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ABSTRACT 

 

Recent studies suggest common neural substrates involved in verbal and visual working 

memory (WM), interpreted as reflecting shared attention-based short-term retention 

mechanisms. We used a machine learning approach to determine more directly the extent to 

which common neural patterns characterize retention in verbal WM and visual WM. Verbal 

WM was assessed via a standard delayed probe recognition task for letter sequences of 

variable length.  Visual WM was assessed via a visual array WM task involving the 

maintenance of variable amounts of visual information in the focus of attention. We trained a 

classifier to distinguish neural activation patterns associated with high and low visual WM 

load and tested the ability of this classifier to predict verbal WM load (high-low) from their 

associated neural activation patterns, and vice-versa. We observed significant between-task 

prediction of load effects during WM maintenance, in posterior parietal and superior frontal 

regions of the dorsal attention network; in contrast, between-task prediction in sensory 

processing cortices was restricted to the encoding stage. Furthermore, between-task prediction 

of load effects was strongest in those participants presenting the highest capacity for the 

visual WM task. This study provides novel evidence for common, attention-based neural 

patterns supporting verbal and visual WM. 

200 words 

Keywords: working memory, attention, verbal, visual, multi-variate voxel pattern analysis 

,fMRI, intraparietal sulcus  
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INTRODUCTION 

A number of studies have highlighted a common involvement of fronto-parietal networks 

during retention of verbal and visual information in working memory (WM) tasks. These 

common networks have been observed both for overall activation levels during verbal and 

visual WM tasks (e.g., Brahmbhatt et al. 2008; Lycke et al. 2008; Hautzel et al. 2002; Majerus 

et al. 2010; Nystrom et al. 2000; Rämä et al. 2001) as well as for WM load effects. WM load 

effects, comparing high-load to low-load retention conditions, have been considered to reflect 

a key index of WM storage capacity (Ravizza et al. 2004; Todd and Marois 2004). Studies 

exploring load effects in WM have shown the involvement of the posterior parietal cortex and 

intraparietal sulcus (IPS) in WM load for both verbal and visual WM tasks, while the amount 

of activation within sensory cortices does not appear to be sensitive to WM load (Ravizza et 

al.  2004; Todd et al. 2005; Todd and Marois 2004). This has led to the proposal that 

common, attention-based principles support retention of information in verbal and visual 

WM. In many current theoretical accounts of WM, attentional mechanisms such as attentional 

focalization and selection are considered to be central for efficient WM performance, by 

allowing temporary representations of WM content to remain active and in the focus of 

attention (e.g., Cowan 1995; Fuster 1999; Gazzaley and Nobre 2012; Lavie 2005). Cowan 

(1995) argued that limitations in the scope of attention define WM capacity, the scope of 

attention being defined by the amount of information that can be consciously attended at one 

time. The present study examines the common nature of  presumably attention-based cortical 

networks involved in verbal and visual WM tasks, by using multivariate analyses techniques 

and by determining to what extent neural patterns associated with WM load not only show 

overlap, but can actually predict WM load across WM modalities. 
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   There is increasing albeit indirect evidence for shared behavioural and neural 

mechanisms involved in verbal WM, visual WM, and attention. Behaviourally, verbal and 

visual WM tasks with stimuli designed to share as few features as possible (spatial visual 

arrays and word-voice pairings) still show trade-offs between modalities, with the 

requirement to retain stimulus sets in both modalities reducing performance in both of them 

compared to unimodal memory maintenance (Saults and Cowan 2007); and the same is true 

of nonverbal acoustic and visual tasks (Morey et al. 2011). When two stimulus sets are to be 

retained, there is an initial processing phase in which encoding of materials into WM is 

vulnerable to feature similarity between the sets, followed by a WM maintenance phase in 

which there is little or no effect of the inter-set similarity; but during WM maintenance there 

is still a tradeoff between the sets compared to control conditions in which one set can be 

ignored (Cowan and Morey 2007).  At least the WM maintenance phase therefore appears to 

fit the profile of an attention-demanding process.  For verbal materials, this process can be 

enhanced with a non-attention-demanding process, covert rehearsal (Camos et al. 2011), but 

that rehearsal process does not appear to come into play in the retention of spatial arrays of 

visual objects (Morey and Cowan 2004), which thus must depend on attention during WM 

maintenance. 

At the neural level, the dorsal attention network, involved  in task-related attention and 

encompassing the intraparietal sulcus (IPS) and the superior frontal cortex, is increasingly 

activated as a function of verbal and  visual WM load and levels off when  WM capacities are 

reached (Todd and Marois 2004; Xu and Chun 2006); at the same time, the ventral attention 

network, involved in stimulus-driven attention and encompassing the temporo-parietal 

junction and the orbito-frontal cortex,(Asplund et al. 2010; Corbetta and Shulman 2002), is 

deactivated as a function of verbal and visual WM load (Todd et al. 2005; Majerus et al. 

2012). This shows that attentional networks compete in the context of verbal and visual WM 
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(Johnston et al. 2012; Green and Soto 2014). Further indirect evidence stems from studies 

investigating modality-independent networks of WM. These studies showed that fronto-

parietal networks centered around the left IPS are activated across different WM task 

modalities and respond to WM load in verbal, visual and auditory conditions (Brahmbhatt et 

al. 2008; Chein et al. 2011; Cowan et al. 2011; Majerus et al. 2010). Neural patterns in the 

parietal cortex have also been shown to allow a distinction between different WM task 

instructions (Rigall and Postle 2012). The same observation has also been made outside the 

WM domain, where changes in task instruction during simple reasoning tests correlated with 

activation patterns in the IPS and dorso-lateral prefrontal cortex (Dumontheil et al. 2011). 

These data suggest that the parietal cortex plays a general role in task control across different 

WM modalities and cognitive domains, a role which can be defined, at the lowest level of 

control, as attentional focalization on task-relevant information (Cowan 1995; Duncan 2013; 

Fedorenko et al. 2013; Gazzaley and Nobre 2012). Finally, the IPS area has also been 

highlighted as a hub of attention in perceptual tasks that do not involve WM (e.g., Anderson 

et al. 2010).   

 This study aims at providing more direct evidence for the assumption of shared neural 

mechanisms involved in verbal and visual WM and the role of these mechanisms in task-

related attentional focalization during WM. We used multivariate voxel pattern analyses 

(MVPA) based on machine learning models in order to assess the degree of neural pattern 

concordance between load effects in verbal and visual WM tasks; these methods are more 

sensitive than standard univariate methods as they allow us not only to determine the 

functional overlap of neural activation patterns in different task conditions, but also to assess 

the informative value of this overlap for between-task prediction of condition effects. We 

focussed on between-modality predictions of WM load effects, since WM load effects have 

been considered as a core index of short-term retention capacity (Ravizza et al. 2004; Todd 
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and Marois 2004).  Also, contrary to sensory cortices, they recruit the dorsal attention 

network, as revealed by univariate analysis techniques. MVPA will allow us to confirm or 

disconfirm these findings, by determining the extent to which these neural patterns associated 

with WM load effects in both verbal and visual modalities actually contain sufficiently similar 

information for cross-modal prediction of load effects. If this is not the case, then any overlap 

of activation levels for verbal and visual WM load may merely be a co-incidence, with no 

systematic correspondence of the neural activation levels and pattern distributions, and 

underlying cognitive processes, between verbal and visual WM load.  For example, outside 

the WM domain, the IPS has been shown to share increased activation levels in number and 

letter comparison tasks  but  this overlap was not associated with a systematic similarity of 

activation patterns between the two tasks as revealed by subsequent MVPA analyses (Fias et 

al. 2007; Zorzi et al. 2011). We will also be able to assess whether regions not showing 

common load effects in univariate analyses can nevertheless predict load effects using 

