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Abstract—State-of-the-art pedestrian detectors are capable of
finding humans in images with reasonable accuracy. However,
accurate object detectors such as Integral Channel Features
(ICF) do not provide good reliability; they are unable to identify
detections which they are less confident (or more uncertain)
about. We apply existing methods for generating probabilistic
measures from classifier scores (such as Platt exponential scaling
and Isotonic Regression) and compare these to Gaussian Process
classifiers (GPCs), which can provide more informative predictive
variance. GPCs are less accurate than ICF classifiers, but GPCs
and Adaboost with Platt scaling both provide improved reliability
over existing methods.

I. INTRODUCTION

As surveillance and video tracking systems become more
common, and the amount of video data they and their human
operators process increases, reliance on automated detection of
objects within images and videos is similarly becoming more
common. Such systems and algorithms must detect relevant
objects fast enough to allow timely responses to detections
where appropriate, and accurately enough that machine de-
tection does not cause spurious responses, so that operator
confidence in system accuracy is maintained.

In this paper, we target a scenario where a detection
algorithm is run on video or image data and returns locations
of objects of interest, e.g. pedestrians or vehicles [1], [2].
These sliding-window detection algorithms operate on some
features x computed from the video data and produce a vector
of window scores f(x), where f(·) denotes the score function.
In binary classification tasks, from these the sign sgn(f(x))
is taken, and windows with positive signs are flagged as
containing objects of interest. Given some scoring threshold,
a detector may return n window detections above this score.
This set may contain false positive and marginal cases along
with true positives. These are difficult to separate as the scores
from f(x) reflect the interactions between the sample data
and the classifier model, rather than classifier confidence in
the presence of an object in that window. Finally, this score
can be converted to a probability representing confidence in
the presence of an object in that location. As an example, see
Fig. 1 for pedestrian locations detected by an Adaboost-based
classifier.

Most literature on object detection performance has pri-
oritised improvements in accuracy; i.e. improvements to the
misclassification or error rate. We define accuracy as the
proportion of samples which are classified correctly, simi-
larly to Hand [15]. We also define reliability as how well
the classifier’s confidence prediction agrees with ground-truth

Fig. 1. True positive (dotted green), false positive (dotted red) and false
negative (solid red) classifications from the ACF pedestrian detector. Each
detection has an Adaboost score s and probability p, which saturates at 1;
using this information to rank detections is unreliable.

(a) Sigmoid (b) Platt (c) SE-GP

Fig. 2. Example false positive from Adaboost detector with probabilities
shown. Reduced confidence is seen when using Platt or SE-GP postprocessing.

observations. These two qualities are separate; an accurate
classifier which is over- or under-confident will not be reliable.
Here, we wish to improve the reliability of the confidence
measure associated with each detection, so that some action
can be taken to reduce uncertainty in the presence or absence
of a detection in areas of high uncertainty. This can include
applying a more accurate but much more computationally in-
tensive classifier to that region, asking an operator to manually
label a limited number of borderline cases, or – in a battlespace
scenario – moving a sensor closer to an uncertain region for
a closer look. This approach is particularly relevant where the
cost of a missed detection can be very high or where the
uncertainty-reducing action is too expensive to apply to the
image as a whole. Different algorithms can produce different
confidence levels from score information. See Fig. 2 for an
example of false positive scores.

We use the problem of detecting pedestrians in images as



a motivating example in this paper. This is for two reasons:
firstly, improved pedestrian detectors can be deployed in tasks
which are directly relevant to defence applications and bat-
tlespace scenarios (such as anomalous behaviour detection [3],
multi-camera surveillance [4], etc.); secondly, techniques used
to improve pedestrian detection are applicable to other object
classes such as cars and road signs [5], [6]. This analysis
technique can also be extended to object detection in other
modalities such as sonar or radar imagery.

