www.research.ed.ac.uk/portal/en/publications/automatic-skeletondriven-memory-affinity-for-transactional-worklist-applications(844ae00b-e6f9-4658-bb21-b57a0b3fc522).html

Noname manuscript No.
(will be inserted by the editor)

Automatic Skeleton-Driven Memory Affinity for
Transactional Worklist Applications

Lúıs Fabŕıcio Wanderley Góes ·
Christiane Pousa Ribeiro · Márcio
Castro · Jean-François Méhaut · Murray
Cole · Marcelo Cintra

Received: date / Accepted: date

Abstract Memory affinity has become a key element to achieve scalable per-
formance on multi-core platforms. Mechanisms such as thread scheduling, page
allocation and cache prefetching are commonly employed to enhance mem-
ory affinity which keeps data close to the cores that access it. In particular,
Software Transactional Memory (STM) applications exhibit irregular memory
access behavior that makes harder to determine which and when data will
be needed by each core. Additionally, existing STM runtime systems are de-
coupled from issues such as thread and memory management. In this paper,
we thus propose a skeleton-driven mechanism to improve memory affinity on
STM applications that fit the worklist pattern employing a two-level approach.
First, it addresses memory affinity in the DRAM level by automatic selecting
page allocation policies. Then it employs data prefetching helper threads to
improve affinity in the cache level. It relies on a skeleton framework to exploit

Lúıs Fabŕıcio Wanderley Góes
PPGEE - GSDC Group, Pontif́ıcia Universidade Católica de Minas Gerais, Brazil
E-mail: lfwgoes@pucminas.br

Christiane Pousa Ribeiro
INRIA - CEA - LIG Laboratory, Grenoble University, France
E-mail: pousa@imag.fr

Márcio Castro
INRIA - CEA - LIG Laboratory, Grenoble University, France
E-mail: bastosca@imag.fr

Jean-François Méhaut
INRIA - CEA - LIG Laboratory, Grenoble University, France
E-mail: mehaut@imag.fr

Murray Cole
School of Informatics - ICSA - CARD Group, University of Edinburgh, United Kingdom
E-mail: mic@staffmail.ed.ac.uk

Marcelo Cintra
School of Informatics - ICSA - CARD Group, University of Edinburgh, United Kingdom
E-mail: mc@staffmail.ed.ac.uk

Click here to download Manuscript: ijpp.tex

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/ijpp/download.aspx?id=24262&guid=d0f091f3-bf3d-4a3d-99ec-30e904a08019&scheme=1

2 Lúıs Fabŕıcio Wanderley Góes et al.

the application pattern in order to provide automatic memory page allocation
and cache prefetching. Our experimental results on the STAMP benchmark
suite show that our proposed mechanism can achieve performance improve-
ments of up to 46%, with an average of 11%, over a baseline version on two
NUMA multi-core machines.

Keywords memory affinity and software transactional memory and parallel
algorithmic skeleton and multi-core platforms

1 INTRODUCTION

Multi-core chips have recently become the predominant processor design [1].
However, as the number of cores per chip increases, memory access contention
becomes a major bottleneck. A scalable solution to alleviate this problem is to
build platforms with on-chip memory controllers, employing a Non-Uniform
Memory Access (NUMA) design in order to keep the abstraction of a single
shared memory. As a drawback, this non-uniformity can potentially increase
memory access latency and degrade bandwidth usage.

The exploitation of memory affinity, which keeps data close to the cores
which access it [2,4] thus becomes a key element in attaining scalable perfor-
mance. In particular, enhanced affinity reduces the memory latency perceived
by threads and memory contention. Mechanisms such as thread scheduling,
page allocation and cache prefetching are common approaches to improve
memory affinity. These have been predominantly studied in the context of
regular parallel applications on NUMA multi-core platforms, in which the
memory access behavior is stable and predictable [2,4,23,7,6].

In contrast, Software Transactional Memory (STM) [10,19] applications
present an irregular behavior, in which data dependencies between threads are
only known at runtime. Particularly, STM systems provide a simplified API
that removes the burden of correctly synchronizing threads on data races. This
programming model allows programmers to write parallel code as transactions,
which are then guaranteed by the runtime system to execute atomically and
in isolation regardless of eventual data races. This provides an efficient model
for extracting coarse-grained parallelism from apparently unpromising irreg-
ular applications. However, typical STM systems are decoupled from issues
of thread and memory management, leading to poor exploitation of memory
affinity by the native operating system.

Parallel algorithmic skeletons [1,8,20] are a common solution to enhance
thread and memory management based on the application behavior. Skeleton-
based programming stems from the observation that many parallel algorithms
fit into generic communication and computation patterns, such as pipeline,
worklist and MapReduce [11]. Communication and computation patterns can
be encapsulated in a common infrastructure, leaving the programmer with only
the implementation of the particular operations required to solve the problem
at hand. Thus, this programming approach eliminates some of the major chal-
lenges of parallel programming, namely thread communication, scheduling and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 3

orchestration. As long as STM applications present a common algorithmic pat-
tern, they can be encapsulated within a skeleton framework. This allows the
implementation of efficient memory affinity mechanisms within the skeleton
that take into account the STM nature and also the communication behavior
of the application.