MVPA, including regions in sensory processing cortices. We may expect these cross-modal 

predictions of load effects in sensory cortices particularly for the WM encoding stage, when 

high and low load conditions in both modalities differ in the number of stimuli that are 

physically present and need to be processed. We should note here, that given the likely neural 

activation level differences between high and low load conditions, cross-modal predictions 

will be based on the informative value of both pattern activation level differences and pattern 

activation distribution differences; importantly, unlike univariate methods, neural patterns are 

compared in a data-driven way . Finally, in order to rule out that any cross-modal predictions 

merely reflect shared differences in task difficulty between high and low WM conditions, 

brain-behavior association analyses were conducted: if discrimination and between-task 

prediction of load effects is merely a reflection of differences in task difficulty for different 

WM loads, then those participants with the lowest WM capacity should show the highest 
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discrimination and between-task prediction of load effects since these participants will be 

most sensitive to difficulty levels; on the other hand, if increased cross-modal predictions of 

load effects reflect stronger recruitment of shared cognitive processes supporting verbal and 

visual WM performance, then between-task prediction of load effects should be strongest in 

participants with high WM capacity. 

Verbal WM load was assessed using a delayed probe recognition task for letter 

sequences contrasting short-term maintenance of low (2 letters), medium (4 letters) and high 

(6 letters) WM load conditions. This type of task dates back to Sternberg (1966) and is one of 

the most commonly tasks used for assessing verbal WM in both the behavioural and 

neuroimaging literature (e.g., Henson et al., 2000; Majerus et al., 2012; Nee and Jonides, 

2008, 2011; Nystrom et al., 2000). An important body of evidence has shown that even with 

visual presentation, letter sequences are processed using verbal codes, as indicated by the 

strong and robust psycholinguistic effects observed in WM performance for letter sequences, 

such as the phonological similarity effect, letter sequence recall being poorer for 

phonologically similar but visually dissimilar letter, as opposed to phonologically and visually 

dissimilar letters; when manipulating visual similarity and maintaining phonological 

similarity of letters constant, there can be effects of visual similarity, but mainly if memory of 

visual features is explicitly stressed such as when letters are presented in mixed lower/upper 

case and case needs to be maintained  (Baddeley, 1986; Conrad, 1964; Conrad and Hull, 

1964; Logie et al., 2000). The visual WM task was a commonly used visual array WM task in 

which arrays of coloured squares are presented very briefly preventing any verbal rehearsal, 

grouping or other strategic processes. This task depends largely on attentional focalization for 

further conscious processing and maintenance of stimuli, presents the same set-size relation as 

purely perceptual selective attention tasks and shows robust performance tradeoffs with 

perceptual selective attention tasks (e.g., Anderson et al. 2013; Cowan 2011; Cowan et al. 
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2005, 2006; Luck and Vogel 1997; Morey and Bieler 2013; Stevanovski and Jolicoeur 2007; 

Todd and Marois 2004; Xu and Chun 2006). Verbalization is very unlikely given the very 

brief presentation time (250ms) while color naming of a single square typically takes about 

500ms (Stroop, 1935). Morey and Cowan (2004) also showed that a verbal rehearsal 

suppression task had no impact on performance for this type of visual array WM task, 

showing that verbal naming strategies are not used in that task. In the original version of this 

task, participants are instructed to focus their attention on arrays of 2, 4 or 6 coloured squares 

presented for a very brief time, followed by a probe array either identical to the initial array, 

or differing by a color-change of a single square. This task leads to the k-estimate of scope of 

attention capacity, derived from the proportion of correct positive and negative probe 

decisions, and typically reaches an asymptote between k=3 and k=5.  On average, an adult 

participant can consciously hold active in his focus of attention no more than about 4 items, 

though with some individual variation (Cowan 2001). In the present study, this procedure was 

further adapted to remove any decision component and to reflect attentional focalization and 

maintenance as directly as possible, by training a classifier on trials containing arrays of 

variable set size but which were not followed by any subsequent probe recognition array or 

response on those trials.  

MATERIALS AND METHODS 

Participants 

Valid data were obtained for twenty-one right-handed native French-speaking young 

adults (9 male; mean age: 22.19 years; age range: 18-33) recruited from the university 

community, with no history of psychological or neurological disorders. The data of two 

participants had to be discarded due to scanner artefacts; two additional participants interrupted 

the study before complete data acquisition. The study was approved by the Ethics Committee 
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of the Faculty of Medicine of the University of Liège, and was performed in accordance with 

the ethical standards described in the Declaration of Helsinki (1964). All participants gave 

their written informed consent prior to their inclusion in the study.  

Task description  

A practice session outside the MR environment, prior to the start of the experiment, 

familiarized the participants with the specific task requirements and included the 

administration of at least 9 practice trials for visual array WM task and 12 practice trials for the 

verbal WM task, both described below. Following practice, the visual array WM task was 

presented in a single run and always preceded the verbal WM task (also presented in a single 

run); this was done in order to avoid any carry-over effect of maintenance strategies between 

tasks, these strategies being more likely to be implemented in the verbal WM task where 

stimuli were presented more slowly and where the maintenance interval was much larger. The 

visual array WM task was constructed to capture non-strategic, attention-based maintenance 

mechanisms via brief presentation and maintenance durations; this objective is likely to be 

maximized if no other strategically more demanding task precedes administration of the visual 

array WM task.   

Visual array WM task. This task, illustrated in Figure 1, was designed to probe neural 

correlates associated with the ability to focus attention on simultaneously presented visual 

stimuli under three attentional load conditions. Arrays containing 2, 4 or 6 colored squares 

were presented for a very brief duration (250 ms) in order to avoid any strategic control 

processes or verbalization. A minority of arrays were followed by probe arrays. The 

participants were instructed to maintain attention on the array items and they were informed 

that for a minority trials, recognition of the arrays would also be tested. The trials used for 

classifier training, however, did not include these recognition trials in order to train the 
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classifier only on array encoding/maintenance events ; the reason for the additional 

administration of recognition trials was to ensure that participants maintained their focus of 

attention on the arrays over the entire task duration. The timing was identical up to the point at 

which a probe array was inserted on recognition trials. In both kinds of trials, the arrays to be 

studied were presented on a grey background which remained on the screen for a further 1000 

ms after presentation of the array. For each array, the colours of the squares were sampled 

without replacement from a set of 7 different colours. Inter-trial interval duration was of 

variable duration and followed a standard normal distribution with a mean of 7000ms and a 

standard deviation of 500ms. During the inter-trial interval, a fixation cross was displayed on 

the screen. An upcoming trial was announced via the presentation of the sign “!” during 

1000ms. There were 40 trials for each load condition. There was a small number of additional 

recognition trials (15 per condition) in which the information maintained in the focus of 

attention was followed by a recognition display in which the target array was displayed with 

one circled square during a maximum of 3000ms; the participants had to detect a change in 

colour for the circled square (colour changed in at least 53% of recognition trials, always to a 

colour which had not been present in the array) by pressing the button under their middle 

finger for “yes” (i.e., there was a change) and the button under their index finger for “no”.  The 

probe display was cleared after the participant’s response. The timing was identical for the 

encoding-only and recognition trials, up to the point at which a probe array was inserted on the 

recognition trials. As already noted, the trials of this recognition condition were not included 

for classifier training.  The different conditions were administered in pseudo-random order. 