We evaluate the performance of existing detectors and
modify their output to provide more informative confidence
levels. We discuss related work then state our contributions
in §II. §III describes our method, followed by presentation
and discussion of the results in §IV. Finally, a conclusion and
avenues of investigation for future work are given in §V.

II. RELATED WORK

A. Pedestrian Detection

A review of the state of the art in pedestrian detection
in 2011 is given by Dollàr et al. [7], where the authors
evaluate sixteen detectors and rank them on multiple pedestrian
datasets of varying difficulty. One of the best-performing
was based on an extension of the Histograms of Oriented
Gradients (HOG) detector [1] called Integral Channel Features
(ICF) [8]. Since 2011, performance on the two main datasets,
Caltech [7] and INRIA [1], has continued to improve. One
of the current state-of-the-art algorithms is Aggregate Channel
Features (ACF), a variation of ICF [8]. HOG and its deriva-
tives are sliding window detectors, where window evaluation
involves feature extraction at multiple scales followed by
classification with support vector machines or boosted decision
trees using Adaboost [9]. Individual window detections are
then grouped via non-maximal suppression. Improvements in
pedestrian detection algorithms can be applied directly to other
problems in computer vision. Mathias et al. showed that an
ICF-based detector can match existing state of the art road
sign detectors (achieving 98% accuracy) for a considerable
reduction in testing time [5]. Similarly, Rybski et al. apply
HOG to classifying vehicle orientation in images [6].

B. Classification with Confidence

While the accuracy of pedestrian detectors has continued
to improve, algorithm performance at low resolution (less
than 50 pixels high) and under varying occlusion is still
generally poor [7]. Around half of all detections in the Caltech
dataset are still missed at a reasonable rejection level of 10−1
false positives per image (FPPI). The presence or absence of
detections reported at long-range or in far field image regions
is unreliable. A method to generate a reliable confidence score
from any detector score is therefore of considerable importance
to systems using these detections. Grimmett et al. explore
this problem in two scenarios, both involving images gathered
from a moving vehicle: multi-class road sign classification,
and detection of red or green traffic lights [10]. In each case,
various approaches are used to generate detection probabilities
from classifiers, and it is the evaluation of these methods that
concerns us. Grimmett et al. use the entropy or uncertainty,

H = −
N∑

k=1

[p(Ck|x)logN (p(Ck|x))] , (1)

to evaluate the confidence of N ≥ 1 probabilistic classifiers
p(Ck) applied to a window feature vector x. Here, H is
bounded between 0 and 1 and a higher H denotes greater
uncertainty in a classification. For binary classification Ck ∈
{0, 1}, the base 2 logarithm is used.

The authors evaluate two well-known classification algo-
rithms: boosted decision trees (LogitBoost) [11] and support
vector machines. These are compared to Gaussian Process
classifiers (GP or GPCs) [12]. Having trained these to recog-
nise multiple classes of road signs, they evaluate their ability
to identify the presence of unknown classes, i.e. those not
present in the training set. They find that the classification
performance of GPs is similar to that of SVMs and boosted
classifiers, but GPs exhibit much more uncertainty than SVMs
and LogitBoost when presented with (i) samples of untrained
classes, and (ii) false positives and false negative detections
of trained classes. They attribute this to the fact that GPs
provide probabilistic classification, more so than SVMs or
boosted classifiers; the latter do not adequately account for
predictive variance [12, Ch. 6]. For example, the SVM output
increases in confidence as test points moving further away from
the separating hyperplane are selected, when this conclusion
may not be supported by the evidence. The major drawback
with GPCs is their computational complexity, which is O(n3)
during training and O(n2) at test time [12, Ch. 3]. Grimmett
et al. do not consider runtime, except to mention that Gaussian
Process evaluation is prohibitively expensive.

