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Abstract

We give a highly efficient “semi-agnostic” algorithm for learning univariate probability dis-
tributions that are well approximated by piecewise polynomial density functions. Let p be an
arbitrary distribution over an interval I which is τ -close (in total variation distance) to an un-
known probability distribution q that is defined by an unknown partition of I into t intervals and
t unknown degree-d polynomials specifying q over each of the intervals. We give an algorithm
that draws Õ(t(d+ 1)/ε2) samples from p, runs in time poly(t, d, 1/ε), and with high probabil-
ity outputs a piecewise polynomial hypothesis distribution h that is (O(τ) + ε)-close (in total
variation distance) to p. This sample complexity is essentially optimal; we show that even for
τ = 0, any algorithm that learns an unknown t-piecewise degree-d probability distribution over

I to accuracy ε must use Ω( t(d+1)
poly(1+log(d+1)) ·

1
ε2 ) samples from the distribution, regardless of its

running time. Our algorithm combines tools from approximation theory, uniform convergence,
linear programming, and dynamic programming.

We apply this general algorithm to obtain a wide range of results for many natural problems
in density estimation over both continuous and discrete domains. These include state-of-the-
art results for learning mixtures of log-concave distributions; mixtures of t-modal distributions;
mixtures of Monotone Hazard Rate distributions; mixtures of Poisson Binomial Distributions;
mixtures of Gaussians; and mixtures of k-monotone densities. Our general technique yields
computationally efficient algorithms for all these problems, in many cases with provably optimal
sample complexities (up to logarithmic factors) in all parameters.
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†Part of this work was done while the author was at UC Berkeley supported by a Simons Postdoctoral Fellowship.
‡Supported by NSF grants CCF-0915929 and CCF-1115703.
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1 Introduction

Over the past several decades, many works in computational learning theory have addressed the
general problem of learning an unknown Boolean function from labeled examples. A recurring
theme that has emerged from this line of work is that state-of-the-art learning results can often
be achieved by analyzing polynomials that compute or approximate the function to be learned, see
e.g. [LMN93, KM93, Jac97, KS04, MOS04, KOS04].

In the current paper we show that this theme extends to the well-studied unsupervised learning
problem of density estimation; namely, learning an unknown probability distribution given i.i.d.
samples drawn from the distribution. We propose a new approach to density estimation based
on establishing the existence of piecewise polynomial density functions that approximate the dis-
tributions to be learned. The key tool that enables this approach is a new and highly efficient
general algorithm that we provide for learning univariate probability distributions that are well
approximated by piecewise polynomial density functions. Combining our general algorithm with
structural results showing that probability distributions of interest can be well approximated using
piecewise polynomial density functions, we obtain learning algorithms for those distributions.

We demonstrate the efficacy of this approach by showing that for many natural and well-studied
types of distributions, there do indeed exist piecewise polynomial densities that approximate the
distributions to high accuracy. For all of these types of distributions our general approach gives a
state-of-the-art computationally efficient learning algorithm with the best known sample complexity
(number of samples that are required from the distribution) to date; in many cases the sample
complexity of our approach is provably optimal, up to logarithmic factors in the optimal sample
complexity.

1.1 Related work. Density estimation is a well-studied topic in probability theory and statis-
tics (see [DG85, Sil86, Sco92, DL01] for book-length introductions). There is a number of generic
techniques for density estimation in the mathematical statistics literature, including histograms,
kernels (and variants thereof), nearest neighbor estimators, orthogonal series estimators, maxi-
mum likelihood (and variants thereof) and others (see Chapter 2 of [Sil86] for a survey of existing
methods). In recent years, theoretical computer science researchers have also studied density esti-
mation problems, with an explicit focus on obtaining computationally efficient algorithms (see e.g.
[KMR+94, FM99, FOS05, BS10, KMV10, MV10, DDS12a, DDS12b].

We work in a PAC-type model similar to that of [KMR+94] and to well-studied statistical
frameworks for density estimation. The learning algorithm has access to i.i.d. draws from an
unknown probability distribution p. It must output a hypothesis distribution h such that with
high probability the total variation distance dTV (p, h) between p and h is at most ε. (Recall that
the total variation distance between two distributions p and h is 1

2

∫
|p(x)− h(x)|dx for continuous

distributions, and is 1
2

∑
|p(x)− h(x)| for discrete distributions.) We shall be centrally concerned

with obtaining learning algorithms that both use few samples and are computationally efficient.
The previous work that is most closely related to our current paper is the recent work [CDSS13].

(That paper dealt with distributions over the discrete domain [n] = {1, . . . , n}, but since the current
work focuses mostly on the continuous domain, in our description of the [CDSS13] results below
we translate them to the continuous domain. This translation is straightforward.) To describe the
main result of [CDSS13] we need to introduce the notions of mixture distributions and piecewise
constant distributions. Given distributions p1, . . . , pk and non-negative values µ1, . . . , µk that sum
to 1, we say that p =

∑k
i=1 µipi is a k-mixture of components p1, . . . , pk with mixing weights

µ1, . . . , µk. A draw from p is obtained by choosing i ∈ [k] with probability µi and then making a
draw from pi. A distribution q over an interval I is (ε, t)-piecewise constant if there is a partition of

1



I into t disjoint intervals I1, . . . , It such that p is ε-close (in total variation distance) to a distribution
q such that q(x) = cj for all x ∈ Ij for some cj ≥ 0.

The main result of [CDSS13] is an efficient algorithm for learning any k-mixture of (ε, t)-
piecewise constant distributions:

Theorem 1. There is an algorithm that learns any k-mixture of (ε, t)-piecewise constant distri-
butions over an interval I to accuracy O(ε), using O(kt/ε3) samples and running in Õ(kt/ε3)
time.1

1.2 Our main result. As our main algorithmic contribution, we give a significant strengthening
and generalization of Theorem 1 above. First, we improve the ε-dependence in the sample com-
plexity of Theorem 1 from 1/ε3 to a near-optimal Õ(1/ε2). 2 Second, we extend Theorem 1 from
piecewise constant distributions to piecewise polynomial distributions. More precisely, we say that
a distribution over an interval I is (ε, t)-piecewise degree-d if there is a partition of I into t disjoint
intervals I1, . . . , It such that p is ε-close (in total variation distance) to a distribution q such that
q(x) = qj(x) for all x ∈ Ij , where each of q1, . . . , qt is a univariate degree-d polynomial.3 (Note that
being (ε, t)-piecewise constant is the same as being (ε, t)-piecewise degree-0.) We say that such a
distribution q is a t-piecewise degree-d distribution.

Our main algorithmic result is the following (see Theorem 23 for a fully detailed statement of
the result):

Theorem 2. [Informal statement] There is an algorithm that learns any k-mixture of (ε, t)-
piecewise degree-d distributions over an interval I to accuracy O(ε), using Õ((d+ 1)kt/ε2) samples
and running in poly((d+ 1), k, t, 1/ε) time.

As we describe below, the applications that we give for Theorem 2 crucially use both aspects in
which it strengthens Theorem 1 (degree d rather than degree 0, and Õ(1/ε2) samples rather than
O(1/ε3)) to obtain near-optimal sample complexities.

A different view on our main result, which may also be illuminating, is that it gives a “semi-
agnostic” algorithm for learning piecewise polynomial densities. (Since any k-mixture of t-piecewise
degree-d distributions is easily seen to be a kt-piecewise degree-d distribution, we phrase the dis-
cussion below only in terms of t-piecewise degree-d distributions rather than mixtures.) Let Pt,d(I)
denote the class of all t-piecewise degree-d distributions over interval I. Let p be any distribution
over I. Our algorithm, given parameters t, d, ε and Õ(t(d + 1)/ε2) samples from p, outputs an
O(t)-piecewise degree-d hypothesis distribution h such that dTV (p, h) ≤ 4optt,d(1 + ε) + ε, where

optt,d := inf
r∈Pt,d(I)

dTV (p, r).

(See Theorem 25.)
We prove the following lower bound (see Theorem 8 for a precise statement), which shows that

the number of samples that our algorithm uses is optimal up to logarithmic factors:

1Here and throughout the paper we work in a standard unit-cost model of computation, in which a sample from
distribution p is obtained in one time step (and is assumed to fit into one register) and basic arithmetic operations are
assumed to take unit time. Our algorithms, like the [CDSS13] algorithm, only performs basic arithmetic operations
on “reasonable” inputs.

2Recall the well-known fact that Ω(1/ε2) samples are required for essentially every nontrivial distribution learning
problem. In particular, any algorithm that distinguishes the uniform distribution over [−1, 1] from the piecewise
constant distribution with pdf p(x) = 1

2
(1 − ε) for −1 ≤ x ≤ 0, p(x) = 1

2
(1 + ε) for 0 < x ≤ 1, must use Ω(1/ε2)

samples.
3Here and throughout the paper, whenever we refer to a “degree-d polynomial,” we mean a polynomial of degree

at most d.
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Theorem 3. [Informal statement] Any algorithm that learns an unknown t-piecewise degree-d

distribution q over an interval I to accuracy ε must use Ω( t(d+1)
poly(1+log(d+1)) ·

1
ε2

) samples.

Note that the lower bound holds even when the unknown distribution is exactly a t-piecewise
degree-d distribution, i.e. optt,d = 0 (in fact, the lower bound still applies even if the t − 1
“breakpoints” defining the t interval boundaries within I are fixed to be evenly spaced across I).

1.3 Applications of Theorem 2. Using Theorem 2 we obtain highly efficient algorithms for a
wide range of specific distribution learning problems over both continuous and discrete domains.
These include learning mixtures of log-concave distributions; mixtures of t-modal distributions;
mixtures of Monotone Hazard Rate distributions; mixtures of Poisson Binomial Distributions; mix-
tures of Gaussians; and mixtures of k-monotone densities. (See Table 1 for a concise summary of
these results and a comparison with previous results.) All of our algorithms run in polynomial time
in all of the relevant parameters, and for all of the mixture learning problems listed in Table 1, our
results improve on previous state-of-the-art results by a polynomial factor. (In some cases, such as
t-piecewise degree-d polynomial distributions and mixtures of t bounded k-monotone distributions,
we believe that we give the first nontrivial learning results for the distribution classes in question.)
In many cases the sample complexities of our algorithms are provably optimal, up to logarithmic
factors in the optimal sample complexity. Detailed descriptions of all of the classes of distributions
in the table, and of our results for learning those distributions, are given in Section 4.

We note that all the learning results indicated with theorem numbers in Table 1 (i.e. results
proved in this paper) are in fact semi-agnostic learning results for the given classes as described
in the previous subsection; hence all of these results are highly robust even if the target distribu-
tion does not exactly belong to the specified class of distributions. More precisely, if the target
distribution is τ -close to some member of the specified class of distributions, then the algorithm
uses the stated number of samples and outputs a hypothesis that is (O(τ) + ε) close to the target
distribution.

1.4 Our Approach and Techniques. As stated in [Sil86], “the oldest and most widely used
density estimator is the histogram”: Given samples from a density f , the method partitions the
domain into a number of intervals (bins) I1, . . . , Ik, and outputs the empirical density which is
constant within each bin. Note that the number k of bins and the width of each bin are parameters
and may depend on the particular class of distributions being learned. Our proposed technique
may naturally be viewed as a very broad generalization of the histogram method, where instead of
approximating the distribution by a constant within each bin, we approximate it by a low-degree
polynomial. We believe that such a generalization is very natural; the recent paper [PA13] also
proposes using splines for density estimation. (However, this is not the main focus of the paper and
indeed [PA13] does not provide or analyze algorithms for density estimation.) Our generalization of
the histogram method seems likely to be of wide applicability. Indeed, as we show in this paper, it
can be used to obtain many computationally efficient learners for a wide class of concrete learning
problems, yielding several new and nearly optimal results.

The general algorithm. At a high level, our algorithm uses a rather subtle dynamic program
(roughly, to discover the “correct” intervals in each of which the underlying distribution is close to a
degree-d polynomial) and linear programming (roughly, to learn a single degree-d sub-distribution
on a given interval). We note, however, that many challenges arise in going from this high-level
intuition to a working algorithm.

Consider first the special case in which there is only a single known interval (see Section 3.3).
In this special case our problem is somewhat reminiscent of the problem of learning a “noisy
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Class of Distributions Number of samples Reference

Continuous distributions over an interval I

t-piecewise constant O(t/ε3) [CDSS13]

t-piecewise constant Õ(t/ε2) (†) Theorem 23

t-piecewise degree-d polynomial Õ(td/ε2) (†) Theorem 23, Theorem 8

log-concave O(1/ε5/2) (†) folklore [DL01]

mixture of k log-concave distributions Õ(k/ε5/2) (†) Theorem 26

mixture of t bounded 1-monotone distributions Õ(t/ε3) (†) Theorem 33

mixture of t bounded 2-monotone distributions Õ(t/ε5/2) (†) Theorem 33

mixture of t bounded k-monotone distributions Õ(tk/ε2+1/k) Theorem 33

mixture of k Gaussians Õ(k/ε2) (†) Corollary 37

Discrete distributions over {1, 2, . . . , N}
t-modal Õ(t log(N)/ε3) + Õ(t3/ε3) [DDS12a]

mixture of k t-modal distributions O(kt log(N)/ε4) [CDSS13]

mixture of k t-modal distributions Õ(kt log(N)/ε3) (†) Theorem 39

mixture of k monotone hazard rate distributions Õ(k log(N)/ε4) [CDSS13]

mixture of k monotone hazard rate distributions Õ(k log(N)/ε3) (†) Theorem 40

mixture of k log-concave distributions Õ(k/ε4) [CDSS13]

mixture of k log-concave distributions Õ(k/ε3) Theorem 41

Poisson Binomial Distribution Õ(1/ε3) [DDS12b, CDSS13]

mixture of k Poisson Binomial Distributions Õ(k/ε4) [CDSS13]

mixture of k Poisson Binomial Distributions Õ(k/ε3) Theorem 41

Table 1: Known algorithmic results for learning various classes of probability distributions. “Num-
ber of samples” indicates the number of samples that the algorithm uses to learn to total variation
distance ε. Results given in this paper are indicated with a reference to the corresponding theorem.
A (†) indicates that the given upper bound on sample complexity is known to be optimal up to at
most logarithmic factors (i.e. “Õ(m) (†)” means that there is a known lower bound of Ω(m)).

polynomial” that was studied by Arora and Khot [AK03]. We stress, though, that our setting is
considerably more challenging in the following sense: in the [AK03] framework, each data point is
a pair (x, y) where y is assumed to be close to the value p(x) of the target polynomial at x. In our
setting the input data is unlabeled – we only get points x drawn from a distribution that is τ -close
to some polynomial pdf. However, we are able to leverage some ingredients from [AK03] in our
context. We carry out a careful error analysis using probabilistic inequalities (the VC inequality
and tail bounds) and ingredients from basic approximation theory to show that Õ(d/ε2) samples
suffice for our linear program to achieve an O(opt1,d+ε)-accurate hypothesis with high probability.