 

< INSERT FIGURE 1 ABOUT HERE > 
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Verbal WM task. This task assessed load effects in WM by presenting sequences of 2, 4 

or 6 consonant letters sampled without replacement from a pool of 16 different consonants. 

The letter sequences were presented  for 2500 ms on the centre of the screen and were 

organized horizontally. The sequences were then replaced by the sign ‘*’, indicating that the 

letter sequences had to be  maintained in WM for 5000ms. After the maintenance interval, a 

probe letter was shown in one of the 2, 4 or 6 possible serial positions indicated by horizontal 

bars  on the centre of the screen (see figure 1). The participants had to decide within 3000ms 

whether the probe letter matched the letter in the indicated serial position in the memory list by 

pressing the button under their middle finger for “yes” and the button under their index finger 

for “no”.  In 50% of trials, the probe letter did not match the target letter (i.e., a letter not 

presented in the memory list) or its position (i.e., the letter was part of the memory list but not 

in the indicated serial position). The probe display was cleared after the participant’s response. 

There were 42 trials for each WM load condition. Finally, a control condition (20 trials) was 

included, controlling for letter identification, motor response and decision processes; this 

condition consisted of the presentation of a sequence containing 2, 4 or 6 times the same vowel 

A, followed by a 5000ms delay period indicated by the sign ‘*’ and finishing with a response 

display showing the same letter in upper or lower case; the participants had to decide whether 

the case was the same as in the target list by pressing the button under the middle finger for 

“yes” and by pressing the button under the index for “no”. For all conditions, before the start 

of a new trial, the sign ‘!’ appeared on the centre of the screen during 1000ms informing the 

participant about the imminent start of a new trial. The inter-trial interval was of variable 

duration (random Gaussian distribution centred on a mean duration of 3500+250 ms). The 

different conditions were administered in pseudo-random order. 



12 
 

MRI acquisition 

The experiments were carried out on a 3 T head-only scanner (Magnetom Allegra, 

Siemens Medical Solutions, Erlangen, Germany) operated with a standard transmit-receive 

quadrature head coil. Functional MRI data were acquired using a T2*-weighted gradient echo 

echo-planar imaging (GE-EPI) sequence with the following parameters: TR = 2040 ms, TE = 

30 ms, FoV = 192×192mm2, 64×64 matrix, 34 axial slices with 3mm thickness and 25% inter-

slice gap to cover most of the brain. The three initial volumes were discarded to avoid T1 

saturation effects. Field maps were generated from a double echo gradient-recalled sequence 

(TR = 517 ms, TE = 4.92 and 7.38 ms, FoV = 230×230 mm2, 64×64 matrix, 34 transverse 

slices with 3 mm thickness and 25% gap, flip angle = 90°, bandwidth = 260 Hz/pixel) and used 

to correct echo-planar images for geometric distortion due to field inhomogeneities. A high 

resolution T1-weighted MP-RAGE image was acquired for anatomical reference (TR = 1960 

ms, TE = 4.4 ms, TI = 1100 ms, FOV 230×173 mm², matrix size 256×192×176, voxel size 

0.9×0.9×0.9 mm³). For the visual array WM task, between 699 1and 960 functional volumes 

were obtained, and for the verbal WM task, between 951 and 1009 functional volumes were 

obtained. Head movement was minimized by restraining the subject’s head using a vacuum 

cushion. Stimuli were displayed on a screen positioned at the rear of the scanner, which the 

subject could comfortably see through a mirror mounted on the standard head coil.  

 

fMRI analyses 

Image preprocessing 

                                                           
1 The scanner stopped prematurely for one participant in the visual array WM task, after administration of 74% 

of trials, leading to a lower number of functional volumes for this participant.   
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Data were preprocessed and analyzed using SPM8 software (Wellcome Department of 

Imaging Neuroscience, http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB 

(Mathworks Inc., Sherbom, MA) for univariate analyses. EPI time series were corrected for 

motion and distortion with “Realign and Unwarp”(Andersson et al. 2001) using the generated 

field map together with the FieldMap toolbox (Hutton et al. 2002) provided in SPM8. A mean 

realigned functional image was then calculated by averaging all the realigned and unwarped 

functional scans and the structural T1-image was coregistered to this mean functional image 

(rigid body transformation optimized to maximize the normalized mutual information between 

the 2 images). The mapping from subject to MNI space was estimated from the structural 

image with the “unified segmentation” approach. The warping parameters were then separately 

applied to the functional and structural images to produce normalized images of resolution 2 x 

2 x 2 mm3 and 1 x 1 x 1 mm3 respectively. The scans were screened for motion artefacts and 

time series with motion peaks exceeding 3 mm (translation) or 3° (rotation) were discarded. 

Finally the warped functional images were spatially smoothed with a Gaussian kernel of 4 mm 

full-width at half maximum (FWHM) (Schrouff et al. 2012).  

Univariate analyses 

 Univariate analyses first assessed brain activation levels associated with visual and 

verbal WM  load. For each subject, brain responses were estimated at each voxel, using a 

general linear model with event-related and epoch-related regressors. For the visual array WM 

task, three regressors modelled the encoding only trials (one per load) as zero-duration events; 

three additional regressors also modelled the recognition trials in order to control for variance 

related to comparison and response processes additionally associated with these trials. For the 

verbal WM task, the design matrix included three regressors which modelled sustained 

activity over the entire verbal WM trial as a function of verbal WM load; the epoch-related 

regressors ranged from the onset of the encoding period until the end of the recognition 

http://www.fil.ion.ucl.ac.uk/spm
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period; the sensory and motor control condition was modelled implicitly. For each task, 

boxcar functions representative for each regressor were convolved with the canonical 

hemodynamic response. The design matrixes also included the realignment parameters to 

account for any residual movement-related effect. A high pass filter was implemented using a 

cut-off period of 128s in order to remove the low frequency drifts from the time series. Serial 

autocorrelations were estimated with a restricted maximum likelihood algorithm with an 

autoregressive model of order 1 (+ white noise). For each design matrix, linear contrasts were 

defined for the three target load conditions. The resulting set of voxel values constituted a 

map of t statistics [SPM{T}]. For each task, these contrast images, after additional smoothing 

by 6 mm FHWM, were then entered in a second-level, random effect ANOVA analysis to 

assess load responsive brain areas. The additional smoothing was implemented in order to 

reduce noise due to inter-subject differences in anatomical variability and in order to reach a 

more conventional filter level for group-based univariate analyses (√(42 + 62) = 7.21mm) 

(Mikl et al. 2008). 

Multivariate analyses 

Multivariate analyses were conducted using PRoNTo, a pattern recognition toolbox for 

neuroimaging (http://www.mlnl.cs.ucl.ac.uk/pronto; Schrouff et al. 2013). They were used to 

determine the similarity of voxel patterns associated with load effects in the visual array and 

verbal WM tasks. We trained a classifier to distinguish whole brain voxel activation patterns 

associated with high versus low load in the preprocessed and 4mm-smoothed functional 

images of the visual array WM encoding-only events, using a binary support vector machine 

(Burgess 1998), and by contrasting the lowest load condition (2) to one of the other load (4 or 