In this paper, we propose an automatic skeleton-driven mechanism to im-
prove memory affinity on a significant subset of STM applications that fits in
the worklist pattern. First, this mechanism selects and enables NUMA-aware
page allocation policies depending on the behavior captured by the skeleton
framework called OpenSkel [16]. Then, it automatically enables skeleton-driven
helper threads to prefetch data to the last level shared cache. Our experimental
results on the STAMP benchmark suite show that our mechanism can achieve
significant performance improvements over a baseline version on two NUMA
platforms.

To the best of our knowledge, this is the first paper to make the following
contributions:

– We propose a novel automatic mechanism to improve memory affinity in
the DRAM and cache levels for STM applications;

– We provide a detailed analysis of a new skeleton-driven approach to im-
plement software helper threads for data prefetching.

The rest of this paper is organized as follows. Section 2 shows the mem-
ory access behavior and some insights on how to improve memory affinity on
transactional memory applications. Section 3 describes the transactional skele-
ton framework used to implement our memory affinity mechanism. Section 4
describes in detail our proposed mechanism and its implementation. Section 5
outlines our experimental setup while Section 6 presents results. Finally, Sec-
tion 7 discusses related work and Section 8 concludes this paper.

2 MOTIVATION

On STM applications, data dependencies cannot be determined at compile
time. In principle, no specific memory access pattern can be assumed since
threads may potentially access memory addresses in an uniform fashion.

Figure 1 supports this observation by showing the memory page accesses
footprint of four STAMP applications during their execution. In particular,
we can observe that each thread ends up traversing most of the memory page
space, frequently conflicting with other threads. This fact makes harder to
enhance memory affinity by applying pure static approaches. At the same
time, dynamic approaches usually require frequent data migrations that can
be prohibitively expensive at a lower granularity level (e.g., page level).

To tackle this problem, we propose an automatic skeleton-driven mecha-
nism to enhance memory affinity for transactional memory applications. It is a
hybrid solution that exploits static and dynamic information to provide affin-
ity in the memory and cache levels. In the memory level, it takes into account

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Lúıs Fabŕıcio Wanderley Góes et al.

TimeTime

Time Time

Intruder Kmeans

YadaVacation

M
e
m

o
ry

A
d

d
re

s
s
 S

p
a
c
e

M
e
m

o
ry

A
d

d
re

s
s
 S

p
a
c
e

Fig. 1 Sampled memory footprint of pages accesses for transactional memory applications
executing with four threads. Each data point represents a thread accessing a certain memory
page at a specific time. Each symbol represents a different thread.

this irregular memory access pattern to apply a more suitable page allocation
policy. Such policy is used to specify how memory pages are distributed over
the physical memory banks of a machine. Additionally, based in the skele-
ton information, we apply a heuristic that switches to a different strategy if
profitable. We do not employ page migration since it would be to costly as
threads access different memory pages in a short period of time. Instead, we
employ dynamically created helper threads (HT) in the cache level for data
prefetching. These HTs make use of idle cores to bring potentially useful data
into the last level shared caches.

The skeleton framework allows the automatic creation and synchronization
of HTs and also hints the next task to be processed. This enables our mecha-
nism to enhance memory affinity on STM applications in a very dynamic and
fine-grained level. In the next section, we describe the OpenSkel framework
[16] that supports transactional worklist applications in which our mechanism
is implemented.

3 THE OPENSKEL FRAMEWORK

Many TM applications exhibit the worklist pattern. Such applications are char-
acterized by the existence of a single operation: process an item of work known

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 5

as a work-unit from a dynamically managed collection of work-unit instances,
the worklist.

add n seed work-units into the worklist
foreach worker do

while worklist 6= empty do
remove a work-unit wi from the work-
list
process wi

[add new work-units w′
i]

end while
end foreach

Fig. 2 Generic behavior of the worklist skeleton.

The algorithm in Figure 2 sketches the generic behavior of worklist al-
gorithms. The worklist is seeded with an initial collection of work-units. The
worker threads then iterate, grabbing and executing work-units until the work-
list is empty. As a side effect of work-unit execution, a worker may add new
work-units to the worklist.

In this paper, we use the OpenSkel framework, proposed in [16], to imple-
ment our memory affinity mechanism [25]. It is a C runtime system library
that enables the use of the transactional worklist skeleton. It provides an API
to handle transactional worklists. OpenSkel also exploits existing word-based
STM systems to deal with transactions. As shown in Figure 3, the programmer
is provided with three basic primitives so as to allocate, run and free a worklist.
Additionally, the API provides a function, namely oskel wl addWorkUnit(),
with which the programmer can dynamically add work-units to the worklist.

As shown in Figure 3, the programmer has to implement all four func-
tions required to describe a transactional worklist. In order to initialize and
terminate local variables used by each worker thread, the programmer has to
use the oskel wl initWorker() and oskel wl destroyWorker() functions respec-
tively. The programmer thus implements the kernel to process a work-unit in
the oskel wl processWorkUnit() main function. Lastly, the oskel wl update()
implements any kind of operation to update the global data when a worker
thread is just about to finish. Additionally, the programmer has to declare two
structures as part of the interface specification. The oskel wl shared t structure
contains all shared global variables, and the oskel wl private t data structure
specifies all private local variables of each thread.