Additional challenges arise when we go from a single interval to the general case of t-piecewise
polynomial densities (see Section 3.4). The “correct” intervals can of course only be approximated
rather than exactly identified, introducing an additional source of error that needs to be carefully
managed. We formulate a dynamic program that uses the algorithm from Section 3.3 as a “black
box” to achieve our most general learning result.

The applications. Given our general algorithm, in order to obtain efficient learning algorithms for
specific classes of distributions, it is sufficient to establish the existence of piecewise polynomial (or
piecewise constant) approximations to the distributions that are to be learned. In some cases such

4



existence results were already known; for example, Birgé [Bir87b] provides the necessary existence
result that we require for discrete t-modal distributions, and classical results in approximation
theory [Dud74, Nov88] give the necessary existence results for concave distributions over continuous
domains. For log-concave densities over continuous domains, we prove a new structural result
on approximation by piecewise linear densities (Lemma 27) which, combined with our general
algorithm, leads to an optimal learning algorithm for (mixtures of) such densities. Finally, for
k-monotone distributions we are able to leverage a recent (and quite sophisticated) result from the
approximation theory literature [KL04, KL07] to obtain the required approximation result.

Structure of this paper: In Section 2 we include some basic preliminaries. In Section 3 we
present our main learning result and in Section 4 we describe our applications.

2 Preliminaries

Throughout the paper for simplicity we consider distributions over the interval [−1, 1). It is easy
to see that the general results given in Section 3 go through for distributions over an arbitrary
interval I. (In the applications given in Section 4 we explicitly discuss the different domains over
which our distributions are defined.)

Given a value κ > 0, we say that a distribution p over [−1, 1) is κ-well-behaved if supx∈[−1,1) Prx∼p[x] ≤
κ, i.e. no individual real value is assigned more than κ probability under p. Any probability dis-
tribution with no atoms (and hence any piecewise polynomial distribution) is κ-well-behaved for
all κ > 0, but for example the distribution which outputs the value 0.3 with probability 1/100
and otherwise outputs a uniform value in [−1, 1) is only κ-well-behaved for κ ≥ 1/100. Our results
apply for general distributions over [−1, 1) which may have an atomic part as well as a non-atomic
part.

Throughout the paper we assume that the density p is measurable. Note that throughout the
paper we only ever work with the probabilities Prx∼p[x = z] of single points and probabilities
Prx∼p[x ∈ S] of sets S that are finite unions of intervals and single points.

Given a function p : I → R on an interval I ⊆ [−1, 1) and a subinterval J ⊆ I, we write p(J)
to denote

∫
J p(x)dx. Thus if p is the pdf of a probability distribution over [−1, 1), the value p(J) is

the probability that distribution p assigns to the subinterval J . We sometimes refer to a function p
over an interval (which need not necessarily integrate to 1 over the interval) as a “subdistribution.”

Given m independent samples s1, . . . , sm, drawn from a distribution p over [−1, 1), the empirical
distribution p̂m over [−1, 1) is the discrete distribution supported on {s1, . . . , sm} defined as follows:
for all z ∈ [−1, 1), Prx∼p̂m [x = z] = |{j ∈ [m] | sj = x}|/m.

Optimal piecewise polynomial approximators. Fix a distribution p over [−1, 1). We write
optt,d to denote the value

optt,d := inf
r∈Pt,d([−1,1))

dTV (p, r).

Standard closure arguments can be used to show that the above infimum is attained by some
r ∈ Pt,d([−1, 1)); however this is not actually required for our purposes. It is straightforward to
verify that any distribution r̃ ∈ Pt,d([−1, 1)) such that dTV (p, r̃) is at most (say) optt,d + ε/100 is
sufficient for all our arguments.

Refinements. Let I = {I1, . . . , Is} be a partition of [−1, 1) into s disjoint intervals, and J =
{J1, . . . , Jt} be a partition of [−1, 1) into t disjoint intervals. We say that J is a refinement of I if
each interval in I is a union of intervals in J , i.e. for every a ∈ [s] there is a subset Sa ⊆ [t] such
that Ia = ∪b∈SaJb.

For I = {Ii}ri=1 and I ′ = {I ′i}si=1 two partitions of [−1, 1) into r and s intervals respectively,
we say that the common refinement of I and I ′ is the partition J of [−1, 1) into intervals obtained
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from I and I ′ in the obvious way, by taking all possible nonempty intervals of the form Ii ∩ I ′j . It
is clear that J is both a refinement of I and of I ′ and that J contains at most r + s intervals.

Approximation theory. We will need some basic notation and results from approximation theory.
We write ‖p‖∞ to denote supx∈[−1,1) |p(x)|. We recall the famous inequalities of Bernstein and
Markov bounding the derivative of univariate polynomials:

Theorem 4. For any real-valued degree-d polynomial p over [−1, 1), we have

• (Bernstein’s Inequality) ‖p′‖∞ ≤ ‖p‖∞ · d2; and

• (Markov’s Inequality) ‖p′‖∞ ≤ d√
1−x2 · ‖p‖∞ for all −1 ≤ x ≤ 1.

The VC inequality. Given a family of subsets A over [−1, 1), define ‖p‖A = supA∈A |p(A)|.
The VC dimension of A is the maximum size of a subset X ⊂ [−1, 1) that is shattered by A (a
set X is shattered by A if for every Y ⊆ X, some A ∈ A satisfies A ∩ X = Y ). If there is a
shattered subset of size s for all s then we say that the VC dimension of A is ∞. The well-known
Vapnik-Chervonenkis (VC) inequality says the following:

Theorem 5 (VC inequality, [DL01, p.31]). Let p̂m be an empirical distribution of m samples from
p. Let A be a family of subsets of VC dimension d. Then E[‖p− p̂m‖A] ≤ O(

√
d/m).

2.1 Partitioning into intervals of approximately equal mass. As a basic primitive, we
will often need to decompose a κ-well-behaved distribution p into Θ(1/κ) intervals each of which
has probability Θ(κ) under p. The following lemma lets us achieve this using Õ(1/κ) samples; the
simple proof is given in Appendix A.

Lemma 6. Given 0 < κ < 1 and access to samples from an κ/64-well-behaved distribution p over
[−1, 1), the procedure Approximately-Equal-Partition uses Õ(1/κ) samples from p, runs in time
Õ(1/κ), and with probability at least 99/100 outputs a partition of [−1, 1) into ` = Θ(1/κ) intervals
such that p(Ij) ∈ [ 1

2κ ,
3
κ ] for all 1 ≤ j ≤ `.

3 Main result: Learning mixtures of piecewise polynomial distributions with
near-optimal sample complexity

In this section we present and analyze our main algorithm for learning mixtures of (τ, t)-piecewise
degree-d distributions over [−1, 1).

We start by giving a simple information-theoretic argument (Proposition 7, Section 3.1) showing
that there is a (computationally inefficient) algorithm to learn any distribution p to accuracy
3optt,d+ε using O(t(d+1)/ε2) samples, where optt,d is the smallest variation distance between p and
any t-piecewise degree-d distribution. Next, we contrast this information-theoretic positive result
with an information-theoretic lower bound (Theorem 8, Section 3.2) showing that any algorithm,
regardless of its running time, for learning a t-piecewise degree-d distribution to accuracy ε must
use Ω( t(d+1)

poly(1+log(d+1)) ·
1
ε2

) samples. We then build up to our main result in stages by giving efficient
algorithms for successively more challenging learning problems.

In Section 3.3 we give an efficient “semi-agnostic” algorithm for learning a single degree-d pdf.
More precisely, the algorithm draws Õ((d + 1)/ε2) samples from any well-behaved distribution p,
and with high probability outputs a degree-d pdf h such that dTV (p, h) ≤ 3opt1,d(1 + ε) + ε. This
algorithm uses ingredients from approximation theory and linear programming. In Section 3.4 we
extend the approach using dynamic programming to obtain an efficient “semi-agnostic” algorithm
for t-piecewise degree-d pdfs. The extended algorithm draws Õ(t(d + 1)/ε2) samples from any
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well-behaved distribution p, and with high probability outputs a (2t− 1)-piecewise degree-d pdf h
such that dTV (p, h) ≤ 3optt,d(1 + ε) + ε. In Section 3.5 we extend the result to k-mixtures of well-
behaved distributions. Finally, in Section 3.6 we show how we may get rid of the “well-behaved”
requirement, and thereby prove Theorem 2.

3.1 An information-theoretic sample complexity upper bound.

Proposition 7. There is a (computationally inefficient) algorithm that draws O(t(d+ 1)/ε2) sam-
ples from any distribution p over [−1, 1), and with probability 9/10 outputs a hypothesis distribution
h such that dTV (p, h) ≤ 3optt,d + ε.

Proof. The main idea is to use Theorem 5, the VC inequality. Let p be the target distribution
and let q be a t-piecewise degree-d distribution such that dTV (p, q) = optt,d. The algorithm draws
m = O(t(d + 1)/ε2) samples from p; let p̂m be the resulting empirical distribution of these m
samples.

We define the family A of subsets of [−1, 1) to consist of all unions of up to 2t(d+ 1) intervals.
Since dTV (p, q) ≤ optt,d we have that ‖p− q‖A ≤ optt,d. Since the VC dimension of A is 4t(d+ 1),
Theorem 5 implies that E[‖p− p̂m‖A] ≤ ε/40, and hence by Markov’s inequality, with probability
at least 19/20 we have that ‖p − p̂m‖A ≤ ε/2. By the triangle inequality for ‖ · ‖A-distance, this
means that ‖q − p̂m‖A ≤ optt,d + ε/2.

The algorithm outputs a t-piecewise degree-d distribution h that minimizes ‖h− p̂m‖A. Since
q is a t-piecewise degree-d distribution that satisfies ‖q − p̂m‖A ≤ optt,d + ε/2, the distribution h
satisfies ‖h− p̂m‖A ≤ optt,d + ε/2. Hence the triangle inequality gives ‖h− q‖A ≤ 2optt,d + ε.

Now since h and q are both t-piecewise degree-d distributions, they must have at most 2t(d+1)
crossings. (Taking the common refinement of the intervals for p and the intervals for q, we get at
most 2t intervals. Within each such interval both h and q are degree-d polynomials, so there are
at most 2t(d+ 1) crossings in total (where the extra +1 comes from the endpoints of each of the 2t
intervals).) Consequently we have that dTV (h, q) = ‖h− q‖A ≤ 2optt,d + ε. The triangle inequality
for variation distance gives that dTV (h, p) ≤ 3optt,d + ε, and the proof is complete.

It is not hard to see that the dependence on each of the parameters t, d, 1/ε in the above upper
bound is information-theoretically optimal.

Note that the algorithm described above is not efficient because it is by no means clear how
to construct a t-piecewise degree-d distribution h that minimizes ‖h− p̂m‖A in a computationally
efficient way. Indeed, several approaches to solve this problem yield running times that grow
exponentially in t, d. Starting in Section 3.3, we give an algorithm that achieves almost the same
sample complexity but runs in time poly(t, d, 1/ε). The main idea is that minimizing ‖·‖A (which
involves infinitely many inequalities) can be approximately achieved by minimizing a small number
of inequalities (Theorems 11 and 14), and this can be achieved with a linear program.

3.2 An information-theoretic sample complexity lower bound. To complement the information-
theoretic upper bound from the previous subsection, in this subsection we prove an information-
theoretic lower bound showing that even if optt,d = 0 (i.e. the target distribution p is exactly a

t-piecewise degree-d distribution), Ω̃(t(d + 1)/ε2) samples are required for any algorithm to learn
to accuracy ε:

Theorem 8. Let p be an unknown t-piecewise degree-d distribution over [−1, 1) where t ≥ 1, d ≥ 0
satisfy t + d > 1. 4 Let L be any algorithm which, given as input t, d, ε and access to independent

4Note that t = 1 and d = 0 is a degenerate case where the only possible distribution p is the uniform distribution
over [−1, 1).
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samples from p, outputs a hypothesis distribution h such that E[dTV (p, h)] ≤ ε, where the expectation
is over the random samples drawn from p and any internal randomness of L. Then L must use at
least Ω( t(d+1)

(1+log(d+1))2
· 1
ε2

) samples.

Theorem 8 is proved using a well known lemma of Assouad [Ass83], together with carefully tai-
lored constructions of polynomial probability density functions to meet the conditions of Assouad’s
lemma. The proof of Theorem 8 is deferred to Appendix A.2.

3.3 Semi-agnostically learning a degree-d polynomial density with near-optimal sam-
ple complexity. In this section we prove the following:

Theorem 9. Let p be an ε
64(d+1) -well-behaved pdf over [−1, 1). There is an algorithm

Learn-WB-Single-Poly(d, ε) which runs in poly(d+ 1, 1/ε) time, uses Õ((d+ 1)/ε2) samples from
p, and with probability at least 9/10 outputs a degree-d polynomial q which defines a pdf over [−1, 1)
such that dTV (p, q) ≤ 3opt1,d(1 + ε) +O(ε).

Some preliminary definitions will be helpful:

Definition 10 (Uniform partition). Let p be a subdistribution on an interval I⊆[−1, 1). A partition
P = {I1, . . . , I`} of I is (p, η)-uniform if p(Ij) ≤ η for all 1 ≤ j ≤ `.

Definition 11. Let P = {[i0, i1), . . . , [ir−1, ir)} be a partition of an interval I⊆[−1, 1). Let p, q :
I → R be two functions on I. We say that p and q satisfy the (P, η, ε)-inequalities over I if

|p([ij , i`))− q([ij , i`))| ≤
√
ε(`− j) · η

for all 0 ≤ j < ` ≤ r.