Other work has evaluated methods for converting classi-
fication scores f(x) from SVM or boosted classifiers into
probabilities. The simplest of these is a logistic correction via
a sigmoid,

p(Ck|x) =
1

1 + exp(−2f(x))
. (2)

A method involving fitting a model to a given set of data is
Platt scaling, originally used with SVMs [13]:

p(Ck|x) =
1

1 + exp(−af(x) + b)
. (3)

Here a, b are constants learned on a validation set. Yet another
involves Isotonic Regression [14], where the output of f(x) is
placed into a set of bins. Bin edges and associated probabilities
are learned to produce an isotonic (monotonically increasing)
mapping to p∗, where 0 ≤ p∗ ≤ 1.

C. Confidence Metrics

Detector performance is conventionally evaluated based on
the four numbers used in a confusion matrix: true positives,
false positives, false negative and true negatives (TP, FP,
FN and TN respectively). These measures lead to precision,
recall, F-score, etc. However, Hand describes two drawbacks
of such error rate-based statistics for the problem we wish
to address [15]. These are: (i) the cost of misclassifying a
false positive and a false negative is taken to be equal, and
(ii) the relative severity of misclassifications is not taken into
account (i.e. an object misclassified just below a threshold
will be treated the same as one some distance from it).
To overcome this, the mean-squared error or Brier score is
used. This relies on the difference between the true class



membership Ck ∈ {0, 1} and the estimated probability. For
binary classification this is:

MSE =
2

N

N∑
k=1

(Ck − p(1|xi))
2 . (4)

D. Contributions

We extend the work of Grimmett et al. on classification
with confidence, or introspective classification, to the domain
of pedestrian detection, by applying and extending their choice
of classifiers to the broader feature vector used in FPDW. We
also investigate alternative methods for obtaining probabilistic
classifications from classifiers running on this dataset, and use
a variety of metrics to evaluate each. Here we also consider
the tradeoff of algorithm runtime vs. accuracy; i.e. what is
an appropriate tradeoff between detector runtime, classifier
accuracy and reliability?

III. METHOD

A. Baseline classifier and dataset

We train classifiers on a standard dataset for pedestrian
detection, INRIA [1]. For feature extraction we use the base-
line detector from ACF1. This produces a size 5120-dimension
vector for each sliding window, arranged as ten channels
comprising L, U, V colour channels, gradient magnitude and
gradient orientation histograms with six bins. Each vector
represents a 128×64 window. We use eight classifier variations
running on this feature vector. As a baseline we use a discrete
Adaboost classifier [9], with depth-2 binary trees as weak
learners. We also investigate performance of the Logitboost
version. As another baseline we use a linear SVM [16] trained
on the same feature set2. Due to their documented ability
to produce probabilistic estimates, we also train a variety of
Gaussian Process classifiers on the same feature set. For the
classifiers which do not produce probabilistic estimates of test
data directly such as Adaboost and SVM, we compare multiple
methods of generating probabilistic outputs; see §III-D.

B. Gaussian Processes

For a matrix of training samples X with labels y, test
results f∗ can be produced from testing samples X∗ by approx-
imating the training and testing distributions via a Gaussian
Process [12]:[

y
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (5)

where the mean is 0 and the covariance matrix K can take one
of several relationships with the data. For the linear kernel,
entry (i, j) of K is computed as:

kij(x) = σ2
0 + xixj

′ . (6)

Or the squared exponential (SE) kernel:

kij(x) = exp

(
− (xi − xj)

2

2`2

)
. (7)

1This is available as part of PMT, http://vision.ucsd.edu/∼pdollar/toolbox.
2The LIBSVM package was used, http://www.csie.ntu.edu.tw/∼cjlin/

libsvm/.

Here, ` and σ2
0 are hyperparameters learned by the training pro-

cess3. Finally, for binary classification a posterior probability
p(f∗|X,y, X∗) is obtained from a link function similar to (2)
run on (5). A sparse variant of GPCs is the relevance vector
machine (RVM), where components of the feature vector in
the training data with very low variance are removed during
the training process [17]. We compare RVM performance
to investigate a GP-based classifier which may have lower
computational requirements.