Once an oskel wl shared t instance is initialized and the worklist is loaded
with work-units, the programmer has just to call oskel wl run(). The os-
kel wl run() function starts all worker threads and waits in a barrier.

Figure 4 shows OpenSkel’s internal implementation of each worker. Each
worker thread coordinates the execution of the aforementioned user functions.
After initialization, each worker grabs work-units with oskel wl getWorkUnit()
and calls the oskel wl processWorkUnit() function until the worklist is empty.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Lúıs Fabŕıcio Wanderley Góes et al.

Fig. 3 User pseudocode.

Fig. 4 OpenSkel Internal Worker Thread pseudocode.

Although the oskel wl getWorkUnit() is within a transaction, its variables are
not protected by transactional barriers. Instead, this function internally uses
locks to access OpenSkel’s worklist and internal state. This is essential to
decouple the worklist management from the transactional memory system,
avoiding extra transaction conflicts and contention.

The oskel wl processWorkUnit() procedure is executed within transactional
barriers placed by the skeleton library. This function is then translated to
transactional code at compile time by any existing TM compiler such as Dres-
den TM [13]. This process is transparent and completely relieves the appli-
cation programmer of the burden of having to handle transactions explicitly.
The OpenSkel runtime also enables the implementation of skeleton-driven op-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 7

Fig. 5 Bind and cyclic memory page allocation policies.

timizations. This feature is essential to implement our memory affinity mech-
anism as we describe in the next section.

4 SKELETON-DRIVEN MEMORY AFFINITY

The skeleton framework knows about the application communication pattern
and provides dynamic information on the application behavior. This infor-
mation combined with the knowledge about the nature of STM applications
allows us to implement efficient performance optimizations. In particular, our
memory affinity mechanism, called SkelAff, implements memory page alloca-
tion policies and cache prefetching exploiting the information provided by the
worklist pattern. For example, the skeleton knows which is the next work-unit
to be executed. This work-unit can thus be processed in advance by a helper
thread in order to prefetch potentially useful data that will be required in the
near future. Additionally, it can also allocate pages close to a specific thread
if it knows that a work-unit can generate new work-units that are memory re-
lated. In this section, we first present how our mechanism deals with memory
page allocation. Then, we describe how it prefetches data using helper threads.
Finally, we propose a heuristic to automate our mechanism.

4.1 Enabling Page Allocation Policies

In order to implement our mechanism in transactional applications, we exploit
two page allocation policies named bind and cyclic [23].

The bind page allocation policy aims at reducing access latency by binding
data of a thread to a single memory bank. In transactional worklist applica-
tions, the bind policy can lead to faster conflict resolution as long as memory
related work-units are placed in the same node. Whenever a thread allocates
a memory page, its corresponding virtual page is placed on a physical mem-
ory bank based on information about the machine topology provided by the
skeleton framework. Figure 5a depicts the bind policy in a NUMA machine
with four nodes. The application data is composed of m pages which are di-
vided into four contiguous groups, each assigned to a different memory bank.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Lúıs Fabŕıcio Wanderley Góes et al.

The bind policy can be profitable to transactional applications in which each
individual thread generates and consumes its own new shared data.

A side-effect of binding data to restricted memory banks is that it may
cause more memory contention when different transactional threads share the
same memory range. In order to avoid such behavior, our mechanism also
exploits the cyclic page allocation policy that spreads memory pages over all
memory banks of the machine following a round-robin distribution. A page i is
placed in the memory bank i mod M , where M is the number of memory banks
of the machine. The cyclic policy aims at balancing memory banks usage,
because it allows more memory banks to be accessed in parallel, providing
more bandwidth to cores. Figure 5b shows a schema that represents the cyclic
page allocation policy in a NUMA machine with four nodes.

In order to support page allocation policies in the OpenSkel framework,
we used the following tools: hwloc [5] and libnuma [18]. The first one provides
information about the machine topology (e.g., number of nodes and memory
banks hierarchy) that is used by OpenSkel to map threads to cores. This allows
OpenSkel to guarantee that threads do not migrate at runtime, avoiding data
migration. The latter provides an API to set specific page allocation policies
such as bind and cyclic which are encapsulated by the OpenSkel framework.
As a consequence, our skeleton-driven mechanism avoids page allocation poli-
cies being exposed to the application programmer. Particularly, it can fully
automate the process of selecting page allocation policies.

These tools integrated with OpenSkel enables SkelAff to set a page alloca-
tion policy as soon as the oskel wl alloc() is called. After this, all allocated data
is placed on memory banks following that specific policy including the worklist
and work-units. Additionally, OpenSkel provides several entry points in which
the page allocation policy can be switched such as the oskel wl addWorkUnit()
and oskel wl getWorkUnit() calls. Our memory affinity mechanism can also
exploit the fact that OpenSkel provides information about the application be-
havior and algorithmic pattern to switch to an appropriate page allocation
policy at runtime.

4.2 Enabling Cache Prefetching

Cache affinity can be enhanced by performing data prefetching using automat-
ically created helper threads (HT) [24,9]. They are auxiliary threads that run
concurrently with a main thread. Their purpose is not to directly contribute to
the actual program computation, which is still performed in full by the main
thread, but to facilitate the execution of the main thread indirectly. Typically
modern multi-cores have at least one shared level of cache among the cores,
so that HTs may try to bring data that will be required by the main thread
into this shared cache ahead of time.