We will also use the following notation: For this subsection, let I = [−1, 1) (I will denote a

subinterval of [−1, 1) when the results are applied in the next subsection). We write ‖f‖(I)1 to

denote
∫
I |f(x)|dx, and we write d

(I)
TV (p, q) to denote ‖p − q‖(I)1 /2. We write opt

(I)
1,d to denote the

infimum of the statistical distance d
(I)
TV (p, g) between p and any degree-d subdistribution g on I

that satisfies g(I) = p(I).
The key step of Learn-WB-Single-Poly is Step 3 where it calls the Find-Single-Polynomial

procedure. In this procedure Ti(x) denotes the degree-i Chebychev polynomial of the first kind.
The function Find-Single-Polynomial should be thought of as the CDF of a “quasi-distribution”
f ; we say that f = F ′ is a “quasi-distribution” and not a bona fide probability distribution because
it is not guaranteed to be non-negative everywhere on [−1, 1). Step 2 of Find-Single-Polynomial
processes f slightly to obtain a polynomial q which is an actual distribution over [−1, 1).

We note that while the Find-Single-Polynomial procedure may appear to be more general
than is needed for this section, we will exploit its full generality in the next subsection where it is
used as a key subroutine for semi-agnostically learning t-piecewise polynomial distributions.

Algorithm Learn-WB-Single-Poly:

Input: parameters d, ε
Output: with probability at least 9/10, a degree-d distribution q such that dTV (p, q) ≤ 3 ·
opt1,d +O(ε)
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1. Run Algorithm Approximately-Equal-Partition on input parameter ε/(d+ 1) to par-
tition [−1, 1) into z = Θ((d + 1)/ε) intervals I0 = [i0, i1), . . . , Iz−1 = [iz−1, iz), where
i0 = −1 and iz = 1, such that for each j ∈ {1, . . . , z} we have p([ij−1, ij)) = Θ(ε/(d+ 1)).

2. Draw m = Õ((d + 1)/ε2) samples and let p̂m be the empirical distribution defined by
these samples.

3. Call Find-Single-Polynomial(d, ε, η := Θ(ε/(d + 1)), {I0, . . . , Iz−1}, p̂m) and output
the hypothesis q that it returns.

Subroutine Find-Single-Polynomial:

Input: degree parameter d; error parameter ε; parameter η; (p, η)-uniform partition PI =
{I1, . . . , Iz} of interval I = ∪zi=1Ii into z intervals such that

√
εz · η ≤ ε/2; a subdistribution

p̂m on I such that p̂m and p satisfy the (P, η, ε)-inequalities over I
Output: a number τ and a degree-d subdistribution q on I such that q(I) = p̂m(I),

d
(I)
TV (p, q) ≤ 3opt

(I)
1,d(1 + ε) +

√
εr(d+ 1) · η + error,

0 ≤τ ≤ opt
(I)
1,d(1 + ε) and error = O((d+ 1)η).

1. Let τ be the solution to the following LP:

minimize τ subject to the following constraints:

(Below F (x) =
∑d+1

i=0 ciTi(x) where Ti(x) is the degree-i Chebychev polynomial of the

first kind, and f(x) = F ′(x) =
∑d+1

i=0 ciT
′
i (x).)

(a) F (−1) = 0 and F (1) = p̂m(I);

(b) For each 0 ≤ j < k ≤ z,∣∣∣∣∣
(
p̂m([ij , ik)) +

∑
j≤`<k

w`

)
− (F (ik)− F (ij))

∣∣∣∣∣ ≤√ε · (k − j) · η; (1)

(c) ∑
0≤`<z

w` = 0, (2)

−y` ≤ w` ≤ y` for all 0 ≤ ` < z, (3)∑
0≤`<z

y` ≤ 2τ(1 + ε); (4)

(d) The constraints |ci| ≤
√

2 for i = 0, . . . , d+ 1;

(e) The constraints
0 ≤ F (z) ≤ 1 for all z ∈ J,

where J is a set of O(d+ 1)6 equally spaced points across [−1, 1];
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(f) The constraints
d∑
i=0

ciT
′
i (x) ≥ 0 for all x ∈ K,

where K is a set of O((d+ 1)2/ε) equally spaced points across [−1, 1).

2. Define q(x) = εf(I)/|I|+ (1− ε)f(x). Output q as the hypothesis pdf.

The rest of this subsection gives the proof of Theorem 9. The claimed sample complexity
bound is obvious (observe that Steps 1 and 2 of Learn-WB-Single-Poly are the only steps that
draw samples), as is the claimed running time bound (the computation is dominated by solving
the poly(d, 1/ε)-size LP in Find-Single-Poly), so it suffices to prove correctness.

Before launching into the proof we give some intuition for the linear program. Intuitively F (x)
represents the cdf of a degree-d polynomial distribution f where f = F ′. Constraint 1(a) captures
the endpoint constraints that any cdf must obey if it has the same total mass as p̂m. Intuitively,
constraint 1(b)(1) ensures that for each interval [ij , ik), the value F (ik) − F (ij) (which we may
alternately write as f([ij , ik))) is close to the mass p̂m([ij , ik)) that the empirical distribution puts on
the interval. Recall that by assumption p is opt1,d-close to some degree-d polynomial r. Intuitively
the variable w` represents

∫
[i`,i`+1)(r−p) (note that these values sum to zero by constraint 1(c)(2)),

and y` represents the absolute value of w` (see constraint 1(c)(3)). The value τ , which by constraint
1(c)(4) is at least the sum of the y`’s, represents a lower bound on opt1,d. (The factor 2 on the RHS
of constraint 1(c)(4) is present because ‖p − r‖1 = 2dTV (p, r).) The constraints in 1(d) and 1(e)
reflect the fact that as a cdf, F should be bounded between 0 and 1 (more on this below), and the
1(f) constraints reflect the fact that the pdf f = F ′ should be everywhere nonnegative (again more
on this below).

We begin by showing that with high probability Learn-WB-Single-Poly calls Find-Single-Polynomial
with input parameters that satisfy Find-Single-Polynomial’s input requirements:

(I) the intervals I0, . . . , Iz−1 are (p, η)-uniform; and

(II) p̂m and p satisfy the (P, η, ε)-inequalities over [−1, 1).

We further show that given that this happens, Find-Single-Polynomial’s LP is feasible and
has a high-quality optimal solution.

Lemma 12. Suppose p is an ε
64(d+1) -well-behaved pdf over [−1, 1). Then with overall probability at

least 37/40 over the random draws performed in steps 1 and 2 of Learn-WB-Single-Poly, conditions
(I) and (II) above hold; the LP defined in step 1 of Find-Single-Polynomial is feasible; and the
optimal solution τ is at most opt1,d·(1 + ε).

Proof. By Lemma 6, we have that with probability at least 99/100, every pair j < k is such that
the true probability mass p([ij , ik)) is Θ((k − j)ε/(d + 1)). (Note that the assumption that p is

ε
64(d+1) -well-behaved was required to apply Lemma 6.) This gives (I). The multiplicative Chernoff

bound (and a union bound) tells us that for every pair (j, k) with 1 ≤ j < k ≤ z, with probability
at least 39/40 we have

p̂m([ij , ik)) ∈ (1± τ)p([ij , ik)) for τ =

√
ε

k − j
, (5)
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and hence

|p̂m([ij , ik))− p([ij , ik))| ≤
1

2
·
√
ε(k − j) · ε

(d+ 1)
, (6)

which implies (II). We assume that all these events hold going forth, and show that then the LP is
feasible.

As above, let r be a degree-d polynomial pdf such that opt1,d = dTV (p, r) and r(I) = p(I). Let
r be r renormalized by the empirical mass p̂m, so r = r · p̂m(I)/p(I). Similarly let p = p · p̂m(I)/p(I)
be the renormalization of p. We exhibit a feasible solution as follows: take F to be the cdf of r (a
degree d polynomial). Take w to be

∫
[i`,i`+1)(r − p), and take y` to be |w`|. Finally, take τ to be

1
2

∑
0≤`<z y`.
We first argue feasibility of the above solution. We first take care of the easy constraints: since

F is the cdf of a subdistribution over I it is clear that constraints 1(a) and 1(e) are satisfied, and
since both r and p are pdfs with the same total mass it is clear that constraints 1(c)(2) and 1(f) are
both satisfied. Constraints 1(c)(3) and 1(c)(4) also hold, because 1

2

∑
y` = 1

2 ‖r − p‖1 ·p̂m(I)/p(I) ≤
dTV (p, r) · (1 + ε), where we have used (P, η, ε)-inequalities and the assumption

√
εz · η ≤ ε/2 to

show p̂m(I)/p(I) ∈ [1− ε/2, 1 + ε/2]. So it remains to argue constraints 1(b) and 1(d).

Claim 13. If p̂m and p satisfy (P, η, ε/4)-inequalities on I ⊆ [−1, 1), then p̂m + r− p and r satisfy
(P, η, ε)-inequalities on I.

Proof. For an interval J = [ij , ik) ∈ P, the LHS of (P, η, ε)-inequalities between p̂+ (r−p) and r is

|p̂m(J) + (r − p)(J)− r(J)| = |p̂m(J)− p(J)|.

Therefore it suffices to bound |p̂m(J)− p(J)| and |r(J)− p(J)|. We can bound |p̂m(J)− p(J)| by
(P, η, ε/4)-inequalities between p̂m and p in our assumption. We also have

|r(J)− p(J)| ≤ ε

2
p(J)

because p̂m(J)/p(J) ∈ [1− ε/2, 1 + ε/2].

Note that constraint 1(b) is equivalent to p̂m + (r − p) and r satisfying (P, ε/(d + 1), ε)-
inequalities, therefore this constraint is satisfied by Eq. (6) and Theorem 13.

To see that constraint 1(d) is satisfied we recall some of the analysis of Arora and Khot [AK03,
Section 3]. This analysis shows that since r is a cdf (a function bounded between 0 and 1 on I)
each of its Chebychev coefficients is at most

√
2 in magnitude. Therefore F is bounded between 0

and 1 + ε, and likewise its coefficients are bounded by
√

2(1 + ε).
To conclude the proof of the lemma we need to argue that τ ≤ opt1,d·(1 + ε). Since w` =∫

[i`,i`+1)(r − p) it is easy to see that 2τ =
∑

0≤`<z y` =
∑

0≤`<z |w`| ≤ ‖p− r‖1, and hence indeed

τ ≤ dTV (p, r)·p̂m(I)/p(I) ≤ opt1,d·(1 + ε) as required.

Having established that with high probability the LP is indeed feasible, henceforth we let τ
denote the optimal solution to the LP and F , f , w`, ci, y` denote the values in the optimal solution.
A simple argument (see e.g. the proof of [AK03, Theorem 8]) gives that ‖F‖∞ ≤ 2(1 + ε). Given
this bound on ‖F‖∞, the Bernstein–Markov inequality implies that ‖f‖∞ = ‖F ′‖∞ ≤ O((d+ 1)2).
Together with (1f) this implies that f(z) ≥ −ε/2 for all z ∈ [−1, 1). Consequently q(z) ≥ 0 for all
z ∈ [−1, 1), and∫ 1

−1
q(x)dx = ε+ (1− ε)

∫ 1

−1
f(x)dx = ε+ (1− ε)(F (1)− F (−1)) = 1.
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So q(x) is indeed a degree-d pdf. To prove Theorem 9 it remains to show that dTV (q, p) ≤ 3opt1,d+
O(ε).

We sketch the argument that we shall use to bound dTV (p, q). A key step in achieving this
bound is to bound the ‖ · ‖A distance between f and p̂m + w where A = Ad+1 is the class of all
unions of d+ 1 intervals and w is a function based on the w` values (see Eq. (9) below). Similar to
Section 3.1 the VC theorem gives us that ‖p− p̂m‖A ≤ ε with probability at least 39/40, so if we can
bound ‖(p̂m+w)− f‖A ≤ O(ε) then it will not be difficult to show that ‖r− f‖A ≤ 2opt1,d+O(ε).
Since r and f are both degree-d polynomials we have dTV (r, f) = ‖r − f‖A ≤ 2opt1,d + O(ε), so
the triangle inequality (recalling that dTV (p, r) = opt1,d) gives dTV (p, f) ≤ 3opt1,d + O(ε). From
this point a simple argument (Proposition 15) gives that dTV (p, q) ≤ dTV (p, f) +O(ε), which gives
the theorem.

We will use the following lemma that translates (P, η, ε)-inequalities into a bound on Ad+1

distance.

Lemma 14. Let P = {I0 = [i0, i1), . . . , Iz−1 = [iz−1, iz)} be a (p, η)-uniform partition of I. Let p̂m
be a subdistribution on I such that p̂m and p satisfy (P, η, ε)-inequalities on I. If h : I → R and
p̂m also satisfy the (P, η, ε)-inequalities, then

‖p̂m − h‖(I)Ad+1
≤
√
εz(d+ 1) · η + error,

where error = O((d+ 1)η).

Proof. To analyze ‖p̂m − h‖Ad+1
, consider any union of d+ 1 disjoint non-overlapping intervals

S = J1 ∪ · · · ∪ Jd+1. We will bound ‖p̂m − h‖Ad+1
by bounding |p̂m(S)− h(S)|.

We lengthen intervals in S slightly to obtain T = J ′1 ∪ · · · ∪ J ′d+1 so that each J ′j is a union of
intervals of the form [i`, i`+1). Formally, if Jj = [a, b), then J ′j = [a′, b′), where a′ = max`{i` | i` ≤ a}
and b′ = min`{i` | i` ≥ b}. We claim that

|p̂m(S)− h(S)| ≤ O((d+ 1)η) + |p̂m(T )− f(T )|. (7)

Indeed, consider any interval of the form J = [i`, i`+1) such that J ∩ S 6= J ∩ T . We have

|p̂m(J ∩ S)− p̂m(J ∩ T )| ≤ p̂m(J) ≤ O(η), (8)

where the first inequality uses nonegativity of p̂m and the second inequality follows from (P, η, ε)-
inequalities (between p̂m and p) and the bound p([i`, i`+1)) ≤ η. The (P, η, ε)-inequalities (between
h and p̂m) implies that the inequalities in Eq. (8) also hold with h in place of p̂m. Now Eq. (7)
follows by adding Eq. (8) across all J = [i`, i`+1) such that J∩S 6= J∩T (there are at most 2(d+ 1)
such intervals J), since each interval Jj in S can change at most two such J ’s when lengthened.