6) conditions; we used two 2-class classifiers rather than a single 3-class classifier since 

capacity limitations are known to vary among subjects, some subjects reaching their limits at 

load 4, others at load 6 for this type of task (Cowan 2001); a clear separation in three distinct 

http://www.mlnl.cs.ucl.ac.uk/pronto
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classes was therefore not expected. This classifier, based on a single, short event, was then 

used to predict the load condition of the preprocessed and 4mm-smoothed functional images of 

the verbal WM task. The WM test events were based on successive 1-second time window 

shifts of the onsets of verbal WM events modelled as 0-duration events, allowing us to retain 

an equal number of scans (i.e., 1 scan) for the classifier training and test situations and further 

allowing us to perform between-task classification as a function of successive events of the 

verbal WM task (Riggall and Postle 2012); a 1-second time window for the verbal WM task 

was used in order to be able to compare events of similar short duration in the verbal and 

visual WM conditions (note that the duration of visual WM events was less than one second 

and these events had also been modelled as 0-duration events). The same procedure was 

applied to the reverse prediction (verbal WM to visual WM), with this time the training 

classifiers time-shifted as a function of successive verbal WM events, and tested on the same, 

single visual array WM event. Significance of classification accuracy was assessed at the 

group level by comparing the distribution of classification accuracy to a chance level 

distribution (t-test, p<.05 after false discovery rate correction) and at the individual level using 

a permutation test (Npermutation: 1000; p<.05). A standard mask removing voxels outside the 

brain was applied to all images, and all models included timing parameters for HRF delay (5s) 

and HRF overlap (5s) ensuring that stimuli from different categories falling within the same 5 

seconds were excluded (Schrouff et al. 2013). A region-of-interest approach was used at a 

second stage, by repeating the preceding procedures and by limiting the voxel space to a priori-

defined volumes-of-interest (see below).   

A priori locations of interest  

As a rule, for univariate analyses, statistical inferences were performed at the voxel 

level at p < 0.05 corrected for multiple comparisons across the entire brain volume using 

Random Field Theory. We in addition focused on a small set of a priori defined regions-of-
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interest that have shown interactions between attentional processing and WM in previous 

studies. These regions included the dorsal attention network with the bilateral posterior IPS [-

25, -64, 43; 27-62 38], the bilateral superior frontal gyrus [-20 -1 50; 26 -2 47] as well as the 

ventral attention network with the bilateral temporo-parietal junction [-46 -57 20; 47-57 24] 

and orbito-frontal cortex [-37, 26 -8; 34 27 -10] (Asplund et al. 2010; Majerus et al. 2012; 

Todd and Marois 2004; Todd et al. 2005). We also included the left anterior IPS, which has 

been associated with amodal attentional control processes [-43 -46 40] (Cowan et al. 2011; 

Majerus et al. 2012).  A small volume correction was applied on a 10-mm radius sphere around 

these coordinates-of-interest.  

For multivariate analyses, 10-mm radius volumes-of-interest were created around these 

same areas of interest and these volumes-of-interest were then used as masks for the training 

and test phases, allowing us to determine classification accuracy for these areas of interest. In 

order to assess the selectivity of the classifications in these areas, we also targeted visual and 

language processing areas where no between-task predictions were expected, except for shared 

sensory processing of visual form information during encoding, since the verbal and visual 

stimuli were both presented in a visual format. These additional volumes-of-interest included 

the bilateral middle occipital gyrus [-32, -79, 9; 29, -82, 8] (Pessoa et al. 2002) involved in 

colour and basic visual form processing, which may be common to encoding of the square and 

letter stimuli in the visual and verbal WM conditions. These volumes-of-interest also included 

the left fusiform [-43, -55, -18] and superior temporal gyri [-58, -36, 10] for orthographic and 

phonological processing, respectively (McCandliss 2003; Majerus et al. 2010), and which 

should not be shared between for stimulus encoding in the verbal and visual WM conditions.  

RESULTS 

Behavioural analyses 
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A first within-subjects ANOVA assessed behavioural load effects for the recognition trials in 

the visual array WM task.  These effects were determined using the k parameter of scope of 

attention capacity measured by this task (Cowan et al. 2005). k is computed by comparing hits 

(i.e., correct change detections) and correct rejections (i.e., correct no-change responses) for 

each load condition, via the formula  k=N*(pHits + pRejections -1), N being the amount of 

stimuli per array. An ANOVA on the k parameter showed a main effect of load,  F(2, 

40)=42.03, p<.001, η2=.68 (load 2: 1.86+.18; load 4: 3.17+.76; load 6: 4.38+1.63) (the 

respective proportions of performance correct were: .96+.05, .89+.09, .85+.13). Bonferroni 

corrected comparisons showed a significant difference for k between load 2 and load 4 and 

between load 4 and load 6. Importantly, mean k for the highest load condition was 4.38, 

indicating that the group-averaged mean scope of attention was about 4 items in the visual 

array WM task, in line with previous studies. Similar results were obtained when assessing 

reaction times: we observed a main effect of load, F(2, 40)=12.42, p<.001, η2=.38, with 

slower responses for higher load (load 2: 1143+61ms; load 4: 1234+63ms; load 6: 

1376+96ms), and response type,  F(1, 20)=11.90, p<.01, η2=.37, with slower responses for 

rejections as compared to hits (hits: 1187+65; rejections: 1315+64ms). For the verbal WM 

task, task accuracy also varied as a function of load, F(2, 40)=12.20, p<.001, η2=.38, with 

reduced accuracy for the highest load condition only (load 2: .98+.03; load 4: .98+..02; load 6: 

.94+.05); for reaction times, a highly significant main effect of load, F(2, 40)=311.08, p<.001, 

η2=.94, was observed with response times increasing as a function of load (load 2: 1062+51; 

load 4: 1203+55ms; load 6: 1388+54ms); finally there was also a small effect of response 

type,  F(1, 20)=7.66, p<.05, η2=.28, with slower responses for negative probes (positive 

probes: 1190+55; negative probes: 1246+63ms). These results confirm the load sensitivity of 

both the visual array and the verbal WM tasks. 

Univariate fMRI analyses 
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An ANOVA on functional images over the three load conditions of the visual array WM task 

(encoding-only trials) showed a main effect in the dorsal attention network, including the 

bilateral posterior IPS and the right superior frontal gyrus (see Table 1). These effects were 

due to significantly higher activation for the 6-load condition relative to the 2-load condition 

in the bilateral posterior IPS and the bilateral superior frontal gyrus , as well as in the right 

inferior parietal lobule (see Figure 2A and Table 1).  The 4-load vs. 2-load contrast did not 

lead to significant effects, except for increased activation in a small right posterior IPS area in 

the 4-load condition.  

< INSERT TABLE 1 AND FIGURE 2 ABOUT HERE > 

 An ANOVA on functional images of the verbal WM task also showed a main effect of 

verbal WM load in the dorsal attention network including the bilateral posterior IPS and the 

bilateral superior frontal cortex, with more extended involvement, in terms of voxel numbers, 

in the left posterior IPS as compared to the right posterior IPS (see Table 1). In addition, there 

were also load effects in the ventral attention network, including the temporo-parietal junction 

and the orbito-frontal cortex. Additional effects were observed in the anterior part of the left 

IPS, in the anterior cingulate, the left precentral gyrus, the left lingual gyrus and the right 

cerebellum (CrI). Except for the regions in the ventral attention network, all effects were due 

to higher activation in the 6-load condition relative to the 2-load condition (see Figure 2A and 

Table 1). For the ventral attention network, the bilateral temporo-parietal junction and orbito-

frontal cortex showed  higher activation in the 2-load condition relative to the 6-load 

condition, in line with previous studies showing deactivation of this network for higher verbal 

WM load (see Figure 2A and Table 1); this was also the case for regions in the posterior 

cingulate, the bilateral inferior temporal gyrus and the left superior temporal gyrus reflecting 

further deactivation in the default mode network of which these regions are part of  (Buckner 

et al. 2008). The 2-load vs. 4-load contrast did not yield any significant activation.  
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 Overall, overlap for the 2-load versus 6-load contrasts in the visual array and WM 

tasks was most strongly related to the dorsal attention network, and especially for the left 

posterior IPS. In order to test this overlap statistically, we conducted a conservative null 

conjunction analysis on the 6vs 2 load effects in the visual array and verbal WM tasks, 

confirming statistically significant overlap in the left posterior IPS, and to a lesser extent, in 

the right posterior IPS as well as the left anterior IPS (see Table 2 and Figure 2B).  