TM applications have a number of characteristics that render the use of
HTs appealing. First of all, some transactional applications do not scale up to
a large number of cores because the number of aborts and restarts increases.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 9

!"#$%&'()*+,

-#$.&/*(%

'%+$%&'()*+,

0123&-+(%

!44&#$&56%&-#$.&/*(%

!"#$%&786$96+4

:(;6

:$+*2+<%(#*+,
:9$6+4

=6,>6$
:9$6+4

?+@

:(;6

:$+*2+<%(#*+,
!"#$%2

:$+*2+<%(#*+,
:9$6+4

=6,>6$
:9$6+4

?"@

?<@ ?4@

:(;6

=6,>6$
:9$6+4

:$+*2+<%(#*+,
:9$6+4

=6,>6$&:9$6+4
A+(262&BC<6>%(#*

:(;6

=6,>6$
:9$6+4

:$+*2+<%(#*+,
:9$6+4

=6,>6$&:9$6+4
A62%+$%2

!"#$"%&'(%")*

+",-)%-,

Fig. 6 Interaction between worker and helper threads.

If more cores are available, they can be used to run HTs instead of more TM
threads, improving the performance of the applications. Another characteristic
of STM applications is the high overhead and cache miss ratio of transactional
loads and stores. This suggests that HT can more easily stay ahead of the
main thread while effectively prefetching data for it.

Unfortunately, a STM does not have the required information to implement
HT on its own. The worklist skeleton, on the other hand, provides two key
information to make HTs feasible: when to start a HT and which data to
prefetch.

Figure 6 shows how helper threads interact with transactional threads. In
order to guarantee that the HT is always executing the correct next work-
unit, the transactional or main thread always keeps two work-units at the
same time. While it processes the former work-unit, it signals the HT with the
latter one. Thus, when the transactional thread calls oskel wl getWorkUnit()
for the first time, it grabs two work-units. For all the following calls to os-
kel wl getWorkUnit(), it grabs just one work-unit, sends it to the HT and
starts executing the previous one as shown in Figure 6a. Meanwhile, the
transactional thread can insert new work-units into the worklist with an os-
kel wl addWorkUnit() call. However, if a transaction modifies shared data,
the HT may go down the wrong path, possibly prefetching wrong data or even
worse, raising exceptions that could crash the whole application. SkelAff thus

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Lúıs Fabŕıcio Wanderley Góes et al.

implement a transparent mechanism to deal with exceptions within OpenSkel.
If an exception is raised, our mechanism aborts the helper thread and restarts
it in a wait barrier. Figure 6b, 6c and 6d show how our mechanism deals with
transaction aborts as well as incorrect executions of helper threads.

Helper thread code is generated and instrumented in the same way com-
pilers such as TM Dresden Compiler [14] and OpenTM [3] would do for STM
systems. However, instead of function calls to the STM system, it uses modi-
fied functions for reading and writing shared variables. Every time a HT has
to access a shared global variable, it has to use special functions to redirect
accesses to the internal metadata structures managed by our runtime system.
This is a somewhat similar approach to hardware HT, but we do not rely on
specific hardware to perform buffering. As HTs do not change the state of the
application, each write to a global variable is done in its local entry in a hash
table rather than in the actual memory location. If the same variable is read
after being written, the value will be extracted from the hash table instead of
the actual memory location. This enables HTs to follow the correct path of
control and hopefully prefetch the correct data.

4.3 Automatic Memory Affinity

SkelAff relies on a simple but efficient heuristic to automatically enable and
select its affinity mechanisms. This heuristic presented in Figure 7 exploits the
application algorithmic pattern and system information to choose which mech-
anisms should be applied. It firstly employs a thread mapping strategy. Since
STMs do not manage threads, then they are left with the operating system de-
fault scheduling strategy. The Linux scheduling strategy tends to map threads
initially following the scatter mapping strategy. Scatter distributes threads
across different processors avoiding cache sharing between cores in order to
reduce memory contention. However, at runtime the Linux scheduler migrates
threads trying to reduce memory accesses and I/O costs. For this reason, our
heuristic firstly employs a static scatter mapping strategy in which threads
are not allowed to migrate at runtime, guaranteeing a more predictable per-
formance. This also avoids, when possible, that HTs compete with each other
for the same cache. Thread mapping in STM applications has been extensively
studied in [6,7] and it is not the focus of this paper.

As aforementioned in Section 2, STM applications exhibit very irregular
memory access footprint tending to an uniform distribution. Based on this
observation, SkelAff then set cyclic as the default page allocation policy as it
distributes memory pages equally across nodes. This can increase the average
performance of STM applications since each thread will potentially access the
same amount of data on each node. However, if the skeleton informs that
threads are generating new work-units, SkelAff optimistically assumes that
these work-units are memory related. Then it switches the page allocation
policy to bind.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 11

Skeleton Code
Using OpenSkel

Skeleton Source
Code with HTs

SkelAff Precompilation

Binary Code

Compilation

Compile-time Runtime

Initialization

Enable HTs
Thread

Mapping

Set cyclic
allocation policy

[no idle cores or
no shared caches]

[idle cores and
shared caches]

Set bind policy for
this worker thread

[new work-units added]

[no new work-units]

Fig. 7 Heuristic to automate the selection and enabling of the memory affinity mechanisms.