Now rewrite T as a disjoint union of s ≤ d+ 1 intervals [iL1 , iR1) ∪ · · · ∪ [iLs , iRs). We have

|p̂m(T )− h(T )| ≤
s∑
j=1

√
Rj − Lj ·

√
εη

by (P, η, ε)-inequalities between p̂m and h. Now observing that that 0 ≤ L1 ≤ R1 · · · ≤ Ls ≤ Rs ≤
t = O((d+ 1)/ε), we get that the largest possible value of

∑s
j=1

√
Rj − Lj is

√
sz ≤

√
(d+ 1)z, so

the RHS of (7) is at most O((d+ 1)η) +
√

(d+ 1)zεη, as desired.

Recall from above that F , f , w`, ci, y`, τ denote the values in the optimal solution. We claim
that

‖(p̂m + w)− f‖A = O(ε), (9)
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where w is the sub-distribution which is constant on each [i`, i`+1) and has mass w` there, so
in particular ‖w‖1 ≤ 2τ ≤ 2opt1,d(1 + ε). Indeed, this equality follows by applying Theorem 14
with h = f − w. The lemma requires h and p̂m to satisfy (P, η, ε)-inequalities, which follows from
constraint 1(b) ((P, η, ε)-inqualities between p̂m + w and f) and observing that (p̂m + w) − f =
p̂m − (f −w). We have also used η = Θ(ε/(d+ 1)) to bound the error term of the lemma by O(ε).

Next, by the triangle inequality we have (writing A for Ad+1)

‖r − f‖A ≤ ‖r − (p+ w)‖A + ‖(p+ w)− (p̂m + w)‖A + ‖(p̂m + w)− f‖A.

The last term on the RHS has just been shown to be O(ε). The second term equals ‖p− p̂m‖A and
is O(ε) with probability at least 39/40 by the VC inequality. The first term is bounded by

‖r − (p+ w)‖A ≤ dTV (r, p+ w) = ‖r − (p+ w)‖1/2 ≤ (‖r − p‖1 + ‖w‖1)/2 ≤ 2opt1,d(1 + ε).

Altogether, we get that ‖r − f‖A ≤ 2opt1,d(1 + ε) +O(ε).
Since r and f are degree d polynomials, dTV (r, f) = ‖r − f‖A ≤ 2opt1,d(1 + ε) + O(ε). This

implies dTV (p, f) ≤ dTV (p, r) + dTV (r, f) ≤ 3opt1,d(1 + ε) + O(ε). Finally, we turn our quasidis-
tribution f which has value ≥ −ε/2 everywhere into a distribution q (which is nonnegative), by
redistributing the mass. The following simple proposition bounds the error incurred.

Proposition 15. Let f and p be any sub-quasidistribution on I. If q = εf(I)/|I|+ (1− ε)f , then
‖q − p‖1 ≤ ‖f − p‖1 + ε(f(I) + p(I)).

Proof. We have
q − p = ε(f(I)/|I| − p) + (1− ε)(f − p).

Therefore

‖q − p‖1 ≤ ε ‖f(I)/|I| − p‖1 + (1− ε) ‖f − p‖1 ≤ ε(f(I) + p(I)) + ‖f − p‖1.

We have dTV (p, q) ≤ dTV (p, f) + O(ε) by Proposition 15, and we are done with the proof of
Theorem 9.

3.4 Efficiently learning (ε, t)-piecewise degree-d distributions. In this section we extend
the previous result to semi-agnostically learn t-piecewise degree-d distributions. We prove the
following:

Theorem 16. Let p be an ε
64t(d+1) -well-behaved pdf over [−1, 1). There is an algorithm

Learn-WB-Piecewise-Poly(t, d, ε) which runs in poly(t, d+1, 1/ε) time, uses Õ(t(d+1)/ε2) samples
from p, and with probability at least 9/10 outputs a (2t− 1)-piecewise degree-d distribution q such
that dTV (p, q) ≤ 3optt,d(1 + ε) +O(ε).

At a high level, Learn-WB-Piecewise-Poly(t, d, ε) breaks down [−1, 1) into t/ε subintervals
(denoted as the partition P ′ = {I ′0, . . . , I ′t/ε−1} in subsequent discussion; this partition is constructed

in step (2)) and calls the subroutine Find-Single-Polynomial(d, ε, η,{I ′`, . . . , I ′j−1}, p̂m) on blocks
of consecutive intervals from P ′ (see Theorem 17). As shown in the previous subsection, the
subroutine Find-Single-Polynomial returns a degree-d polynomial h that is close to the optimal
degree-d polynomial over I ′`∪· · ·∪I ′j−1. An exhaustive search over all ways of breaking [−1, 1) up into
t intervals would require running time exponential in t; to improve efficiency, dynamic programming
is used to combine the different h’s obtained as described above and efficiently construct an overall
high-accuracy piecewise degree-d hypothesis.

13



Remark 17. The subroutine Find-Single-Polynomial from the previous section assumes the
domain I is [−1, 1). The following modification extends the subroutine to arbitrary domain I.

Map the interval I = [a, b) to [−1, 1) via

φI(a+ λ(b− a)) = −1 + 2λ ∀λ ∈ [0, 1).

We write φ = φI when I is clear from the context. Then the transformation f 7→ fφ, where

fφ(x) =
b− a

2
· f(φ−1(x)),

is a linear map taking distributions over I to distributions over [−1, 1) (and in fact, a linear
isomorphism from L1(I) to L1[−1, 1).) This transformation is also a bijection between degree-d
polynomials over I and those over [−1, 1). As a result, if we represent fφ by

fφ(x) =
d∑
i=0

ciTi(x) ∀x ∈ [−1, 1),

where Ti : [−1, 1)→ R are Chebyshev polynomials of degree i, we get a representation of f : I → R
via

f(y) =
2

b− a

d∑
i=0

ciTi(φ(y)). (10)

Note that if f is bounded on I and b− a ≤ 2, then the same is true for fφ on [−1, 1), and

‖fφ‖([−1,1))
∞ ≤ ‖f‖(I)∞ .

(The same inequality is also true with the RHS multiplied by (b − a)/2 ≤ 1, but we only need the
weaker inequality above.)

Further, since f 7→ fφ preserves distances between subdistributions, the assumptions and con-
clusions in the subroutine remain unchanged.

Algorithm Learn-WB-Piecewise-Poly:

Input: parameters t, d, ε
Output: with probability at least 9/10, a t-piecewise degree-d distribution q such that
dTV (p, q) ≤ 3 · optt,d(1 + ε) +O(ε)

1. Run Algorithm Approximately-Equal-Partition on input parameter ε/(t(d + 1)) to
partition [−1, 1) into z = Θ(t(d + 1)/ε) intervals I0 = [i0, i1), . . . , Iz = [iz−1, iz), where
i0 = 0 and iz = 1, such that for each j ∈ {1, . . . , t} we have p([ij−1, ij)) = Θ(ε/(t(d+1))).

2. Let s = z/(d + 1) = Θ(t/ε). Set i′j = i(d+1)j and define interval I ′j = [i′j , i
′
j+1) for

0 ≤ j < s.

3. Draw m = Õ(t(d+ 1)/ε2) samples to define an empirical distribution p̂m over [−1, 1).

4. Initialize T (i, j) =∞ for i ∈ {0, . . . , 2t− 1}, j ∈ {0, . . . , s}, except that T (0, 0) = 0.

5. For i ∈ {1, . . . , 2t− 1}, j ∈ {1, . . . , s}, ` ∈ {0, . . . , j − 1}:
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(a) Call subroutine Find-Single-Polynomial (d, ε, η = Θ(ε/(t(d+ 1))), {I ′`, . . . , I ′j−1},
p̂m)

(b) Let τ be the solution to the LP found by Find-Single-Polynomial and h be the
degree-d hypothesis sub-distribution that it returns.

(c) If T (i, j) > T (i− 1, `) + τ , then

i. Update T (i, j) to T (i− 1, `) + τ

ii. Store the polynomial h in a table H(i, j).

6. Recover a piecewise degree-d distribution h from the table H(·, ·).

Let X1 be the event that step (1) of Subroutine Find-Piecewise-Polynomial succeeds (i.e. the
intervals [ij , ij+1) all have mass within a constant factor of ε/t(d+1)). In step (2) of Learn-WB-Piecewise-Poly,
the algorithm effectively constructs a coarsening P ′ of P by merging every d + 1 consecutive in-
tervals from P. These super-intervals are used in the dynamic programming in step (5). The
table entry T (i, j) stores the minimum sum of errors τ (returned by the subroutine Find-Single-
Polynomial) when the interval [i′0, i

′
j) is partitioned into i pieces. The dynamic program above

only computes an estimate of optt,d; one can use standard techniques to also recover a t-piecewise
degree-d polynomial q close to p.

For step (3), let X2 be the event that p and p̂m satisfy (P, ε/(t(d + 1)), ε/4)-inequalities. In
particular, when X2 holds p̂m(I)/p(I) ≤ ε/2 for all I ∈ P. By multiplicative Chernoff and union
bound (over the m samples in step (3)), event X2 holds with probability at least 19/20.

Proposition 18. If X1 and X2 hold and p is τ -close to some t-piecewise degree-d distribution,
then there is a coarsening P∗ of P ′ and degree-d polynomials gi : I∗i → R such that

∑
i dTV (p, gi) ≤

τ +O(ε). Further, the gi functions can be chosen to satisfy constraints 1a, 1d–1f in the subroutine
Find-Piecewise-Polynomial.

Proof. Suppose p is τ -close to a t-piecewise degree-d distribution. In other words, there exists a
partition {J1, . . . , Jt} of [−1, 1) and degree-d polynomials hi : Ji → R such that

∑
1≤i≤t dTV (p, hi) ≤

τ .
Let {[i′0, i′1), . . . , [i′s−1, i

′
s)} be P ′. Except in degenerate cases, the coarsening P∗ contains 2t− 1

intervals, corresponding to the t intervals on which p is a polynomial and t − 1 small intervals
containing “breakpoints” between the polynomials. More precisely, if we denote by {α0, . . . , αj}
the breakpoints of J1, . . . , Jt (so that Jj = [αj−1, αj)), and define

J ′j := ∪{[αa, αb) | [αa, αb) ⊂ Jj}

as the maximal subinterval of Jj with endpoints from {αj}, then P∗ is the partition containing
all the J ′j ’s together with the intervals between consecutive J ′j ’s. As a result, P∗ is a partition of
[−1, 1) into at most 2t− 1 non-empty intervals.

For an interval I∗i not containing any breakpoint, the corresponding polynomial gi : I∗i → R is
simply hi rescaled by the empirical mass on I∗i , so

gi(x) = hi(x) · p̂m(I∗i )

hi(I∗i )
for x ∈ I∗i 6= ∅.
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Then gi clearly satisfies constraints 1a and 1f. Constraints 1d and 1e are also satisfied: (hi)φi is a
degree-d polynomial on [−1, 1) bounded by 1 in absolute value (here φi = φI∗i ), and p̂m(I∗i )/hi(I

∗
i ) ≤

ε/2 when X2 holds.
For an interval I∗i containing a breakpoint, we simply set gi to be the constant function with

total mass p̂m(I∗i ) on I∗i . As before, gi satisfies 1d–1f. The contribution of such gi’s (there are at
most t − 1 of them) to

∑
i dTV (p, gi) is at most (t − 1) · 2ε/t = O(ε), using the fact that P ′ is

(p̂m, 4ε/t)-uniform when X1 and X2 hold.

When event X2 holds, p and p̂m satisfy the (PI∗i , ε/(t(d+ 1)), ε/4)-inequalities. But this is the
same as gi and p̂m + (gi − p) satisfying the (PI∗i , ε/(t(d + 1)), ε)/4-inequalities, because p − p̂m =
gi − (p̂m + gi − p). Therefore Theorem 13 tells us that constraint 1b is satisfied. Constraints
1c are satisfied for similar reasons as in Section 3.3. Together with Theorem 18, the LP in the
subroutine Find-Single-Polynomial will be feasible, provided the partition P∗ is chosen correctly
in the dynamic program.

We have the following restatement of Theorem 14, and a robust version as a corollary (which
follows by combining Theorem 14 and the proof of Theorem 7).

Lemma 19 (Theorem 14 restated). Let P be a (p, η)-partition of I ⊆ [−1, 1) into r intervals. Let
p̂m be a subdistribution on I such that p̂m and p satisfy the (P, η, ε)-inequalities. If f : I → R and
p̂m also satisfy the (P, η, ε)-inequalities, then

‖p̂m − f‖(I)Ad
≤
√
εr(d+ 1) · η + error,

where the error is O((d+ 1)η).

Corollary 20. Let p be a degree-d subdistribution on I. Let P be a (p, η)-partition of I ⊆ [−1, 1)
into r intervals. Let p̂m be a subdistribution on I such that p̂m and p satisfy (P, η, ε)-inequalities.
If h : I → R and p̂m + w also satisfy (P, η, ε)-inequalities, then

d
(I)
TV (p, h) ≤ 3τ(1 + ε) +

√
εr(d+ 1) · η + error,

where 2τ = ‖w‖1 and error = O((d+ 1)η).

Proof of Theorem 16. Since p is τ -close to a t-piecewise degree-d distribution, there are a par-
tition {J1, . . . , Jt} of [−1, 1) and degree-d polynomials gi : Ji → R such that

∑
1≤i≤t τi ≤ τ , where

τi = dTV (p, gi). Let P∗ = {I∗1 , . . . , I∗2t−1} be the coarsening of P ′ as in the proof of Theorem 18.
When X1 and X2 hold, it follows by a simple induction on i ∈ {0, . . . , 2t−1} that the algorithm

will output a (2t− 1)-piecewise degree-d distribution h satisfying

dTV (p, h) ≤
∑

1≤i≤t

(
3τi(1 + ε) +

√
εri(d+ 1) · ε

t(d+ 1)
+O

(
(d+ 1) · ε

t(d+ 1)

))
+O(ε). (11)

The first term comes from Theorem 20 (with η = O(ε/(t(d+ 1)))), and the second term comes
from the t− 1 intervals containing the breakpoints (see the proof of Theorem 18). Here ri denotes
the number of intervals from P contained in I∗i . Therefore the RHS of Eq. (11) is at most

3τ(1 + ε) +
∑

1≤i≤t

√
εri(d+ 1) · ε

t(d+ 1)
+O(ε).