< INSERT TABLE 2 ABOUT HERE > 

Multivariate fMRI analyses 

Whole-brain multi-variate analyses 

 A first set of multivariate analyses assessed between-task prediction of load effects at 

the whole brain level. A first classifier was trained to distinguish the 6-load versus the 2-load 

conditions for functional images for encoding-only trials of the visual array WM task, and a 

second classifier was trained to distinguish the 4-load versus the 2-load condition.  These 

classifiers were then tested on successive events defining the verbal WM trials, by 

determining the ability of these classifiers (e.g., 6-vs-2 visual array load) to decode load 

conditions in the verbal WM task (e.g., 6-vs-2 verbal WM load). Figure 3 (red curve) presents 

mean classification accuracy for the two classifiers at the whole brain level and associated 

group-level significance of classifications against chance-level classification (t-test, p<.05, 

with false-discovery rate correction for multiple testing). Between-task mean classification 

accuracy for the 6-vs-2 load classifier was significantly above chance level for all events of 

the WM trial and fell to chance-level performance at the end of the retrieval stage. Note that 

the high initial values of the classification curve in Figure 3 and following are due to the 5-

second HRF delay implemented in the MVPA analyses, meaning that the actual time of the 

events used for the classifications is 5 seconds later relative to the time points indicated on the 
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x-axis. For the 4-vs-2 load classifier (Figure 3, dark green curve), between-task classification 

was significantly higher than chance level classification during the early encoding phase and 

during the late maintenance/early retrieval phase. A second set of analyses assessed reverse 

between-task prediction, by training 6-vs-2 load classifiers on the verbal WM task, with a 

separate classifier for each event of the WM task, and by using these classifiers to predict the 

load conditions on the single event of the visual array WM task. As shown in Figure 3 (orange 

curve), except for the retrieval phase, all events of the verbal WM trial contained sufficient 

information to predict WM load in the single-event visual array WM task; it is important to 

note here that this included classifiers trained on distinguishing verbal WM load during the 

maintenance phase, when no stimuli were physically present, and hence between-task 

classification was based on neural events associated with internal WM load. When 

performing the same type analysis for predicting 4-vs-2 load conditions in the visual array 

WM task based on a 4-vs-2 load classifier trained on verbal WM events, we observed overall 

less robust between-task predictions (Figure 3, light green curve) but importantly, between-

task classification was above chance-level performance for classifiers trained on early as well 

as late maintenance events. 

< INSERT FIGURE 3 ABOUT HERE > 

Region-of-interest multi-variate analyses 

 Next, we determined between-task classification accuracy restricted to different 

regions-of-interest, and this more particularly for the bilateral posterior IPS which is part of 

the dorsal attention network, and which, in the univariate conjunction analyses of the previous 

section, has been shown to support load effects in both the visual array and verbal WM tasks. 

When restricting classification to posterior IPS regions-of-interest, a very similar profile to 

the whole-brain-classifications was observed, with significant, above chance-level 
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classification accuracy during encoding and during maintenance for the 6-vs-2 load classifier , 

and this again for prediction of verbal WM load by visual WM load, and vice-versa (see 

Figure 4, red and orange curves, respectively); this was the case for both the left and right 

posterior IPS regions, except for the visual WM – to- verbal WM training-prediction direction 

in the right posterior IPS where classification was significant only during the encoding phase. 

The same robust between-task prediction of WM load was also observed in the more anterior 

IPS region-of-interest, for both encoding and maintenance events of the verbal WM task and 

for both training-prediction directions. When considering the 4-vs-2 load classifiers, between-

task classification was overall less robust; significant between-task predictions were observed 

for events of the early verbal WM encoding stage (for both training-prediction directions) in 

the left posterior IPS, and for early encoding and late maintenance in the right posterior IPS, 

and this particularly for the verbal WM –to-visual WM training-prediction direction. For the 

superior frontal gyrus regions-of-interest of the dorsal attention network, reliable between-

task predictions were observed for the 6-vs-2 load classifiers for both training-prediction 

directions, and this for events of the verbal WM encoding stage and maintenance stage; this 

finding is important to highlight since these regions had not been identified as supporting 

cross-modality load effects in the univariate analyses. Finally, as shown in Figure 5, no 

reliable between-task predictions were observed in regions-of-interest supporting 

phonological, orthographic and visual processing; the only somewhat robust between-task 

predictions were restricted to the encoding events in the left middle occipital gyrus associated 

with visual stimulus processing, in line with our predictions of shared visual load effects 

during encoding in the verbal WM and the visual array WM tasks, when the stimuli are 

physically present.  

 In order to determine the statistical significance of the specific sensitivity of regions-

of-interest in the dorsal attention network for between-task classification during verbal WM 
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maintenance events relative to the left middle occipital gyrus region, we ran a repeated 

measures ANOVA on mean classification accuracies with the factors region (left middle 

occipital gyrus, left posterior IPS) and verbal WM events; the left posterior IPS was selected 

here as this region-of-interest was associated with the most robust classification behaviour  

over the entire verbal WM task.  For the visual WM-to-verbal WM training-prediction 

direction, we observed a main effect of region, F(1,20)=8.71, 2
p=.30, p<.01, a main effect of 

event, F(11,220)=13.24, 2
p=.40, p<.001, and a significant interaction, F(11,220)=4.23, 

2
p=.17, p<.001; planned comparisons showed an overall higher classification accuracy for 

load conditions in the left posterior IPS, and this advantage was particularly strong for the 

early encoding stage (first two events) and the late maintenance phase (events 6 and 7) 

(p<.05, after Bonferroni corrections for multiple comparisons). When running the same 

analysis for the verbal WM-to-visual WM training –prediction direction, very similar results 

were observed,  with a main effect of region, F(1,20)=18.75, 2
p=.48, p<.001, a main effect of 

event, F(11,220)=12.47, 2
p=.38, p<.001, and a significant interaction, F(11,220)=4.84, 

2
p=.19, p<.001; the superiority of classification accuracy in the left posterior IPS was 

particularly marked for the encoding and late maintenance stage (events 1,2,3,and 6) (p<.05, 

Bonferroni-corrected).  

< INSERT FIGURES 4 AND 5 ABOUT HERE > 

Brain-behavior associations  

 Next, we explored associations between between-task classification accuracy and 

behavioural measures, by assessing the relationship between individual classification 

consistency and behavioural performance in the verbal WM and visual array WM task 

(behavioural performance in the visual array WM tasks being based on encoding +retrieval 

trials). We determined for each participant classification accuracy consistency over the 
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encoding, maintenance and retrieval stage for whole-brain classifications (visual WM-to-

verbal WM training-prediction direction); individual classification consistency was 

determined by calculating the number of significant individual classifications (the 

significance of individual classification accuracies was determined by permutation tests, 

p<.05) over the different time points of the verbal WM trial. Individual classification 

consistency scores were then correlated with verbal WM and visual WM performance scores. 

A first correlation analysis assessed the association between individual classification 

consistency and verbal WM behavioural measures: no significant correlation was observed 

between the classification consistency score and the 6-vs-2 load verbal WM accuracy 

difference score, r= -.02, p=.93, or the 6-vs-2 load verbal WM RT difference score, r= .16, 

p=.48. In other words, verbal WM performance was the same, whether participants showed 

highly consistent between-task classification or not. However, when performing the same 

analyses on the visual WM performance score as estimated by the maximum k score, a 

significant correlation with the individual classification score was observed, r= .49, p<.05. 