Our mechanism has also an optimistic approach to enable helper threads.
It always activates HTs if there are idle cores that share the last level cache. If
so, it schedules each pair of worker thread and helper thread to cores that share
the same level of cache. To reduce cache pollution due to inefficient prefetching,
a lifespan parameter (i.e., number of words prefetched per work-unit) and a
limit to the hash table size are employed. By employing this heuristic, our
proposed mechanism delivers automatic skeleton-driven memory affinity to
STM worklist applications.

5 EXPERIMENTAL SETUP

In this section we present our experimental setup to evaluate the presented
memory affinity mechanism. We selected two representative multi-core plat-
forms with NUMA characteristics:

– NUMA16: a multi-core machine based on eight Dual Core AMD Opteron
Processor 875. Cores have private L1 (64KB) and L2 (1MB) caches and do
not share any cache memory;

– NUMA32: four eight-core Intel Xeon X7560 processors. Each core has a
private L1 (32KB) and L2 (256KB) caches and all cores on the same socket
share a L3 cache (24MB).

Table 1 summarizes the hardware characteristics of these machines. NUMA
factors1 are shown in intervals, meaning the minimum and maximum penalties
to access a remote DRAM in comparison to a local DRAM.

1 Remote read latency divided by local read latency (obtained from BenchIT).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Lúıs Fabŕıcio Wanderley Góes et al.

Table 1 Overview of the NUMA multi-core platforms.

Characteristic NUMA16 NUMA32
Number of cores 16 32
Number of sockets 8 4
NUMA nodes 8 4
Clock (GHz) 2.22 2.27
Last level cache (MB) 1 (L2) 24 (L3)
DRAM capacity (GB) 32 64
Memory bandwidth (GB/s) 9.77 35.54
NUMA factor [1.1; 1.5] [1.36; 3.6]

Both machines run Linux (kernel 2.6.32) with GNU C Compiler 4.4.4. We
selected TinySTM [13] as the STM library to carry out our experiments. Unlike
other STM libraries, TinySTM can be configured with several locking and
contention management strategies. We configured TinySTM with encounter-
time locking, write-back memory update and a suicide contention strategy.

To evaluate the developed mechanism, we selected four applications from
the STAMP benchmark suite [21] that matched the worklist model: Intruder,
Kmeans, Vacation and Yada. In a previous work, these applications were
ported to conform with the OpenSkel API and results showed that these appli-
cations present similar performance compared to the original ones. Finally, we
executed these selected applications with the recommended input data sets.
Kmeans and Vacation have two input data sets, high and low contention. As
Intruder and Yada only have high contention input data sets, we chose the low
contention inputs for Kmeans and Vacation to cover a wider range of behav-
iors. Table 2 summarizes the main characteristics of the selected applications.

Table 2 Summary of STAMP application runtime characteristics on TinySTM for the 32-
core NUMA machine.

Application Scalable up Transaction L3 Cache Transaction
to # Cores Abort Ratio Miss Ratio Length

Intruder 4 high medium short
Kmeans 8 high high medium
Vacation 16 low low short
Yada 16 high medium medium

6 EXPERIMENTAL RESULTS

In this section we evaluate the impact of the SkelAff mechanism on the se-
lected benchmarks. For all applications, the input work-units were shuffled
before their computation. This is done to avoid benefits from a particular
input order. The baseline version of each application uses the default work
sharing mechanism available in OpenSkel. All the results presented are based
on an arithmetic mean of 10 runs.

In Section 6.1, we first evaluate the performance impact of individual page
allocation policies and our skeleton-driven memory affinity mechanism. Such

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 13

CyclicBindBaseline SkelAff

(a) Intruder-NUMA16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 8 16

(b) Intruder-NUMA32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 8 16 32

(c) Kmeans-NUMA16

0.0

0.4

0.8

1.2

1.6

2.0

2 4 8 16

(d) Kmeans-NUMA32

0.0

0.4

0.8

1.2

1.6

2.0

2 4 8 16 32

(e) Vacation-NUMA16

0.0

1.0

2.0

3.0

4.0

5.0

2 4 8 16

(f) Vacation-NUMA32

0.0

1.0

2.0

3.0

4.0

5.0

2 4 8 16 32

(g) Yada-NUMA16

0.0

0.4

0.8

1.2

1.6

2.0

2 4 8 16

(h) Yada-NUMA32

0.0

0.4

0.8

1.2

1.6

2.0

2 4 8 16 32

Number of Threads

Fig. 8 Comparison between different page allocation policies (bind and cyclic) and our
automatic skeleton-driven memory affinity (SkelAff) on NUMA16 and NUMA32 platforms.

performance impact is analyzed by executing the selected STAMP applications
on both NUMA platforms. Then, in Section 6.2 we perform a deeper study on
the benefits of using software HTs to prefetch data.