The second term of this expression is bounded by ε using Cauchy–Schwarz and the fact that P
contains t(d+ 1)/ε intervals.
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3.5 Learning k-mixtures of well-behaved (τ, t)-piecewise degree-d distributions. In this
subsection we prove Theorem 2 under the additional restriction that the target polynomial p is well-
behaved:

Theorem 21. Let p be an ε
64kt(d+1) -well-behaved k-mixture of (τ, t)-piecewise degree-d distributions

over [−1, 1). There is an algorithm that runs in poly(k, t, d + 1, 1/ε) time, uses Õ((d + 1)kt/ε2)
samples from p, and with probability at least 9/10 outputs a (2kt− 1)-piecewise degree-d hypothesis
h such that dTV (p, h) ≤ 3optt,d(1 + ε) +O(ε).

As we shall see, the algorithm of the previous subsection in fact suffices for this result. The key
to extending Theorem 16 to yield Theorem 21 is the following structural result, which says that
any k-mixture of (τ, t)-piecewise degree-d distributions must itself be an (τ, kt)-piecewise degree-d
distribution.

Lemma 22. Let p1, . . . , pk each be an (τ, t)-piecewise degree-d distribution over [−1, 1) and let
p =

∑k
j=1 µjpj be a k-mixture of components p1, . . . , pk. Then p is a (τ, kt)-piecewise degree-d

distribution.

The simple proof is essentially the same as the proof of Lemma 3.2 of [CDSS13] and is given in
Appendix A.

We may rephrase Theorem 16 as follows:

Alternate Phrasing of Theorem 16. Let p be an ε
64t(d+1) -well-behaved (τ, t)-piecewise degree-

d pdf over [−1, 1). Algorithm Learn-WB-Piecewise-Poly(t, d, ε) runs in poly(t, d + 1, 1/ε) time,
uses Õ(t(d+ 1)/ε2) samples from p, and with probability at least 9/10 outputs a (2t− 1)-piecewise
degree-d distribution q such that dTV (p, q) ≤ 3τ(1 + ε) +O(ε).

Theorem 21 follows immediately from Theorem 16 and Lemma 22.

3.6 Proof of Theorem 2. In this subsection we show how to remove the well-behavedness
assumption from Theorem 21 and thus prove Theorem 2. More precisely we prove the following
theorem which is a more detailed version of Theorem 2:

Theorem 23. Let p be any k-mixture of (τ, t)-piecewise degree-d distributions over [−1, 1). There
is an algorithm that runs in poly(k, t, d+1, 1/ε) time, uses Õ((d+1)kt/ε2) samples from p, and with
probability at least 9/10 outputs a (2kt − 1)-piecewise degree-d hypothesis h such that dTV (p, h) ≤
4optt,d(1 + ε) +O(ε).

To prove Theorem 23 we will need the following simple procedure, which (approximately)
outputs all the points in [−1, 1) that are γ-heavy under a distribution p:

Algorithm Find-Heavy:

Input: parameter γ > 0, sample access to distribution p over [−1, 1)
Output: With probability at least 99/100, a set S ⊂ [−1, 1) such that for all x ∈ [−1, 1),

1. if Prx∼p[x] ≥ 2γ then x ∈ S;

2. if Prx∼p[x] < γ/2 then x /∈ S.

Draw m = Õ(1/γ) samples from p. For each x ∈ [−1, 1) let p̂(x) equal 1/m times the number
of occurrences of x in these m draws. Return the set S which contains all x such that p̂(x) ≥ γ.
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It is clear that the set S returned by Find-Heavy(γ) has |S| ≤ 1/γ. We now prove that
Find-Heavy performs as claimed:

Lemma 24. With probability at least 99/100, Find-Heavy(γ) returns a set S satisfying conditions
(1) and (2) in the “Output” description.

We give the straightforward proof in Appendix A.
To prove Theorem 23 it suffices to prove the following result (which is an extension of Theo-

rem 16 that does not require the well-behavedness condition on p):

Theorem 25. Let p be a pdf over [−1, 1). There is an algorithm Learn-Piecewise-Poly(t, d, ε)
which runs in poly(t, d+1, 1/ε) time, uses Õ(t(d+1)/ε2) samples from p, and with probability at least
9/10 outputs a (2t−1)-piecewise degree-d distribution q such that dTV (p, q) ≤ 4optt,d(1 + ε)+O(ε).
where optt,d is the smallest variation distance between p and any t-piecewise degree-d distribution.

Using the arguments of Section 3.5, Theorem 23 follows from Theorem 25 exactly as Theorem 21
follows from Theorem 16.

Proof of Theorem 25. The algorithm Learn-Piecewise-Poly(t, d, 1/ε) works as follows: it first
runs Find-Heavy(γ) where γ = O( ε

t(d+1)) to obtain a set S ⊂ [−1, 1). It then runs

Learn-WB-Piecewise-Poly-(t, d, 1/ε) but using the distribution p[−1,1)\S (i.e. p conditioned on
[−1, 1) \ S) in place of p throughout the algorithm. Each time a draw from p[−1,1)\S is required, it
simply draws repeatedly from p until a point outside of S is obtained.

Let p be any distribution over [−1, 1). Since the conclusion of the theorem is trivial if optt,d ≥
1/4, we may assume that optt,d < 1/4.

Consider an execution of Learn-Piecewise-Poly(t, d, 1/ε). We assume that conditions (1)
and (2) of Find-Heavy indeed hold for the set S that it constructs. Let S′ ⊇ S be defined as
S′ = {x ∈ [−1, 1) : Prx∼p[x] ≥ γ/2}. Since every t-piecewise degree-d distribution q has dTV (p, q) ≥
Prx∼p[x ∈ S′] (because p assigns probability Prx∼p[x ∈ S′] to S′ whereas q assigns probability 0 to
this finite set of points), it must be the case that Prx∼p[x ∈ S] ≤ Prx∼p[x ∈ S′] ≤ optt,d. Hence
a draw from p[−1,1)\S is indeed a valid draw from p[−1,1)\S except with failure probability at most
optt,d < 1/4. It follows easily from this and the sample complexity bound of Theorem 16 that the
sample complexity of algorithm Learn-Piecewise-Poly(t, d, 1/ε) is as claimed.

Verifying correctness is also straightforward. Recall that optt,d denotes the infimum of dTV (p, q)
where q is any t-piecewise degree-d distribution. Fix a q which achieves dTV (p, q) = optt,d; we claim
that this q also satisfies dTV (p[−1,1)\S , q) ≤ optt,d. (To see this, note that we may write dTV (p, q)
as A+B where A is the contribution from points in [−1, 1) \ S and B is the contribution from S.
Since Prx∼q[x ∈ B] is zero it must be the case that B = 1

2 Prx∼p[S], where the “1
2” is the factor

relating L1 norm and total variation distance. Now write dTV (p[−1,1)\S , q) as A′ + B′ where A′ is
the contribution from points in [−1, 1) \ S and B is the contribution from S. Clearly B′ is now
0, and A′ can be at most B = 1

2 Prx∼p[S] larger than A.) By Lemma 24 we have that p[−1,1)\S is
O( ε

t(d+1))-well-behaved. Hence by Theorem 16, when Learn-WB-Piecewise-Poly(t, d, 1/ε) is run

on p[−1,1)\S it succeeds with high probability to give a hypothesis h such that dTV (h, p[−1,1)\S) ≤
3optt,d(1 + ε) + O(ε). Since dTV (p, p[−1,1)\S) ≤ optt,d using the triangle inequality we get that
dTV (h, p) ≤ 4optt,d(1 + ε) +O(ε), and Theorem 25 is proved.

4 Applications

In this section we use Theorem 23 to obtain a wide range of concrete learning results for natural
and well-studied classes of distributions over both continuous and discrete domains. Throughout
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this section we do not aim to exhaustively cover all possible applications of Theorem 23, but rather
to give some selected applications that are indicative of the generality and power of our methods.

We first (Section 4.1) give a range of applications of Theorem 23 to semi-agnostically learn
various natural classes of continuous distributions. These include non-parametric classes such as
concave, log-concave, and k-monotone densities, mixtures of these densities, and parametric classes
such as mixtures of univariate Gaussians.

Next, turning to discrete distributions we first show (Section 4.2) how the d = 0 case of Theo-
rem 23 can be easily adapted to learn discrete distributions that are well-approximated by piecewise
flat distributions. Using this general result, we improve prior results on learning mixtures of discrete
t-modal distributions, mixtures of discrete monotone hazard rate (MHR) distributions, and mix-
tures of discrete log-concave distributions (including mixtures of Poisson Binomial Distributions),
in most cases giving essentially optimal results in terms of sample complexity. While we have not
pursued this direction in the current paper, which focuses chiefly on continuous distributions, we
suspect that with additional work Theorem 23 can be adapted to discrete domains in its full gener-
ality (of polynomials of degree d for arbitrary d). We conjecture that such an adaptation may give
essentially optimal sample complexity bounds for all of the classes of discrete distributions that we
discuss in this paper.

4.1 Applications to Distributions over Continuous Domains. In this section we apply
our general approach to obtain efficient learning algorithms for mixtures of many different types of
continuous probability distributions. We focus chiefly on distributions that are defined by various
kinds of “shape restrictions” on the pdf. Nonparametric density estimation for shape restricted
classes has been a subject of study in statistics since the 1950s (see [BBBB72] for an early book
on the topic), and has applications to a range of areas including reliability theory (see [Reb05] and
references therein). The shape restrictions that have been studied in this area include monotonicity
and concavity of pdfs [Gre56, Bru58, Rao69, Weg70, HP76, Gro85, Bir87a, Bir87b]. More recently,
motivated by statistical applications (see e.g. Walther’s recent survey [Wal09]), researchers in this
area have considered other types of shape restrictions including log-concavity and k-monotonicity
[BW07, DR09, BRW09, GW09, BW10, KM10].

As we will see, our general method provides a single unified approach that gives a highly-
efficient algorithm (both in terms of sample complexity and computational complexity) for all
the aforementioned shape restricted densities (and mixtures thereof). In most cases the sample
complexities of our efficient algorithms are optimal up to log factors.

4.1.1 Concave and Log-concave Densities. Let I ⊆ R be a (not necessarily finite) interval.
Recall that a function g : I → R is called concave if for any x, y ∈ I and λ ∈ [0, 1] it holds
g (λx+ (1− λ)y) ≥ λg(x) + (1 − λ)g(y). A function h : I → R+ is called log-concave if h(x) =
exp (g(x)), where g : I → R is concave.

In this section we show that our general technique yields nearly-optimal efficient algorithms to
learn (mixtures of) concave and (more generally) log-concave densities. (Because of the concavity
of the log function it is easy to see that every positive and concave function is log-concave.) In
particular, we show the following:

Theorem 26. Let f : I → R+ be any k-mixture of log-concave densities, where I = [a, b] is an
arbitrary (not necessarily finite) interval. There is an algorithm that runs in poly(k/ε) time, draws
Õ(k/ε5/2) samples from f , and with probability at least 9/10 outputs a hypothesis distribution h
such that dTV (f, h) ≤ ε.

We note that the above sample complexity is information-theoretically optimal (up to logarith-
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mic factors). In particular, it is known (see e.g. Chapter 15 of [DL01]) that learning a single concave
density (recall that a concave density is necessarily log-concave) over [0, 1] requires Ω(ε−5/2) sam-
ples. This lower bound can be easily generalized to show that learning a k-mixture of log-concave
distributions over [0, 1] requires Ω(k/ε5/2) samples. As far as we know, ours is the first computa-
tionally efficient algorithm with essentially optimal sample complexity for this problem.

To prove our result we proceed as follows: We show that any log-concave density f : I → R+

has an (ε, t)-piecewise linear (degree-1) decomposition for t = Õ(1/
√
ε). A continuous version of

the argument in Theorem 4.1 of [CDSS13] can be used to show the existence of an (ε, t)-piecewise
constant (degree-0) decomposition with t = Õ(1/ε). Unfortunately, the latter bound is essentially
tight, hence cannot lead to an algorithm with sample complexity better than Ω(ε−3).

Classical approximation results (see e.g. [Dud74, Nov88]) provide optimal piecewise linear de-
compositions of concave functions. While these results have a dependence on the domain size of
the function, they can rather easily be adapted to establish the existence of (ε, t)-piecewise linear
decompositions for concave densities with t = O(1/

√
ε). However, we are not aware of prior work

establishing the existence of piecewise linear decompositions for log-concave densities. We give such
a result by proving the following structural lemma:

Lemma 27. Let f : I → R+ be any log-concave density, where I = [a, b] is an arbitrary (not nec-
essarily finite) interval. There exists an (ε, t)-piecewise linear decomposition of f for t = Õ(1/

√
ε).

We note that our proof of Lemma 27 is significantly different from the aforementioned known
arguments establishing the existence of piecewise linear approximations for concave functions. In
particular, these proofs critically exploit concavity, namely the fact that for a concave function f ,
the line segment (x, f(x)), (y, f(y)) lies below the graph of the function. Before giving the proof of
our lemma, we note that the Õ(1/

√
ε) bound is best possible (up to log factors) even for concave

densities. This can be verified by considering the concave density over [0, 1] whose graph is given
by the upper half of a circle. We further note that the [DL01] Ω(1/ε5/2) lower bound implies that
no significant strengthening can be achieved by using our general results for learning piecewise
degree-d polynomials for d > 1.

Theorem 26 follows as a direct corollary of Lemma 27 and Theorem 2.

Proof of Lemma 27: We begin by recalling the following fact which is a basic property (in fact
an alternate characterization) of log-concave densities:

Fact 28. ([An95], Lemma 1) Let f : R→ R+ be log-concave. Suppose that {x | f(x) > 0} = (a, b).
Then, for all x1, x2 ∈ (a, b) with x1 < x2 and all δ ≥ 0 such that x1 + δ, x2 + δ ∈ (a, b) we have

f(x1 + δ)

f(x1)
≥ f(x2 + δ)

f(x2)
.