Similar results were obtained when determining individual classification consistency scores 

for the verbal WM-to-visual WM prediction direction: the correlation with the maximum k 

score was significant, r= .44, p<.05, but this was not the case for the 6-vs-2 load verbal WM 

accuracy difference score, r= -.01, p=.99 nor for the 6-vs-2 load verbal WM reaction time 

difference score, r= .13, p=.58. In other words, those participants presenting the most 

consistent between-task classifications were those with the highest visual working memory 

capacity. This asymmetric finding is of theoretical importance given that visual working 

memory capacity is considered to reflect scope of attention capacity more directly than verbal 

working memory capacity, as we will discuss later. Finally, note that we observed a positive, 

although non-significant, direct correlation between verbal and visual WM performance of 
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medium size, r=.35, p=.12 (correlations computed for accuracy scores for the 6-load 

conditions in each task where performance showed the greatest variability).  

One could argue that these asymmetric findings may be due to task order and 

associated fatigue effects, given that the visual array WM task was always presented before 

the verbal WM task. This is however unlikely. First, performance levels remained quite high 

for the verbal WM task even for high load trials (accuracy: 94%); also, mean response times 

were very similar for the visual and verbal WM tasks, with no evidence for slowing in the 

verbal WM task (1218ms and 1251ms, for the verbal and visual WM tasks, respectively); the 

same is true for the variability of reaction times in both tasks (see results section for 

behavioural results). Furthermore, the accuracy and reaction time data for the verbal WM task 

are virtually identical to those obtained in other studies where a very similar version of this 

task was administered right in the beginning of the fMRI session (see Majerus et al., 2012). 

Second, behavioural performance is correlated here with between-task classification scores 

which integrate neural patterns associated with both modalities. Hence, if neural patterns 

associated with the verbal WM task would have been unreliable due to fatigue effects, then 

overall between-task predictions of load effects should have become unreliable too, and 

associations with both verbal and visual WM performance should have been affected.   

Finally, in order to further show that the robust classification accuracy for the 6-vs-2 

load conditions observed in this study reflects the increase of information held in WM, and 

not merely the increased difficulty or cognitive effort associated with maintaining 6 vs. 2 

items in WM, we performed a second type of correlation analyses where we examined the 

direction of the association between overall classification accuracy and visual and verbal WM 

capacity. If heightened classification accuracy merely reflects the increased difficulty and 

cognitive effort between the two conditions, then participants with low k-capacity should 

show heightened classification accuracy, and this especially in conditions where capacity 



25 
 

limits are reached (i.e., the 6-load condition as compared to the 2-load condition). This was 

tested by averaging individual classification accuracies for the 8 first events of the verbal WM 

trials (in order not to bias the results by the presence of non-informative end-of-trial events) 

and by correlating these mean classification accuracies with the maximum k score of the 

visual WM task and the accuracy score for the verbal WM task (restricted to 6-load trials 

where performance was most variable). For the visual WM-to-verbal WM prediction direction 

and for the 6-vs-2 classifiers, we observed a significant positive correlation between mean 

classification accuracy and maximum k capacity, r=.45, p<.05, meaning that the higher 

classification accuracy, the better visual WM capacity; this rules out an interpretation in terms 

of increased task difficulty as underlying increased between-task classifications. A non-

significant positive correlation was also observed with the verbal WM performance score, 

r=.26, p=.25. Similar results were observed when conducting the same analyses for the 

verbal-to-visual prediction direction: both the visual and verbal WM scores showed 

significant and large positive correlations with mean classification accuracy for 6-vs-2 load 

classifiers (r=.71, p<.001, and r=.50, p<.05, for visual and verbal WM scores, respectively). 

When running the same analysis on individual classification accuracies for the left posterior 

IPS region-of-interest, which had yielded the most robust classification pattern in the dorsal 

attention network, similar results were also observed: For the visual WM-to-verbal WM 

prediction, the correlation values were r=.27, p=.24, and r=.08, p=.72, for visual and verbal 

WM scores, respectively; for the verbal WM-to-visual WM prediction, the correlation values 

were: r=.46, p<.05, and r=.21, p=.37. In sum, these analyses show that for individuals with 

lower WM performance, classification accuracy was also reduced, and this was particularly 

the case for the visual WM scores, which reflect most directly attention-based WM 

maintenance processes as we will discuss. Note however that we need to remain cautious 

when interpreting the brain-behaviour correlations reported here given the relatively small 
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sample size (N=21) for analyses looking at associations between interindividual differences in 

neural and behavioural patterns. 

DISCUSSION 

We show here that neural activation patterns differentiating high and low verbal WM load can 

be predicted by neural patterns dissociating high and low load in a visual array WM task, and 

vice-versa. A region of interest approach showed that this was the case more particularly for 

the bilateral posterior IPS, which had also been identified in univariate conjunction analyses 

as supporting cross-modal load effects, and for the bilateral superior frontal cortex which had 

not been identified in univariate conjunction analyses. These regions define the dorsal 

attention network. Furthermore, these cross-modal predictions of WM load effects in these 

regions were observed during maintenance when stimuli were not physically present, as well 

as during encoding and retrieval. Multivariate analyses also identified cross-modal predictions 

of load effects in sensory cortices, but these were limited to the encoding and very early 

maintenance stage. Finally, cross-modal classification accuracy for 6-vs-2 load conditions 

was highest and most reliable in those participants presenting the highest visual working 

memory capacity.   

 The present results provide novel evidence for an increasingly influential account 

considering that neural substrates involved in retention of verbal and visual WM reflect a 

common involvement of attentional processes supported by the dorsal attention network. 

(Majerus et al. 2012; Todd and Marois 2004; Todd et al. 2005). We show that verbal WM 

load sensitive neural patterns during the maintenance phase can actually be predicted by 

neural patterns sensitive to WM load in a visual WM task, and vice-versa, and this precisely 

for regions of the dorsal attention network while cross-modal predictions in sensory cortices 

were limited to the encoding and the very early maintenance stage. This is also in line with a 
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recent study by Emrich et al. (2013), showing that, if there are any load effects in sensory 

cortices during maintenance, they are actually reversed, with informative value decreasing 

with increasing memory load.  Furthermore, the visual WM task used here maximized 

attention-based retention processes since any strategic control and verbal recoding processes 

were prevented due to the brief presentation rates. This task measured the participants’ ability 

to hold a variable amount of visual information in their working memory. This ability has 

been defined as reflecting the scope of attention, and is typically limited to about 4+2 items 

(Cowan 2001). The present study shows that neural substrates associated with visual scope of 

attention predict neural patterns associated with verbal WM load, and vice-versa. This is 

further supported by brain-behavior associations where we showed that higher scope of 

attention capacity was associated with higher cross-modal classification accuracy for the 

highest load condition relative to the low load condition: hence participants with higher scope 

of attention, i.e. a focus of attention capacity above 4, were able to hold more information in 

the focus of attention for the highest load condition, leading to higher classification accuracy 

relative to participants with a lower scope of attention, i.e., a focus of attention capacity of 4 

or less. This also shows that the overall higher classification accuracies for the 6-vs-2 

classifier relative to the 4-vs-2 classifier are not the result of the higher difficulty and 

cognitive effort associated with the highest load condition relative to the other two conditions, 

in which case we should have expected a negative relationship between classification 

accuracy and behavioural performance. It is also unlikely that other factors such as 

differences in recruitment of interference, monitoring or motivational processes between high 

and low-load conditions account for the results we observed since these processes are 

supported by distinct neural networks as those highlighted in this study (anterior cingulate 

cortex for monitoring; Roelofs et al., 2006; dorsolateral prefrontal and inferior prefrontal 

cortex for resistance to interference; Schnur et al., 2009; Thompson-Schill et al., 2002; 
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posterior cingulate, angular gyrus, and insular cortex for external and internal motivation, 

Farrer & Frith, 2002; Lee et al., 2012). Also, while some of these regions were activated for 

high versus low load contrasts in the verbal WM tasks, none of these regions was activated 

for these contrasts in the visual WM task. 