6.1 Evaluating Memory Affinity

Figure 8 reports the speedup of the selected benchmarks on both NUMA16 and
the NUMA32 platforms, comparing the performance of the baseline version,
individual page allocation policies (bind and cyclic) and our skeleton-driven
memory affinity solution (SkelAff). There are three important details about
this figure. Firstly, we varied the number of threads not only to observe the
impact of the memory affinity mechanisms with different thread counts but
also to see if those mechanisms can actually improve the scalability of the
applications. Secondly, when HTs are enabled (SkelAff), there is one auxiliary

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Lúıs Fabŕıcio Wanderley Góes et al.

Baseline (Speedup) Helper Threads (Speedup)

Baseline (Miss Ratio) Helper Threads (Miss Ratio)

(a) Intruder-NUMA32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16 32
0.0

0.2

0.4

0.6

0.8

1.0
(b) Kmeans-NUMA32

0.0

0.4

0.8

1.2

1.6

2.0

1 2 4 8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

(c) Vacation-NUMA32

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16 32
0.0

0.2

0.4

0.6

0.8

1.0
(d) Yada-NUMA32

0.0

0.4

0.8

1.2

1.6

2.0

1 2 4 8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

Number of Threads

Fig. 9 Shared cache miss ratio between the baseline version and software HTs on NUMA32.

thread for each worker thread and both are placed on different cores as close
as possible to profit from shared caches. For instance, the result with 4 threads
in Figure 8b using our SkelAff mechanism represents the speedup obtained
with 4 working threads plus 4 HTs (8 cores in total). This will be always
the case of all applications running our SkelAff mechanism on the NUMA32
platform. Finally, the baseline version uses the Linux operating system policy
called first-touch. This policy allocates memory preferably on the current node
of the running thread [2].

Overall, memory affinity improves the performance of the applications and
the average gains compared to the baseline are the following: bind (less than
1%), cyclic (8%) and our skeleton-driven memory affinity solution (11%). Our
solution can surpass the gains of individual page allocation policies due to the
use of software data prefetch (helper threads) when appropriate. However, the
performance can also be degraded when the use of software data prefetch is
not beneficial.

Individual page allocation polices presented more significant performance
gains on NUMA16, resulting in improvements up to 46%. This was expected
because such platform does not have shared cache memories, so the NUMA
factor plays an important role on the overall performance. We also observed
that our skeleton-driven memory affinity solution always selected the best page
allocation policy to be applied automatically. However, our approach cannot
benefit from using helper threads to prefetch data due to the absence of shared
cache memories in this platform. Because of that, the performance of our
solution does not surpass the performance gains of individual page allocation
policies.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 15

High memory contention benchmarks such as Intruder (Figure 8a), Kmeans
(Figure 8b) and Vacation (Figure 8c) presented better performance gains with
the cyclic page allocation policy on NUMA16. In particular, cyclic delivers
significant performance improvements as we increase the number of threads
because the contention on the worklist is also increased considerably. Such con-
tention is then alleviated when we apply cyclic, since it makes more bandwidth
available per core due to its distributed nature of placing memory pages. The
performance improvement of our SkelAff mechanism over the baseline version
for Intruder, Kmeans and Vacation were respectively 7%, 14% and 46%.

Although the NUMA32 presents a high NUMA factor between nodes, re-
mote data requests rarely leads to accesses to remote memory banks. It stems
from the fact that each node has a large shared L3 cache which is also inter-
connected to the others through high speed communication channels. Thus,
instead of accessing a remote memory bank directly on a data request, a core
may find the desired data on remote caches. On the other hand, the shared
L3 caches allow the exploitation of helper threads to prefetch data, hopefully
increasing the performance gains of individual allocation policies.

Overall, the performance improvements of individual allocation policies
(cyclic and bind) are roughly the same on NUMA32. Kmeans (Figure 8d) and
Yada (Figure 8h) were exceptions and presented better performance gains
with bind. In some cases, our skeleton-driven memory affinity presented better
performance gains than those individual allocation policies on Intruder (Fig-
ure 8b) and Vacation (Figure 8f). In such cases, these applications profited
from the use of page allocation policies along with software data prefetching
(helper threads). The performance gains for Intruder, Vacation and Yada were
respectively 13%, 7% and less than 1%. In the next section we analyze in detail
the benefits of using helper threads.

6.2 Analyzing the Benefits of Cache Prefetching

We evaluate the performance of helper threads by using two different metrics:
speedup and last level cache miss ratio. The first one allows us to identify the
overall performance gains whereas the second measures the effectiveness of
prefetching data on shared caches. Experiments were only conducted on the
NUMA32 platform since it has shared L3 caches. We used PAPI [15] interface
to access hardware performance counters as well as to compute miss ratios.

Figure 9 compares the benefits of using helper threads with the baseline
version. Overall, HTs improved the top performance of the STAMP appli-
cations up to 14%, a significant improvement in accordance with the results
showed in [24], where the SPEC Benchmark applications achieved up to 22%
performance gain by the use of software helper threads. It is important to note
that the SPEC Benchmark applications present much more regular behavior,
making it easier to predict which data can be prefetched.