Let f be an arbitrary log-concave density over R. Well known concentration bounds for log-
concave densities (see [An95]) imply that 1− ε fraction of the total probability mass lies in a finite
interval [a, b]. Let m ∈ [a, b] be a mode of f so that f is non-decreasing in [a,m] and non-increasing
in [m, b]. (Recall the well-known fact [An95] that every log-concave density is unimodal, so such
a mode must exist.) It suffices to analyze the second portion of the density, i.e., a non-increasing
log-concave (sub)-distribution over [m, b]. We may further assume without loss of generality that
[m, b] = [0, 1]. (It will be clear that in what follows nothing changes in the calculations as a result
of this assumption – the length of the interval is irrelevant.)

So let f : [0, 1]→ R+ be a non-increasing log-concave density and let c = f(0) = maxx∈[0,1] f(x).
It follows from elementary calculus that f is continuous in its support. We assume without loss of
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generality that f is strictly decreasing in this domain. (It follows from Fact 28 that for any non-
increasing log-concave density over [0, 1] there exists x0 ∈ [0, 1] such that f is constant in [0, x0]
and strictly decreasing in [x0, 1].)

We proceed to construct the desired piecewise-linear approximation in two stages:

(a) Let r, s ∈ Z+ with r = Θ((1/ε) log(1/ε)) and s = dlog1/(1−ε)
f(0)
f(1)e =dlog1−ε

f(1)
f(0)e.

We divide the domain [0, 1] into t′
def
= min{r, s} = O((1/ε) log(1/ε)) intervals (disjoint except

at the endpoints) I = {Ii}t
′
i=1, where Ii = [xi−1, xi], i ∈ [t′]. The point xi ∈ [0, 1] is the point

that satisfies

f(xi) = max{f(x0)(1− ε)i, f(1)}. (12)

Since the function is strictly decreasing and continuous, such a point exists and is unique.
Note that the definition with the “max” above addresses the case that s ≤ r. In this case, we
will have that xt′ = xs = 1. If s > r, then we will have that f(xi) = f(x0)(1− ε)i for i ∈ [t′]
and xt′ < 1.

We now proceed to establish a couple of useful properties of this decomposition. The first
property is that the length of the intervals Ii is non-increasing as a function of i for i ∈ [t′].

Claim 29. For all i ∈ [t′ − 1] we have that |Ii| ≥ |Ii+1|.

Proof. Consider two consecutive intervals Ii = [xi−1, xi] and Ii+1 = [xi, xi+1], i ∈ [t′ − 1]. It
is easy to see that by the definition of the intervals we have that

f(xi+1)

f(xi)
≥ f(xi)

f(xi−1)

or equivalently
f(xi + |Ii+1|)

f(xi)
≥ f(xi−1 + |Ii|)

f(xi−1)
.

Since xi−1 < xi, by Fact 28 we have

f(xi−1 + |Ii|)
f(xi−1)

≥ f(xi + |Ii|)
f(xi)

.

Combining the above two inequalities yields that f(xi + |Ii+1|) ≥ f(xi + |Ii|). Since f is
non-increasing we conclude that xi + |Ii+1| ≤ xi + |Ii| and the proof is complete.

The second property is that the probability mass that f puts in the interval [xt′ , 1] is bounded
by ε.

Claim 30. We have that f([xt′ , 1]) ≤ ε.

Proof. We consider two cases. If t′ = s, then xt′ = 1 and the desired probability is zero.

It thus suffices to analyze the case t′ = r. In this case xt′ < 1 and for all i ∈ [t′] it holds
f(xi) = f(x0)(1 − ε)i. Note that f(xt′) = f(0)(1 − ε)t′ ≤ f(0)ε/2 = cε/2. For the purposes
of the analysis, suppose we decompose [xt′ , 1] into a sequence of intervals {Ii}i>t′ , where
Ii = [xi−1, xi] and point xi is defined by (12). That is, we have a total of s intervals I1, . . . , Is
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partitioning [0, 1] where by Claim 29 |I1| ≥ |I2| ≥ . . . ≥ |Is|. Clearly,
∑s

i=1 f(Ii) = 1 and
since f is non-increasing

c(1− ε)i|Ii| ≤ f(xi)|Ii| ≤ f(Ii) ≤ f(xi−1)|Ii| = c(1− ε)i−1|Ii|. (13)

Combining the above yields

c ·
s∑
i=1

(1− ε)i|Ii| ≤ 1. (14)

We want to show that f([xt′ , 1]) =
∑s

i=t′+1 f(Ii) ≤ ε. Indeed, we have

s∑
i=t′+1

f(Ii) ≤
s∑

i=t′+1

c(1− ε)i−1|Ii| ≤
cε

2(1− ε)
·
s−t′∑
i=1

(1− ε)i|Ii+t′ | (15)

where the first inequality uses (13) and the second uses the fact that (1 − ε)t′ ≤ ε/2. By
Claim 29 it follows that |Ii+t′ | ≤ |Ii| which yields

s∑
i=t′+1

f(Ii) ≤
cε

2(1− ε)
·
s−t′∑
i=1

(1− ε)i|Ii| ≤
cε

2(1− ε)
·
s∑
i=1

(1− ε)i|Ii| ≤ ε

where the last inequality follows from (14) for ε ≤ 1/2.

In fact, it is now easy to show that I is an (O(ε), t′)-flat decomposition of f , but we will not
make direct use of this in the subsequent analysis.

(b) In the second step, we group consecutive intervals of I (in increasing order of i) to obtain an
(O(ε), t) piecewise linear decomposition J = {J`}t`=1 for f , where t = Õ(ε−1/2). Suppose that
we have constructed the super-intervals J1, . . . , J`−1 and that ∪`−1

s=1Js = ∪ik=1Ik = [x0, xi]. If
i = t′ then t is set to ` − 1, and if i ≤ t′ then the super-interval J` contains the intervals
Ii+1, . . . , Ij , where j ∈ Z+ is the maximum value which is ≤ t′ and satisfies:

(1) f(xj) ≥ f(xi)(1− ε)1/
√
ε, and

(2) |Ij | ≥ (1−
√
ε)|Ii+1|.

Within each super-interval J` = ∪jk=i+1Ik = [xi, xj ] we approximate f by the linear func-

tion f̃ satisfying f̃(xi) = f(xi) and f̃(xj) = f(xj). This completes the description of the
construction.

We proceed to show correctness. Our first claim is that it is sufficient, in the construction
described in (b) above, to take only t = Õ(ε−1/2) super-intervals, because the probability
mass under f that lies to the right of the rightmost of these super-intervals is at most ε:

Claim 31. Suppose that t = Ω(ε−1/2 log(1/ε)) and Jt = [xu, xv] is the rightmost super-
interval. Then, f([xv, 1]) ≤ ε.

Proof. Consider a generic super-interval J` = ∪jk=i+1Ik. Since j is the maximum value that
satisfies both (1) and (2) we conclude that either

j + 1− i > 1/
√
ε (16)
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(this inequality follows from the negation of (1) and the definition of f(xi), f(xj)) or

|Ij+1| < (1−
√
ε)|Ii+1|. (17)

Suppose we have t = Ω(ε−1/2 log(1/ε)) super-intervals. Then, either (16) is satisfied for
at least t/2 super-intervals or (17) is satisfied for at least t/2 super-intervals. Denote the
rightmost super-interval by Jt = [xu, xv]. In the first case, for an appropriate constant in the
big-Omega, we have v = t′ and the desired result follows from Claim 30.

In the second case, for an appropriate constant in the big-Omega we will have |Iv| ≤ ε3|I1|.
To show that f([xv, 1]) ≤ ε in this case, we consider further partitioning the interval [xv, 1]
into a sequence of intervals {Ii}i>v, where Ii = [xi−1, xi] and point xi is defined by (12). By
Claim 29 we will have that |Ii| ≤ |Iv|, i > v. We can therefore bound the desired quantity by

s∑
i=v+1

f(Ii) ≤
s∑

i=v+1
c(1−ε)i−1|Ii| ≤

s∑
i=v+1

c(1−ε)i−1ε3|I1| ≤ ε3c|I1|
∞∑
i=1

(1−ε)i−1 ≤ ε3

(1− ε)2
·1− ε
ε
≤ ε,

where the first inequality used the first inequality of (15) and the penultimate inequality uses
the fact that c(1− ε)|I1| ≤ p(I1) ≤ 1. This completes the proof of the claim.

The main claim we are going to establish for the piecewise-linear approximation J is the
following:

Claim 32. For any super-interval J` = ∪jk=i+1Ik and any i ≤ m ≤ j we have that

|f̃(xm)− f(xm)| = O(ε)f(xm).

Assuming the above claim it is easy to argue that J is indeed an (O(ε), t) piecewise linear
approximation to f . Let f̃ be the piecewise linear function over [0, 1] which is linear over J`
(as described above) and identically zero in the interval [xv, 1].

Indeed, we have that

‖f̃ − f‖1 ≤
t∑

`=1

∫
J`

|f̃(y)− f(y)|dy + f([xv, 1])

≤
v∑
i=1

∫ xi

y=xi−1

|f̃(y)− f(y)|dy + ε

≤
v∑
i=1

O(ε)f(xm)|Ii|+ ε

≤
v∑
i=1

O(ε)f(xi−1)|Ii|+ ε

= O(ε)

where the second inequality used Claim 31, the third inequality used Claim 32, the fourth
inequality used the fact that f is non-increasing, and the final inequality used the fact that

v∑
i=1

f(xi−1)|Ii| ≤
1

1− ε

v∑
i=1

f(xi)|Ii| ≤
1

1− ε

v∑
i=1

f(Ii) ≤ 1/(1− ε),
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which follows by the definition of the f(xi)’s.

We are now ready to give the proof of the claim.

Proof of Claim 32. If f̃ is the approximating line between xi and xj we can write

f̃(xm) = f(xi) + (f(xj)− f(xi)) ·
∑m

k=i+1 |Ik|∑j
k=i+1 |Ik|

.

Note that f(xj)− f(xi) = f(xi)
(
(1− ε)j−i − 1

)
. We also recall that

(1− ε)j−i = 1− ε(j − i) + ε2(j − i)2/2 +O(ε3(j − i)3).

Since i, j are in the same super-interval, we have that j − i ≤ 1/
√
ε, which implies that the

above error term is O(ε3/2). We will use this approximation henceforth, which is also valid
for any m ∈ [i, j].

Also by condition (2) defining the lengths of the intervals in the same super-interval and the
monotonicity of the lengths themselves, we obtain

m− i
j − i

· (1−
√
ε) ≤

∑m
k=i+1 |Ik|∑j
k=i+1 |Ik|

≤ m− i
j − i

· 1

1−
√
ε
.

By carefully combining the above inequalities we obtain the desired result. In particular, we
have that

f̃(xm) ≤ f(xi)
[
1− ε

(
1 +O(

√
ε)
)
(m− i) + (ε2/2)(j − i)(m− i)

(
1 +O(

√
ε)
)

+O(ε3/2)
]
.

Also
f(xm) = f(xi)

[
1− ε(m− i) + (ε2/2)(m− i)2 +O(ε3/2)

]
.

Therefore, using the fact that j − i,m− i ≤ 1/
√
ε, we get that

f̃(xm)− f(xm) ≤ O(ε)f(xi).

In an analogous manner we obtain that

f(xm)− f̃(xm) ≤ O(ε)f(xi).

By the definition of a super-interval, the maximum and minimum values of f within the super-
interval are within a 1 + o(1) factor of each other. This completes the proof of Claim 32.

This completes the proof of Lemma 27.

4.1.2 k-monotone Densities. Let I = [a, b] ⊆ R be a (not necessarily finite) interval. A
function f : I → R+ is said to be 1-monotone if it is non-increasing. It is 2-monotone if it is
non-increasing and convex, and k-monotone for k ≥ 3 if (−1)jf (j) is non-negative, non-increasing
and convex for j = 0, . . . , k − 2. The problem of density estimation for k-monotone densities has
been extensively investigated in the mathematical statistics community during the past few years
(see [BW07, GW09, BW10, Ser10] and references therein) due to its significance in both theory and
applications [BW07]. For example, as pointed out in [BW07], the problem of learning an unknown
k-monotone density arises in a generalization of Hampel’s bird-watching problem [Ham87].
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The aforementioned papers from the statistics community focus on analyzing the rate of con-
vergence of the Maximum Likelihood Estimator (MLE) under various metrics. In this section we
show that our approach yields an efficient algorithm to learn bounded k-monotone densities over
[0, 1] (i.e., k-monotone densities p such that supx∈[0,1] p(x) = O(1)), and mixtures thereof, with

sample complexity Õ(k/ε2+1/k). This bound is provably optimal (up to log factors) for k = 1 by
[Bir87a] and for k = 2 (see e.g. Chapter 15 of [DL01]) and we conjecture that it is similarly tight
for all values of k.

Our main algorithmic result for k-monotone densities is the following:

Theorem 33. Let k ∈ Z+ and f : [0, 1] → R+ be a t-mixture of bounded k-monotone densities.
There is an algorithm that runs in poly(k, t, 1/ε) time, uses Õ(tk/ε2+1/k) samples, and outputs a
hypothesis distribution h such that dTV (h, f) ≤ ε.

The above theorem follows as a corollary of Theorem 2 and the following structural result:

Lemma 34 (Implicit in [KL04, KL07]). Let f : [0, 1] → R+ be a k-monotone density such that
supx |f(x)| = O(1). There exists an (ε, t)-piecewise degree-(k − 1) approximation of f with t =
O(ε1/k).