 Previous studies have highlighted the role of attentional processes in verbal and visual 

WM essentially via manipulations of attentional factors within WM tasks, and by showing 

that attentional and WM processes compete for the same resources. Lavie and colleagues 

showed that when performing concurrently WM and selective visual attention tasks, the 

number of erroneous detections increases in the visual attention task with high WM load (load 

theory of attention) (Kelley and Lavie 2011; Lavie et al. 2004; Lavie 2005). These results 

suggest that high WM load conditions consume attentional resources which are shared with 

visual selective attention. Other studies have manipulated the orientation of the focus of 

attention within WM tasks, by instructing participants to maintain stimuli varying as a 

function of several dimensions, by focusing, during the maintenance period, the attentional 

focus on one of these dimension or on one specific stimulus, or by disrupting the attentional 

focus during WM encoding (Kuo et al. 2012; Lewis-Peacock et al. 2012; Lewis-Peacock and 

Postle 2012; Majerus et al. 2013; Rigall and Postle 2012). The posterior parietal cortex 

appears to be critically involved in these attentional (re)-orientation processes on WM 

content, since the attended stimulus dimension can be predicted from neural activation 

patterns in the posterior parietal cortex (Rigall and Postle 2012). Lewis-Peacock et al. (2012) 

argued that sustained neural activation patterns during the WM maintenance period reflect the 

attentional focus and the reorientation of this focus rather than heightened activation of 

information maintained in WM since they observed that neural patterns during the 

maintenance phase are sensitive to shifts of attention rather than to WM content (see also 

LaRocque et al. 2013). However, due to the direct manipulation of attentional processes and 
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orientation during WM tasks in these studies, it is difficult to determine whether these 

attentional parameters are a defining property of WM functioning, or whether they arise from 

the need to implement attentional control processes elicited by the change in WM task set 

instructions or by the need to coordinate WM and attentional tasks in a dual task situation. 

The present study goes an important step further, by focusing on neural patterns associated 

with basic verbal and visual WM processes, without any requirement to redirect attention or 

to divide attention as a function of task instructions; we show that load-sensitive neural 

patterns in this core short-term retention situation can be reliably predicted from neural 

patterns associated with attentional load identified by a separate and independent visual array 

WM task, and vice-versa. One question raised by our study design is whether the visual 

presentation format for the verbal and visual WM tasks could have contributed to the reliable 

between-task classifications of neural patterns we have observed. As already noted in the 

Introduction, although the letters were presented visually, a large body of evidence has shown 

that visually presented letter sequences are immediately recoded in phonological codes and 

verbal WM performance for visually presented letters is sensitive to the phonological 

similarity rather than the visual similarity of the letters unless maintenance of visual features 

is explicitly stressed (Baddeley, 1986; Logie et al., 2000). Furthermore, an ERP study 

comparing WM for auditory and visual presentations of letter sequences observed 

phonological similarity effects for both conditions, although the origin of the ERP marker of 

phonological similarity differed between the two presentations, with a fronto-temporal focus 

for the auditory condition, and a temporo-occipital focus for the visual presentation (Martín-

Loeches et al., 1998). A similar finding has been observed by a study comparing auditory and 

visual presentations of N-back working memory tasks for letter stimuli: both modalities led to 

common activation of the bilateral fronto-parietal cortex, with modality differences restricted 

to inferior temporal, inferior occipital and middle occipital regions more strongly activated in 
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the visual modality (Rodriguez-Jimenez et al., 2005). This finding can be related to the 

significant between-modality classifications observed for the middle occipital region-of-

interest we observed during encoding, and which we attributed to the processing of shared 

visual sensory features of the stimuli in the two tasks. Importantly, the modaility effects 

reported by Martín-Loeches et al. and Rodriguez-Jimenez et al. for auditorily and visually 

presented letter sequences did not involve the fronto-parietal networks where we observed the 

most reliable between-task classifications, and this at all WM stages. At the same time, it 

remains to be shown whether the results observed in the present study generalize to auditorily 

presented verbal WM tasks; we predict that this should be the case. 

 The present results further imply that the attentional focus has a variable capacity 

(Cowan 2001; Morrison et al. 2014). Some studies showed that at the moment of retrieval, 

only the most recent item was associated with enhanced activity or functional connectivity in 

the posterior parietal cortex, suggesting that only the most recent item is held in the focus of 

attention (Ötzekin et al. 2009, 2010; Nee and Jonides 2011; Talmi et al. 2005). A more recent 

study, however, showed that these findings may have been induced by the specific task 

requirements, with very long encoding lists (up to 12 items) or task cues presented only at the 

moment of retrieval, which may have made it difficult to efficiently hold and focus attention 

on the entire memory list (Morrison et al. 2014). Lewis Peacock et al. (2012) also showed that 

attention can be focused on at least two items at once according to their multivariate 

classification results. Further convergent evidence comes from a behavioral experiment 

showing that attention in a perceptual search task can be guided by multiple working memory 

items at the same time (Beck et al. 2012). The present study, showing that high (6-item) and 

low (2-item) attentional load conditions can be reliably distinguished in posterior parietal 

cortex, and that the strength of this distinction varies as a function of scope of attention 
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capacity of the participants, indicates that the capacity of the attentional focus exceeds 1 item 

and is flexible, i.e. it varies between individuals. 

 The present findings raise the more general question of the functional relevance of 

shared neural substrates between verbal and visual WM. Although we showed that higher and 

more reliable between-task classification accuracy was associated with higher scope of 

attention capacity, variability in classification accuracy was less reliably associated with 

variability in behavioural verbal WM performance. It may be that visual scope of attention, 

although involved in the maintenance of information in verbal WM, is not necessarily 

associated with verbal WM retrieval success. This possibility is supported by the findings of 

Lewis-Peacock et al. (2012) who showed that WM success did not differ for items actively 

held in the focus of attention or not, suggesting that recognition based on distributed neural 

activation patterns in sensory cortex, i.e. in activated long-term memory, can be sufficient 

(see also Rahm et al. 2014; Riggall and Postle 2012; Emrich et al. 2013). A second possibility 

is that although attentional focalization and refreshing is the only way to maintain nonverbal 

visual items, verbal items can be maintained via two different processes. Verbal information 

can be maintained either by attentional refreshing of neural representations as for visual 

information (Raye et al. 2007), or it can be maintained through covert verbal rehearsal, a 

much less attention-demanding strategy. Camos et al. (2011) showed that for verbal stimuli, 

participants can be made to use one strategy or another.  Given two possible strategies for 

verbal WM maintenance, it may have been that participants showing the strongest cross-

modal classification accuracies used the attentional strategy more because their higher scope 

of attention capacity allowed them to do so, whereas those with the weaker cross-modal 

classifications relied to a larger extent on the verbal rehearsal strategy for the verbal materials.   