As it can be noticed, by applying helper threads we reduced the last level
cache miss ratio in all four applications. This confirms the effectiveness of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Lúıs Fabŕıcio Wanderley Góes et al.

helper threads: triggering future cache miss events far enough in advance by
the main thread reduces the memory miss latency. Although the miss ratio was
decreased, such improvement did not significantly reflect well on the overall
performance of all applications. In fact, we observe performance improvements
compared to the baseline version from 2 to 4 worker threads on most of the
applications. However, it did not deliver any performance gains with 16 worker
threads (i.e., 16 worker threads + 16 HTs), when most applications stop scal-
ing.

In Figure 9a, Intruder showed important performance gains when applying
HTs with 2 and 4 worker threads (26% and 14%, respectively). However, even
reducing the miss ratio with 8 and 16 threads, HTs did not present the ex-
pected performance improvement. The Intruder benchmark is characterized
by having a high abort ratio which increases proportionally to the number
of threads. In STM systems, concurrent transactions are squashed and re-
executed on every conflict. Each time a conflict is detected, only one trans-
action keeps executing while the others involved in the conflict are restarted.
When HTs are enabled, they are also restarted to guarantee the correct exe-
cution of the next work-unit ahead of time. Thus, this overhead of restarting
HTs becomes too high with 8 and 16 worker threads, reducing the benefits of
prefetching data and increasing the wasted work.

Kmeans spends most of its execution in non-transactional code as described
in [21]. This prevented helper threads from improving the performance of the
baseline version of Kmeans (Figure 9b). In particular, Kmeans is an iterative
application that alternates between a sequential and a parallel phases, the
latter implemented as a worklist. At the end of each phase, the worklist is
empty and it is repopulated before starting the next phase by a single thread
(sequential code). On each iteration, HTs have to be reinitialized in the parallel
phase. This causes extra overhead which is significant since Kmeans has a short
execution time per parallel phase. Thus, this overhead of creating auxiliary
threads surpasses the benefits we can obtain from them.

Helper threads led to interesting performance improvements on Vacation
(Figure 9c) with 2, 4 and 8 worker threads (25%, 15% and 6%, respectively).
It stems from the fact that Vacation has short transactions. This allows ac-
tual and prefetched data to coexist in the shared cache without causing extra
cache misses. Additionally, Vacation presents very low abort ratio avoiding
the side-effect identified on Intruder. With 16 worker threads we observe that
the miss ratio is not too much decreased in comparison with the baseline one.
As a result, there is no significant difference between the overall performance
obtained with HTs and the baseline version.

As opposed to Vacation, Yada has long transactions. This makes harder to
attain fair timing between the worker and helper threads. In fact, it increases
the probability that a helper thread takes a wrong path of execution due to
premature execution. Even though, HTs reduced the cache miss ratio of Yada.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 17

7 RELATED WORK

There are three main software-based approaches that are commonly employed
to enhance memory affinity in parallel applications: thread scheduling, memory
page allocation policies and cache prefetching. In this section we highlight some
related work concerning these three techniques.

Thread scheduling. In [7], the authors proposed a machine learning-
based approach to automatically infer a suitable thread mapping strategy
for transactional memory applications. Some STM applications are profiled
to build a set of input instances. Then, such data feeds a machine learning
algorithm, which produces a decision tree able to predict the most suitable
thread mapping strategy for new unobserved instances. In [12], two thread
mapping algorithms are proposed for applications based on the shared mem-
ory programming model. These algorithms rely on memory traces extracted
from benchmarks to find data sharing patterns between threads. In [17], the
authors proposed a dynamic thread mapping strategy for regular data parallel
applications implemented with OpenMP.

Memory page allocation policies. In [23], the authors explored differ-
ent page allocation policies to improve the memory affinity of two geophysics
parallel applications. They showed that these policies can achieve better per-
formance gains than other solutions available on Linux. In [2], the authors
designed dynamic mechanisms able to decide the data placement over the
physical memory of a NUMA platform. The proposed mechanisms must use
hardware counters to compute the most suitable data placement (e.g., queu-
ing delays, on-chip latencies, and row-buffer hit-rates of on-chip memory con-
trollers).

Software cache data prefetching. Helper threads have been used as a
means of exploiting idle hardware resources to prefetch data [9]. In [24], the
authors proposed a compiler framework to automatically generate software
helper threads code for profitable loops in sequential applications. In [22], au-
thors manually coded helper threads within hardware transactional memory
barriers to improve the performance of a sequential implementation of Dijk-
stra’s algorithm.

While thread scheduling techniques have been already studied in trans-
actional memory applications, page allocation policies and software cache
prefetching are still a daunting task, deserving a more detailed analysis. To
the best of our knowledge, this is the first work that explores both tech-
niques (page allocation policies and helper threads) in an automatic fashion for
transactional memory applications. This was possible thanks to the OpenSkel
framework, which allowed us the implementation of such skeleton-driven mech-
anism.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Lúıs Fabŕıcio Wanderley Góes et al.

8 CONCLUSIONS

In this paper, we presented a new automatic memory affinity mechanism for
transactional worklist applications. It employs an algorithmic skeleton ap-
proach to improve affinity in the main memory and cache levels. This ap-
proach provides compile and runtime information about the application be-
havior. This enabled SkelAff to automatically employ page allocation policies
and helper threads to enhance memory affinity.

We performed experiments on two representative NUMA machines using
the STAMP benchmark. Our results showed that SkelAff yield performance
improvements of up to 46%, with an average of 11%, over a baseline version. We
can also conclude that tackling affinity in different levels of memory is essential
to improve performance of transactional applications on NUMA platforms.