As we now explain the above lemma can be deduced from recent work in approximation the-
ory [KL04, KL07]. To state the relevant theorem we need some terminology: Let s ∈ Z+, and for
a real function f over interval I, let ∆s

τf(t) =
∑s

i=0(−1)s−i
(
s
i

)
f(t+ iτ) be the sth difference of the

function x with step τ > 0, where [t, t+sτ ] ⊆ I. For r ∈ Z∗+, let W r
1 (I) be the set of real functions f

over I that are absolutely continuous in every compact subinterval of I and satisfy ‖f (r)‖1 = O(1).
We denote by ∆s

+W
r
1 (I) the subset of functions f in W r

1 (I) that satisfy ∆s
τf(t) ≥ 0 for all τ > 0

such that [t, t+ sτ ] ⊆ I. (Note that if f is s-times differentiable the latter condition is tantamount
to saying that f (s) ≥ 0.) We have the following:

Theorem 35 (Theorem 1 in [KL07]). Let s ∈ Z+, r, ν, n ∈ Z∗+ such that ν ≥ max{r, s}. For any
f ∈ ∆s

+W
r
1 (I) there exists a piecewise degree-(ν−1) polynomial approximation h to f with n pieces

such that ‖h− f‖1 = O(n−max{r,s}).

(In fact, it is shown in [KL07] that the above bound is quantitatively optimal up to constant
factors.) Let f : [0, 1] → R+ be a k-monotone density such that sup |f | = O(1). It is easy to see
that Lemma 34 follows from Theorem 35 for the following setting of parameters: s = k, r = 1 and
ν = max{r, s} = k. Indeed, since (−1)k−2f (k−2) is convex, it follows that ∆k

τf(t) is nonnegative for
even k and nonpositive for odd k.

Since f is a non-increasing bounded density, it is clear that ‖f ′‖1 = |
∫ 1

0 f
′(t)dt| = f(0)−f(1) =

O(1). Hence, for even k Theorem 35 is applicable to f and yields Lemma 34. For odd k, Lemma 34
follows by applying Theorem 35 to the function −f .

4.1.3 Mixtures of Univariate Gaussians. As a final example illustrating the power and gen-
erality of Theorem 2, we now show how it very easily yields a computationally efficient and es-
sentially optimal (up to logarithmic factors) sample complexity algorithm for learning mixtures of
k univariate Gaussians. As will be evident from the proof, similar results could be obtained via
our techniques for a wide range of mixture distribution learning problems for different types of
parametric univariate distributions beyond Gaussians.

Lemma 36. Let p = N(µ, σ2) be a univariate Gaussian. Then p is an (ε, 3)-piecewise degree-d
distribution for d = O(log(1/ε)).
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Since Theorem 23 is easily seen to extend to semi-agnostic learning of k-mixtures of t-piecewise
degree-d distributions, Lemma 36 immediately gives the following semi-agnostic learning result for
mixtures of k one-dimensional Gaussians:

Theorem 37. Let p be any distribution that has dTV (p, q) ≤ ε where q is any one-dimensional
mixture of k Gaussians. There is a poly(k, 1/ε)-time algorithm that uses Õ(k/ε2) samples and with
high probability outputs a hypothesis h such that dTV (h, p) ≤ O(ε).

It is straightforward to show that Ω(k/ε2) samples are information-theoretically necessary for learn-
ing a mixture of k Gaussians, and thus our sample complexity is optimal up to logarithmic factors.

Discussion. Moitra and Valiant [MV10] recently gave an algorithm for parameter estimation
(a stronger requirement than the density estimation guarantees that we provide) of any mixture
of k n-dimensional Gaussians. Their algorithm has sample complexity that is exponential in k,
and indeed they prove that any algorithm that does parameter estimation even for a mixture
of k one-dimensional Gaussians must use 2Ω(k) samples. In contrast, our result shows that it is
possible to perform density estimation for any mixture of k one-dimensional Gaussians with a
computationally efficient algorithm that uses exponentially fewer (linear in k) samples than are
required for parameter estimation. Moreover, unlike the parameter estimation results of [MV10],
our density estimation algorithm is semi-agnostic: it succeeds even if the target distribution is ε-far
from a mixture of Gaussians.

Proof of Lemma 36: Without loss of generality we may take p to be the standard Gaussian
N(0, 1), which has pdf p(x) = 1√

2π
e−x

2/2. Let I1 = (−∞,−C
√

log(1/ε)), I2 = [−C
√

log(1/ε), C
√

log(1/ε))

and I3 = [C
√

log(1/ε),∞) where C > 0 is an absolute constant. We define the distribution q as
follows: q(x) = 0 for all x ∈ I1 ∪ I3, and q(x) is given by the degree-d Taylor expansion of p(x)
about 0 for x ∈ I2, where d = O(log(1/ε)). Clearly q is a 3-piecewise degree-d polynomial. To see
that dTV (p, q) ≤ ε, we first observe that by a standard Gaussian tail bound the regions I1 and I3

contribute at most ε/2 to dTV (p, q) so it suffices to argue that∫
I2

|p(x)− q(x)|dx ≤ ε/2. (18)

Fix any x ∈ I2. Taylor’s theorem gives that |p(x) − q(x)| ≤ p(d+1)(x′)xd+1/(d + 1)! for some
x′ ∈ [0, x]. Recalling that the (d + 1)-st derivative p(d+1)(x′) of the pdf of the standard Gaussian
equals Hd+1(x′)p(x′), where Hd+1 is the Hermite polynomial of order d + 1, standard bounds on
the Hermite polynomials together with the fact that |x| ≤ C

√
log(1/ε) give that for d = O(log 1

ε )
we have |p(x)− q(x)| ≤ ε2 for all x ∈ I2. This gives the lemma.

4.2 Learning discrete distributions. For convenience in this subsection we consider discrete
distributions over the 2N -point finite domain

D :=

{
−N
N
,−N − 1

N
, . . . ,− 1

N
, 0,

1

N
, . . . ,

N − 1

N

}
.

We say that a discrete distribution q over domain D is t-flat if there exists a partition of D into t
intervals I1, . . . , It such that q(i) = q(j) for all i, j ∈ I` for all ` = 1, . . . , t. We say that a distribution
p over D is (ε, t)-flat if dTV (p, q) ≤ ε for some distribution q over D that is t-flat.

We begin by giving a simple reduction from learning (ε, t)-flat distributions over D to learning
(ε, t)-piecewise degree-0 distributions over [−1, 1]. Together with Theorem 23 this reduction gives
us an essentially optimal algorithm for learning discrete (ε, t)-flat distributions (see Theorem 38).
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We then apply Theorem 38 to obtain highly efficient algorithms (in most cases with provably near-
optimal sample complexity) for various specific classes of discrete distributions essentially resolving
a number of open problems from previous works.

4.2.1 A reduction from discrete to continuous. Given a discrete distribution p over D, we
define p̃ to be the distribution over [−1, 1) defined as follows: a draw from p̃ is obtained by drawing
a value i/N from p, and then outputting i + x/N where x is distributed uniformly over [0, 1). It
is easy to see that if distribution p (over domain D) is t-flat, then the distribution p̃ (over domain
[−1, 1)) is t-piecewise degree-0. Moreover, if p is τ -close to some t-flat distribution q over D, then
p̃ is τ -close to q̃.

In the opposite direction, for p a distribution over [−1, 1) we define p∗ to be the following
distribution supported on D: a draw from p∗ is obtained by sampling x from p and then outputting
the value obtained by rounding x down to the next integer multiple of 1/N. It is easy to see
that if p, q are distributions over [−1, 1) then dTV (p, q) = dTV (p∗, q∗). It is also clear that for p a
distribution over D we have (p̃)∗ = p.

With these relationships in hand, we may learn a (τ, t)-flat distribution p over D as follows: run
Algorithm Learn-Piecewise-Poly(t, d = 0, ε) on the distribution p̃. Since p is (τ, t)-flat, p̃ is τ -
close to some t-piecewise degree-0 distribution q over [−1, 1), so the algorithm with high probability
constructs a hypothesis h over [−1, 1) such that dTV (h, p̃) ≤ O(τ + ε). The final hypothesis is h∗;
for this hypothesis we have

dTV (h∗, p) = dTV (h∗, (p̃)∗) = dTV (h, p̃) ≤ O(τ + ε)

as desired.
The above discussion and Theorem 23 together give the following:

Theorem 38. Let p be a mixture of k (τ, t)-flat discrete distributions over D. There is an algorithm
which uses Õ(kt/ε2) samples from p, runs in time poly(k, t, 1/ε), and with probability at least 9/10
outputs a hypothesis distribution h over D such that dTV (p, h) ≤ O(ε+ τ).

We note that this is essentially a stronger version of Corollary 3.1 (the main technical result) of
[CDSS13], which gave a similar guarantee but with an algorithm that required O(kt/ε3) samples.
We also remark that Ω(kt/ε2) samples are information-theoretically required to learn an arbitrary
k-mixture of t-flat distributions. Hence, our sample complexity is optimal up to logarithmic factors
(even for the case τ = 0).

We would also like to mention the relation of the above theorem to a recent work by Indyk,
Levi and Rubinfeld [ILR12]. Motivated by a database application, [ILR12] consider the problem
of learning a k-flat distribution over [n] under the L2 norm and give an efficient algorithm that
uses O(k2 log(n)/ε4) samples. Since the total variation distance is a stronger metric, Theorem 38
immediately implies an improved sample bound of Õ(k/ε2) for their problem.

4.2.2 Learning specific classes of discrete distributions.

Mixtures of t-modal discrete distributions. Recall that a distribution over an interval I =
[a, b]∩D is said to be unimodal if there is a value y ∈ I such that its pdf is monotone non-decreasing
on I ∩ [−1, y] and monotone non-increasing on I ∩ (y, 1). For t > 1, a distribution p over D is
t-modal if there is a partition of D into t intervals I1, . . . , It such that the conditional distributions
pI1 , . . . , pIt are each unimodal.

In [CDSS13, DDS+13] (building on [Bir87b]) it is shown that every t-modal distribution over
D is (ε, t log(N)/ε)-flat. By using this fact together with Theorem 38 in place of Corollary 3.1 of
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[CDSS13], we improve the sample complexity of the [CDSS13] algorithm for learning mixtures of
t-modal distributions and obtain the following:

Theorem 39. For any t ≥ 1, let p be any k-mixture of t-modal distributions over D. There is an
algorithm that runs in time poly(k, t, logN, 1/ε), draws Õ(kt log(N)/ε3) samples from p, and with
probability at least 9/10 outputs a hypothesis distribution h such that dTV (p, h) ≤ ε.

We note that an easy adaptation of Birgé’s lower bound [Bir87a] for learning monotone distribu-
tions (see the discussion at the end of Section 5 of [CDSS13]) gives that any algorithm for learning
a k-mixture of t-modal distributions over D must use Ω(kt log(N/(kt))/ε3) samples, and hence the
sample complexity bound of Theorem 39 is optimal up to logarithmic factors. We further note
that even the t = 1 case of this result compares favorably with the main result of [DDS12a], which
gave an algorithm for learning t-modal distributions over D that uses O(t log(N)/ε3) + Õ(t3/ε3)
samples. The [DDS12a] result gave an optimal bound only for small settings of t, specifically
t = Õ((logN)1/3), and gave a quite poor bound as t grows large; for example, at t = (logN)2

the optimal bound would be O((logN)3/ε3) but the [DDS12a] result only gives Õ((logN)9/ε3). In
contrast, our new result gives an essentially optimal bound (up to log factors in the optimal sample
complexity) for all settings of t.

Mixtures of monotone hazard rate distributions. Let p be a distribution supported on D.

The hazard rate of p is the function H(i)
def
= p(i)∑

j≥i
p(j)

; if
∑

j≥i p(j) = 0 then we say H(i) = +∞.

We say that p has monotone hazard rate (MHR) if H(i) is a non-decreasing function over D.
[CDSS13] showed that every MHR distribution over D is (ε,O(log(N/ε)/ε))-flat. Theorem 38

thus gives us the following:

Theorem 40. Let p be any k-mixture of MHR distributions over D. There is an algorithm that
runs in time poly(k, logN, 1/ε), draws Õ(k log(N)/ε3) samples from p, and with probability at least
9/10 outputs a hypothesis distribution h such that dTV (p, h) ≤ ε.

In [CDSS13] it is shown that any algorithm to learn k-mixtures of MHR distributions over D
must use Ω(k log(N/k)/ε3) samples, so Theorem 40 is essentially optimal in its sample complexity.

Mixtures of discrete log-concave distributions. A probability distribution p over D is said to
be log-concave if it satisfies the following conditions: (i) if i < j < k ∈ D are such that p(i)p(k) > 0
then p(j) > 0; and (ii) p(k/N)2 ≥ p((k−1)/N)p((k+1)/N) for all k ∈ {−N+1, . . . ,−1, 0, 1, . . . , N−
2}.

In [CDSS13] it is shown that every log-concave distribution over D is (ε,O(log(1/ε))/ε)-flat.
Hence Theorem 38 gives:

Theorem 41. Let p be any k-mixture of log-concave distributions over D. There is an algorithm
that runs in time poly(k, 1/ε), draws Õ(k/ε3) samples from p, and with probability at least 9/10
outputs a hypothesis distribution h such that dTV (p, h) ≤ ε.

As in the previous examples, this improves the [CDSS13] sample complexity by essentially a
factor of 1/ε. We note that as a special case of Theorem 41 we get an efficient O(k/ε3)-sample
algorithm for learning any mixture of k Poisson Binomial Distributions. (A Poisson Binomial
Distribution, or PBD, is a random variable of the form X1+· · ·+XN where the Xi’s are independent
0/1 random variables that may have arbitrary and non-identical means.) The main result of
[DDS12b] gave an efficient Õ(1/ε3)-sample algorithm for learning a single PBD; here we achieve
the same sample complexity, with an efficient algorithm, for learning any mixture of any constant
number of PBDs.
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A Omitted proofs

A.1 Proof of Lemma 6. Recall Lemma 6:

Lemma 6. Given 0 < κ < 1 and access to samples from an κ/64-well-behaved distribution p
over [−1, 1), the procedure Approximately-Equal-Partition uses Õ(1/κ) samples from p, runs
in time Õ(1/κ), and with probability at least 99/100 outputs a partition of [−1, 1) into ` = Θ(1/κ)
intervals such that p(Ij) ∈ [ 1

2κ ,
3
κ ] for all 1 ≤ j ≤ `.