C. Boosted and Margin Classifiers

Adaboost is an algorithm for generating a “well-
performing” classifier f(x) from a set of weak learners
h(x) [9] using:

f(x) =

n∑
k=1

(akhk(x)) . (8)

In this case the weak learners are depth-2 decision trees.
We use two variants, discrete Adaboost and Logitboost – the
former as it is currently one of the state-of-the-art classi-
fiers and is used in the ACF detector, and the latter as it
directly produces a probability estimate via (2). The differ-
ence lies in the weight update equation used during training:
Dt(i) ∝ exp(−yift−1(xi)) for Adaboost vs. that for Log-
itboost, Dt(i) ∝ 1/1 + exp(yift−1(xi)) [18]. At this stage
we also consider the ability of SVMs to produce scores from
which probabilistic outputs can be generated. The linear kernel
SVM was used to provide a compromise between accuracy and
training time:

f(x) =

N∑
i=1

(xi · wi) + b . (9)

D. Probabilistic Outputs

Probabilistic classifier outputs are generated either via a
non-parametrised sigmoid (2), Platt scaling (3), or isotonic
regression. Isotonic Regression uses the pair-adjacent violators
algorithm, trained on the scores output by the classifier on a
holdout set of training data [14]. A similar method was used
to fit Platt parameters on Adaboost scores.

As Gaussian processes produce probabilistic outputs any-
way, no further processing is needed. Finally, to investigate
a method of generating confidence information with reduced
runtime, candidate regions are identified with discrete Ad-
aboost and then these windows are re-processed with the SE
GP; we refer to this as Adaboost→SE-GP.

Detector performance is evaluated in the standard manner.
Using the INRIA dataset, 288 test images containing one or
more pedestrians at varying scales are used. Scores from a slid-
ing window detector are run through non-maximal suppression
and compared to a ground truth bounding box corresponding
to pedestrian location. If the overlap between the two is over
a threshold then the detection is counted as a true positive [7].
See Fig. 1 for examples.

3The GPML toolkit was used. http://www.gaussianprocess.org/gpml/code/
matlab/doc/

http://vision.ucsd.edu/~pdollar/toolbox
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/


Fig. 3. DET curves for different detectors on INRIA dataset. Best viewed
in colour.

IV. RESULTS

As discussed in §II-C, metrics based on the error rate are
less applicable to the problem of confidence with classification.
They are provided here to allow ranking and comparison of
detectors in the usual manner.

A. Misclassification (Inaccuracy) Results

Table I shows results for precision p = TP/(TP + FP ),
recall r = TP/(TP + FN) and area under ROC curve
for each method. Detection Error Tradeoff (DET) curves for
probabilistic detectors are given in Fig. 3. Using this metric, the
Adaboost classifier (an unmodified ACF detector) with sigmoid
or IR fitting performs best. The former has considerable loss
of precision at low false-positive rates, despite the underlying
detector being the same. However, the SE GPC gives the best
AUC despite high false positives.

B. Reliability results

We also evaluate the performance of various approaches
for converting a score to a probability. The mean-squared error
in the probability score compared to the true {0, 1} class for
each detector is given in the right-hand side of Table I. Data-
driven methods such as Platt scaling and IR outperform simple
sigmoid fitting for generating probabilities, and also Adaboost
followed by a GPC.

Entropy measures for image regions which returned detec-
tions evaluated as false and true positives by each classifier are
shown in Fig. 4a and Fig. 4b respectively. These graphs show
the distribution of uncertain detections; ideally false positives
would be few and uncertain while true positives would have
minimal uncertainty (and cluster in the top left corner). Each
line is normalised to the number of TP/FP detections returned
by that classifier after non-maximal suppression and thresh-
olding. Fig. 4a in particular is affected by the wide variation
in number of FPs returned. Adaboost-IR is closest to the ideal
detector here, but as Fig. 4b shows, it is underconfident when
reporting detections. This is relevant if we wish to collect
uncertain detections for further processing, e.g. by applying
an entropy threshold H = 0.3 or p(1|x) ' 0.91.