As future work, we intend to implement an autotuning mechanism to dy-
namically adjust the helper threads parameters such as the lifespan and the
buffer size. This can potentially lead to a more profitable data prefetching,
avoiding that wrong data is brought into the cache memory. Furthermore, we
aim at investigating and including a bigger range of page allocation policies in
our mechanism.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Pat-
terson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: A View of the
Parallel Computing Landscape. Communications of the ACM 52(10), 56–67 (2009)

2. Awasthi, M., Nellans, D.W., Sudan, K., Balasubramonian, R., Davis, A.: Handling the
Problems and Opportunities Posed by Multiple on-Chip Memory Controllers. In: PACT,
pp. 319–330. ACM (2010). DOI http://doi.acm.org/10.1145/1854273.1854314

3. Baek, W., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The OpenTM
Transactional Application Programming Interface. In: PACT 2007, pp. 376 –387. IEEE
Computer Society (2007)

4. Broquedis, F., Aumage, O., Goglin, B., Thibault, S., Wacrenier, P.A., Namyst, R.:
Structuring the Execution of OpenMP Applications for Multicore Architectures. In:
IPDPS, pp. 1–10. IEEE Computer Society (2010)

5. Broquedis, F., Clet Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: A Generic Framework for Managing Hardware Affini-
ties in HPC Applications. In: PDP, pp. 180–186. IEEE Computer Society (2010)

6. Castro, M.B., Góes, L.F.W., Fernandes, L.G., Méhaut, J.F.: Dynamic thread mapping
based on machine learning for transactional memory applications. In: Euro-Par, pp.
465–476 (2012)

7. Castro, M.B., Góes, L.F.W., Ribeiro, C.P., Cole, M., Cintra, M., Méhaut, J.F.: A ma-
chine learning-based approach for thread mapping on transactional memory applica-
tions. In: HiPC, pp. 1–10 (2011)

8. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press & Pitman (1989)

9. Collins, J.D., Wang, H., Tullsen, D.M., Hughes, C., Lee, Y.F., Lavery, D., Shen, J.P.:
Speculative Precomputation: Long-Range Prefetching of Delinquent Loads. In: ISCA,
pp. 14–25. ACM (2001)

10. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional Mutex Locks.
In: Euro-Par, pp. 2–13. Springer-Verlag (2010)

11. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI, pp. 137–150. USENIX Association (2004)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Skeleton-Driven Mem. Affinity for Transactional Worklist Apps. 19

12. Diener, M., Madruga, F., Rodrigues, E., Alves, M., Schneider, J., Navaux, P., Heiss,
H.U.: Evaluating Thread Placement Based on Memory Access Patterns for Multi-core
Processors. In: HPCC, pp. 491–496. IEEE Computer Society (2010)

13. Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based
Software Transactional Memory. In: PPoPP, pp. 237–246. ACM (2008). DOI
10.1145/1345206.1345241

14. Felber, P., Fetzer, C., Riegel, T., Sturzrehm, H.: Transactifying Applications Using an
Open Compiler Framework. In: TRANSACT. ACM (2007)

15. Garner, B.D., Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable
Programming Interface for Performance Evaluation on Modern Processors. International
Journal of High Performance Computing Applications 14, 189–204 (2000)

16. Goes, L.F.W., Ioannou, N., Xekalakis, P., Cole, M., Cintra, M.: Autotuning skeleton-
driven optimizations for transactional worklist applications. IEEE Transactions on Par-
allel and Distributed Systems 23(12), 2205–2218 (2012)

17. Hong, S., Narayanan, S.H.K., Kandemir, M., Özturk, O.: Process Variation Aware
Thread Mapping for Chip Multiprocessors. In: DATE, pp. 821–826. European Design
and Automation Association (2009)

18. Kleen, A.: A NUMA API for Linux. Tech. Rep. Novell-4621437 (2005)
19. Larus, J., Rajwar, R.: Transactional Memory. Morgan & Claypool Publishers (2006)
20. McCool, M.: Structured Parallel Programming with Deterministic Patterns. In: HotPar,

pp. 25–30. USENIX Association (2010)
21. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transactional

Applications for Multi-Processing. In: IISWC, pp. 35–46. IEEE Computer Society
22. Nikas, K., Anastopoulos, N., Goumas, G., Koziris, N.: Employing Transactional Memory

and Helper Threads to Speedup Dijkstra’s Algorithm. In: ICPP, pp. 388–395. IEEE
Computer Society (2009)

23. Pousa Ribeiro, C., Castro, M., Carissimi, A., Méhaut, J.F.: Improving Memory Affinity
of Geophysics Applications on NUMA platforms Using Minas. In: VECPAR. Springer-
Verlag (2010)

24. Song, Y., Kalogeropulos, S., Tirumalai, P.: Design and Implementation of a Compiler
Framework for Helper Threading on Multicore Processors. In: PACT, pp. 99–109. IEEE
Computer Society (2005)

25. Wanderley Góes, L.F.: Automatic skeleton-driven performance optimizations for trans-
actional memory. Ph.D. thesis, School of Informatics, University of Edinburgh, UK
(2012)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