 To conclude,  this study provides new evidence for shared, attention-based neural 

substrates during retention of verbal and visual information in WM, by demonstrating that 
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univariate neural responses associated with verbal and visual WM load not only overlap in the 

posterior parietal cortex, but also that the multivariate neural patterns in a larger part of the 

dorsal attention network are sufficiently similar to allow for cross-modal predictions of WM 

load, and this particularly in participants showing the strongest scope of attention capacity. 

Future studies need to investigate the functional consequences of these findings for the 

understanding of behavioural WM capacity limitations. 
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Table 1. Peak-level activation foci showing overall load-dependent activity in the visual array and verbal WM tasks. If not otherwise stated, 

regions are significant at p < .05, with voxel-level FWE-corrections for whole brain volume.  

 ANOVA Load 6 > Load 2 Load 2 > Load 6 

Anatomical region BA 

area 

No. 

voxels 

Left/ 

right 

x y z SPM 

{Z}-

value 

No. 

voxels 

x y z SPM 

{Z}-

value 

No. 

voxels 

x y z SPM 

{Z}-

value 

Visual array                  

    Dorsal attention 

network 

                 

   Superior frontal gyrus 6  L     2 -26 -6 54 3.21*      

   Superior frontal gyrus 6 5 R 24  4 50 3.23* 107 24  4 50 3.68*      

   Intraparietal sulcus 

(anterior) 

40       5 -36 -42 42 3.18*      

   Intraparietal sulcus 

(posterior) 

7 40 L -22 -64 42 3.70* 153 -22 -64 42 4.10*      

   Intraparietal sulcus 

(posterior) 

7 57 R 24 -62 52 3.96** 13 22 -60 46 3.43*      
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Verbal WM                  

   ACC/SMA 6/32 350 B -6 6 60 5.02 369 -6 6 60 5.27      

   Posterior cingulate 30  B          1418 4 -50 18 4.80 

   Precentral gyrus 6 825 L -52 0 46 5.20 1450 -52 0 46 5.63      

   Cerebellum VI 745 R 36 -62 -32 5.21 2271 36 -62 -32 5.46      

   Lingual gyrus 17 309 L -14 -86 2 5.07  -14 -86 2 5.47      

   Insula 13  R          1428 40 -12 -4 4.82 

   Middle temporal gyrus 21  L          1302 -52 -18 -18 4.87 

                  

   Dorsal attention 

network 

                 

   Superior frontal gyrus 6 27 L -24  2 54 3.65* 132 -24  2 54 3.63*      

   Superior frontal gyrus 6 25 R 28  2 54 3.70* 1 30  2 56 3.11*      

   Intraparietal sulcus 

(anterior) 

40 156 L -38 -40 38 4.07* 73 -36 -40 40 3.83*      

   Intraparietal sulcus 

(posterior) 

7 184 L -26 -62 48 3.95* 236 -26 -62 48 4.21*      

   Intraparietal sulcus 

(posterior) 

7 2 R 26 -62 48 3.45* 6 26 -62 48 3.51*      
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   Ventral attention 

network 

                 

   Orbito-frontal cortex 11/47 2245 L -10 54 18 5.07      3993 -10 54 18 5.47 

 47   -34 32 -14 3.75*      49 -36 32 -14 4.22* 

 47   28 30 -14 3.73*      71 28 30 -14 4.28* 

   Temporo-parietal 

junction 

39 604 L -50 -64 28 5.15      978 -50 -64 28 5.46 

Temporo-parietal junction 39  R          76 52 -58 26 3.52* 

                  

*   p< .05, small volume corrections, for regions-of-interest; ** p<.001, uncorrected 
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Table 2. Peak-level activation foci showing common load sensitivity for 6-load versus 2-load 

conditions in the visual array and verbal WM tasks (null conjunction) 

Anatomical region No. voxels Left/ 

right 

x y z BA area SPM {Z}-

value 

        

   Intraparietal sulcus (anterior) 7 L -38 -38 40 40 3.30* 

   Intraparietal sulcus (posterior) 155 L -22 -64 44 7 3.75* 

   Intraparietal sulcus (posterior) 1 R 26 -62 48 7 3.12* 

        

*   p< .05, small volume corrections for regions-of-interest 
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FIGURE LEGENDS 

 

Figure 1. Schematic drawing of the visual array and verbal WM tasks. Note that for the visual 

array WM task, only the ‘encoding-only’ trials were used for classifier training.  

Figure 2. A. Brain areas showing load-sensitive activations when comparing the 6-load versus 

the 2-load conditions for the visual array  (leftward panel) and verbal WM tasks (rightward 

panel) with a display threshold of 3≤T≤6 and -6≤T≤-3 on 3D template of cortical surface 

(Van Essen et al., 2001). B. Common load-sensitive areas in the visual array and verbal WM 

tasks for the 2-load versus 6-load conditions (null conjunction analysis), with a display 

threshold of 3≤T≤4 and -4≤T≤-3 on a 3D template of cortical surface (Van Essen et al., 2001).  

Figure 3. Whole-brain classification results for prediction of voxel patterns associated with 

verbal WM load by voxel patterns associated with attentional load in the visual array WM 

task, and vice-versa, as a function of verbal WM phase. Curves indicate mean between-task 

classification accuracy and SEM for the 6-vs-2 load classifier (red curve for prediction of 

verbal WM load by visual WM load; orange curve for prediction of visual WM load by verbal 

WM load) and for the 4-vs-2 load classifier (dark green curve for prediction of verbal WM 

load by visual WM load; light green curve for prediction of visual WM load by verbal WM 

load). Horizontal lines indicate classifications significantly higher than chance-level 

classification at the group-level (t-tests with false-discovery rate correction for multiple 

testing, p<.05). Note that the classifications were conducted by considering a 5-second delay 

of the hemodynamic response function, and hence the classification events displayed here are 

shifted by +5 seconds relative to trial time (see Methods for further details). 

Figure 4. Classification results in the dorsal attention network for prediction of voxel patterns 

associated with verbal WM load by voxel patterns associated with attentional load in the 
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visual array WM task, and vice-versa, as a function of verbal WM phase. Curves indicate 

mean between-task classification accuracy and SEM for the 6-vs-2 load classifier (red curve 

for prediction of verbal WM load by visual WM load; orange curve for prediction of visual 

WM load by verbal WM load) and for the 4-vs-2 load classifier (dark green curve for 

prediction of verbal WM load by visual WM load; light green curve for prediction of visual 

WM load by verbal WM load). Horizontal lines indicate classifications significantly higher 

than chance-level classification at the group-level (t-tests with false-discovery rate correction 

for multiple testing, p<.05). Note that the classifications were conducted by considering a 5-

second delay of the hemodynamic response function, and hence the classification events 

displayed here are shifted by +5 seconds relative to trial time (see Methods for further 

details). 

Figure 5. Classification results in sensory, orthographic and phonological processing regions-

of-interest for prediction of voxel patterns associated with verbal WM load by voxel patterns 

associated with attentional load in the visual array WM task, and vice-versa, as a function of 

verbal WM phase. Curves indicate mean between-task classification accuracy and SEM for 

the 6-vs-2 load classifier (red curve for prediction of verbal WM load by visual WM load; 

orange curve for prediction of visual WM load by verbal WM load) and for the 4-vs-2 load 

classifier (dark green curve for prediction of verbal WM load by visual WM load; light green 

curve for prediction of visual WM load by verbal WM load). Horizontal lines indicate 

classifications significantly higher than chance-level classification at the group-level (t-tests 

with false-discovery rate correction for multiple testing, p<.05). Note that the classifications 

were conducted by considering a 5-second delay of the hemodynamic response function, and 

hence the classification events displayed here are shifted by +5 seconds relative to trial time 

(see Methods for further details). 
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