We also display the probability scores using a reliability
diagram [14]. Here we wish each curve to be as close to
a nominal “well-calibrated” line represented by the diagonal
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(a) False positives
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(b) True positives

Fig. 4. Uncertainty distribution of true and false positive detections for each
classifier. The frequency distribution is normalised to the number of true/false
detections returned by that classifier. Ideally, most false positive detections
would be uncertain, while most true detections would have high probability
(low entropy).
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Fig. 5. Reliability diagram for detection with p > 0.5 after NMS. Only bins
with >20 detections are shown.

black line as possible. Fig. 5 is built by binning probability
values into n bins from 0 to 1 and plotting mean bin values
against the mean of the ground truth values for all detections
in each bin. To be considered reliable, a detection labelled
with 60% confidence should be a true positive 60% of the
time. In this case Adaboost→SE-GP and Platt-scaled Adaboost
perform well at high probabilities. Fig. 5 only shows detections
above a threshold and which have been through non-maximal
suppression (NMS) to remove duplicate subwindows. This
changes the distribution of detection values. To illustrate the
effect of NMS, we also show a reliability diagram in Fig. 6
which uses detection values over all subwindows. Here, the
Platt and SE-GP approaches are comparable, especially at



TABLE I. TRUE POSITIVE (TP), FALSE POSITIVE (FP), FALSE NEGATIVE (FN), PRECISION (P), RECALL (R), AREA UNDER CURVE (AUC) AND
MEAN-SQUARED ERROR(MSE) OF VARIOUS CLASSIFIERS ON INRIA DATA SET, USING 5120-DIMENSIONAL ACF FEATURE VECTOR.

Name Probabilistic TP FN FP p r AUC MSE runtime(s)
Correction

Adaboost Sigmoid 543 46 326 0.625 0.922 0.7596 0.797 0.058
Adaboost Platt 527 62 93 0.850 0.895 0.8341 0.331 0.058
Adaboost IR 521 68 64 0.891 0.885 0.8072 0.346 0.061
Adaboost→SE-GP N/A 505 84 118 0.811 0.857 0.7960 0.410 N/A
Logitboost Sigmoid 541 48 341 0.613 0.919 0.7488 0.813 0.060
SE-GP N/A 529 60 1030 0.339 0.898 0.8652 0.595 142
Linear-GP N/A 500 89 4792 0.094 0.849 0.8062 0.978 120
Linear-SVM Sigmoid 485 104 548 0.470 0.823 0.7217 0.691 0.45
RVM N/A 505 84 1811 0.218 0.857 0.7870 1.207 8.683
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Fig. 6. Reliability diagram for all ’raw’ detection scores before NMS and
thresholding.

probabilities approaching 1. A decision on whether under- or
over-confidence is preferable could be made on an application-
specific basis. As Fig. 2 shows, these methods reduce the
certainty of false classifications compared to using sigmoids.

C. Classifier Runtime

Finally, we also consider detector complexity, and the
tradeoff between computation time, accuracy and reliability. As
some classifiers are written in C++ and some in MATLAB, a
direct comparison is not possible but we list detection runtimes
in the last column of Table I. The Adaboost cascade detectors
run orders of magnitude faster than GPCs.

V. CONCLUSION

In this work we have extended the analysis of uncertainty
in classification as proposed by Grimmett et al. [10]. We
evaluate various probabilistic approaches and explore how
these can be applied to the problem of classification with
confidence. Gaussian Process classifiers and Platt-scaled Ad-
aboost both show improved reliability over standard sigmoid
methods for indicating uncertain classifications, and are also
closer to a well-calibrated detection algorithm. However, for
many applications the GPC approach is still too compute-
and memory-intensive for use; consequently, better accelerated
implementations will be required. Future work will involve
applying these classification techniques to other modalities.
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