Proof of Lemma 6: Let n denote 1/κ (we assume wlog that n is an integer). Let S be a sample
of m = Θ(n log n) i.i.d. draws from p, where m is an integer multiple of n. For 1 ≤ i ≤ m let U(i)

denote the i-th order statistic of S, i.e. the i-th largest element of S. Let U(0) := −1.
Our goal is to show that with high probability, for each j ∈ {1, . . . , n} we have p([U( j−1

n
·m), U( j

n
·m))) ∈

[ 1
2n ,

2
n ]. This means that simply greedily taking the intervals I1, I2, . . . from left to right, where

the left endpoint of I0 is −1, the left (closed) endpoint of the j-th interval is the same as the right
(open) endpoint of the (j−1)st interval, and the j-th interval ends at U( j

n
·m), the resulting intervals

have probability masses as desired. (These intervals cover [−1, U(m)]; an easy argument shows that
with probability at least 1− 1/n, the uncovered region (U(m), 1) has mass at most 1/n under p , so
we may add it to the final interval.)

Let P denote the cumulative density functions associated with p. For 0 ≤ α < β ≤ 1 let
#S [α, β) denote the number of elements x ∈ S that have P (x) ∈ [α, β). A multiplicative Chernoff
bound and a union bound together straightforwardly give that with probability at least 99/100, for
each i ∈ {1, . . . , 8n} we have #S [ i−1

8n ,
i

8n) ∈ [ 1
16 ·

m
n ,

3
16 ·

m
n ]. (Note that since p is 1

64n -well-behaved,
the amount of mass that p puts on P−1([ i−1

8n ,
i

8n)) lies in [ 3
32n ,

5
32n ].) As an immediate consequence

of this we get that p([U( j−1
n
·m), U( j

n
·m)]) ∈ [ 1

2n ,
2
n ] for each j ∈ {1, . . . , n}, which establishes the

lemma.

A.2 Proof of Theorem 8. Recall Theorem 8:

Theorem 8. Let p be an unknown t-piecewise degree-d distribution over [−1, 1) where t ≥ 1, d ≥ 0
satisfy t + d > 1. Let L be any algorithm which, given as input t, d, ε and access to independent
samples from p, outputs a hypothesis distribution h such that E[dTV (p, h)] ≤ ε, where the expectation
is over the random samples drawn from p and any internal randomness of L. Then L must use at
least Ω( t(d+1)

(1+log(d+1))2
· 1
ε2

) samples.

We first observe that if d = 0 then the claimed Ω(t/ε2) lower bound follows easily from the
standard fact that this many samples are required to learn an unknown distribution over the t-
element set {1, . . . , t}. (This fact follows easily from Assouad’s lemma; we will essentially prove it
using Assouad’s lemma in Section A.2.1 below.) Thus we may assume below that d > 0; in fact,
we can (and do) assume that d ≥ C where C may be taken to be any fixed absolute constant.

In what follows we shall use Assouad’s lemma to establish an Ω( d
(log d)2

· 1
ε2

) lower bound for

learning a single degree-d distribution over [−1, 1) to accuracy ε. The same argument applied
to a concatenation of t equally weighted copies of this lower bound construction over t disjoint
intervals [−1,−1 + 2

t ), . . . , [1 −
2
t , 1) (again using Assouad’s lemma) yields Theorem 8. Thus to

prove Theorem 8 for general t it is enough to prove the following lower bound, corresponding to
t = 1. (For ease of exposition in our later arguments, we take the domain of p below to be the
interval [0, 2k) rather than [−1, 1).)

Theorem 42. Fix an integer d ≥ C. Let p be an unknown degree-d distribution over [0, 2k). Let
L be any algorithm which, given as input d, ε and access to independent samples from p, outputs
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a hypothesis distribution h such that E[dTV (p, h)] ≤ ε. Then L must use at least Ω( d
(log d)2

· 1
ε2

)

samples.

Our main tool for proving Theorem 42 is Assouad’s Lemma [Ass83]. We recall the statement
of Assouad’s Lemma from [DG85] below. (The statement below is slightly tailored to our context,
in that we have taken the underlying domain to be [0, 2k) and the partition of the domain to be
[0, 2), [2, 4), . . . , [2k − 2, 2k).)

Theorem 43. [Theorem 5, Chapter 4, [DG85]] Let k ≥ 1 be an integer. For each b = (b1, . . . , bk) ∈
{−1, 1}k, let pb be a probability distribution over [0, 2k).

Suppose that the distributions pb satisfy the following properties: Fix any ` ∈ [k] and any
b ∈ {−1, 1}k with b` = 1. Let b′ ∈ {−1, 1}k be the same as b but with b′` = −1. The properties are
that

1.
∫ 2`

2`−2 |pb(x)− pb′(x)|dx ≥ α, and

2.
∫ 2k

0

√
pb(x)pb′(x)dx ≥ 1− γ > 0.

Then for any any algorithm L that draws n samples from an unknown p ∈ {pb}b∈{−1,1}k and

outputs a hypothesis distribution h, there is some b ∈ {−1, 1}k such that if the target distribution p
is pb, then

E[dTV (pb, h)] ≥ (kα/4)(1−
√

2nγ). (19)

We will use this lemma in the following way: Fix any d ≥ C and any 0 < ε < 1/2. We will
exhibit a family of 2k distributions pb, where each pb is a degree-d polynomial distribution and
k = Θ(d/(log d)2). We will show that all pairs b, b′ ∈ {−1, 1}k as specified in Theorem 43 satisfy
condition (1) with α = Ω(ε/k), and satisfy condition (2) with γ = O(ε2/k). With these conditions,
consider an algorithm L that draws n = 1/(8γ) samples from the unknown target distribution p.
The right-hand side of (19) simplifies to kα/8 = Ω(ε), and hence by Theorem 43, the expected
variation distance error of algorithm L’s hypothesis h is Ω(ε). This yields Theorem 42.

Thus, in the rest of this subsection, to prove Theorem 42 and thus establish Theorem 8, it
suffices for us to describe the 2k distributions pb and establish conditions (1) and (2) with the
claimed bounds α = Ω(ε/k) and γ = O(ε2/k). We do this below.

A.2.1 The idea behind the construction. We provide some intuition before entering into
the details of our construction. Intuitively, each polynomial pb (for a given b ∈ {−1, 1}k) is an
approximation, over the interval [0, 2k) of interest, of a 2k-piecewise constant distribution Sb that
we describe below. To do this, first let us define the 2k-piecewise constant distribution

Rb(x) = Rb,1(x) + ...+Rb,k(x)

over [0, 2k), where Rb,i(x) is a function which is 0 outside of the interval [2i − 2, 2i). For x ∈
[2i − 2, 2i − 1) we have Rb,i(x) = (1 + bi · ε)/(2k), and for x ∈ [2i − 1, 2i) we have Rb,i(x) =

(1 − bi · ε)/(2k). So note that regardless of whether bi is 1 or −1, we have
∫ 2i

2i−2Rb,i(x)dx = 1/k

and hence
∫ 2k

0 Rb(x)dx = 1, so Rb is indeed a probability distribution over the domain [0, 2k).
The distribution Sb over [0, 2k) is defined as

Sb(x) =
1

10
· 1

2k
+

9

10
·Rb(x). (20)
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(The reason for “mixing” Rb with the uniform distribution will become clear later; roughly, it is to
control the adverse effect on condition (2) of having only a polynomial approximation pb instead of
the actual piecewise constant distribution.)

To motivate the goal of constructing polynomials pb that approximate the piecewise constant
distributions Sb, let us verify that the distributions {Sb}b∈{−1,1}k satisfy conditions (1) and (2) of

Theorem 43 with the desired parameters. So fix any b ∈ {−1, 1}k with b` = 1 and let b′ ∈ {−1, 1}k
differ from b precisely in the `-th coordinate. For (1), we immediately have that∫ 2`

2`−2
|Sb(x)− Sb′(x)|dx =

9

10

∫ 2`

2`−2
|Rb,`(x)−Rb′,`(x)|dx =

9

5
· ε
k
.

For (2), we have that for any two distributions f, g,∫ 2k

0

√
f(x)g(x)dx = 1− h(f, g)2

where h(f, g)2 is the squared Hellinger distance between f and g,

h(f, g)2 =
1

2

∫ 2k

0

(√
f(x)−

√
g(x)

)2
dx.

Applying this to Sb and Sb′ , we get

h(Sb, Sb′)
2 =

1

2

∫ 2k

0

(√
Sb(x)−

√
Sb′(x)

)2
dx

=
1

2

∫ 2`

2`−2

(√
1

20k
+

9

10
· 1 + ε

2k
−
√

1

20k
+

9

10
· 1− ε

2k

)2

dx

= Θ(ε2/k),

as desired. We now turn to the actual construction.

A.2.2 The construction. Fix any b ∈ {−1, 1}k. Our goal is to give a degree-d polynomial pb
that is a high-quality approximator of Sb(x) over [0, 2k). We shall do this by approximating each
Rb,i(x) and combining the approximators in the obvious way.

We can write each Rb,i(x) as Rb,i,1(x) + Rb,i,2(x) where Rb,i,1(x) is 0 outside of [2i− 2, 2i− 1)
and Rb,i,2(x) is 0 outside of [2i− 1, 2i). So Rb(x) is the sum of 2k many functions each of which is
of the form ωb,j · Ij(x), i.e.

Rb(x) =

2k∑
j=1

ωb,j · Ij(x) (21)

where each ωb,j is either (1 + ε)/2k or is (1− ε)/2k and Ij is the indicator function of the interval
[j − 1, j): i.e. Ij(x) = 1 if x ∈ [j − 1, j) and is 0 elsewhere.

We shall approximate each indicator function Ij(x) over [0, 2k) by a low-degree univariate
polynomial which we shall denote Ĩj(x); then we will multiply each Ĩj(x) by ωb,j and sum the
results to obtain our polynomial approximator R̃b(x) to Rb(x), i.e.

R̃b(x) :=

2k∑
j=1

ωb,j Ĩj(x). (22)
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The starting point of our construction is the polynomial whose existence is asserted in Lemma 3.7
of [DGJ+10]; this is essentially a low-degree univariate polynomial which is a high-accuracy approx-
imator to the function sign(x) over [−1, 1) except for values of x that have small absolute value.
Taking k = M log(1/ε) in Claim 3.8 of [DGJ+10] for M a sufficiently large constant (rather than
M = 15 as is done in [DGJ+10]), the construction employed in the proof of Lemma 3.7 gives the
following:

Fact 44. For 0 ≤ τ ≤ c, where c < 1 is an absolute constant, there is a polynomial A(x) of degree
O((log(1/τ))2/τ) such that

1. For all x ∈ [−1,−τ) we have A(x) ∈ [−1,−1 + τ10];

2. For all x ∈ (τ, 1] we have A(x) ∈ [1− τ10, 1];

3. For all x ∈ [−τ, τ ] we have A(x) ∈ [−1, 1].

For −1/4 ≤ θ ≤ 1/4 let Bθ(x) denote the polynomial Bθ(x) = (A(x) − A(x − θ))/2. Given
Fact 44, it is easy to see that Bθ(x) has degree O((log(1/τ))2/τ) and, over the interval [−1/2, 1/2],
is a high-accuracy approximation to the indicator function of the interval [0, θ] except on “error
regions” of width at most τ at each of the endpoints 0, θ.

Next, recall that k = Θ(d/(log d)2) where d is at least some universal constant C. Choosing
τ = δ/k for a suitably small positive absolute constant δ, and performing a suitable linear scaling
and shifting of the polynomial Bθ(x), we get the following:

Fact 45. Fix any integer 1 ≤ j ≤ 2k. There is a polynomial Cj(x) of degree at most d which is
such that

1. For x ∈ [j − 0.999, j − 0.001) we have Cj(x) ∈ [1− 1/k5, 1)];

2. For x ∈ [0, j − 1) ∪ [j, 2k) we have Cj(x) ∈ [0, 1/k5];

3. For x ∈ [j − 1, j − 0.999) ∪ [j − 0.001, j) we have 0 ≤ Cj(x) ≤ 1.

The desired polynomial Ĩj(x) which is an approximator of the indicator function Ij(x) is ob-
tained by renormalizing Cj so that it integrates to 1 over the domain [0, 2k); i.e. we define

Ĩj(x) = Cj(x)/

∫ 2k

0
Cj(x)dx. (23)

By Fact 45 we have that
∫ 2k

0 Cj(x)dx ∈ [0.997, 1.003], and thus we obtain the following:

Fact 46. Fix any integer 1 ≤ j ≤ 2k. The polynomial Ĩj(x) has degree at most d and is such that

1. For x ∈ [j − 0.999, j − 0.001) we have Ĩj(x) ∈ [0.996, 1.004)];

2. For x ∈ [0, j − 1) ∪ [j, 2k) we have Ĩj(x) ∈ [0, 1/k4];

3. For x ∈ [j − 1, j − 0.999) ∪ [j − 0.001, j) we have 0 ≤ Ĩj ≤ 1.004; and

4.
∫ 2k

0 Ĩj(x)dx = 1.
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Recall that from (22) the polynomial approximator R̃b(x) for Rb(x) is defined as R̃b(x) =∑2k
j=1 ωb,j Ĩj(x). We define the final polynomial pb(x) as

pb(x) =
1

10
· 1

2k
+

9

10
· R̃b(x). (24)

Since
∑2k

j=1 ωb,j = 1 for every b ∈ {−1, 1}k, the polynomial pb does indeed define a legitimate
probability distribution over [0, 2k).

It will be useful for us to take the following alternate view on pb(x). Define

J̃j(x) =
1

10
· 1

2k
+

9

10
· Ĩj(x). (25)

Recalling that
∑2k

j=1 ωb,j = 1, we may alternately define pb as

pb(x) =
2k∑
j=1

ωb,j J̃j(x). (26)

The following is an easy consequence of Fact 46:

Fact 47. Fix any 1 ≤ j ≤ 2k. The polynomial J̃j(x) has degree at most d and is such that

1. For x ∈ [j − 0.999, j − 0.001) we have J̃j(x) ∈ [0.896 + 0.1/(2k), 0.9004 + 0.1/(2k)];

2. For x ∈ [0, j − 1) ∪ [j, 2k) we have Ĩj(x) ∈ [0.1/(2k), 0.1/(2k) + 1/k4];

3. For x ∈ [j − 1, j − 0.999) ∪ [j − 0.001, j) we have J̃j(x) ∈ [0.1/(2k), 0.9004 + 0.1/(2k)) ; and

4.
∫ 2k

0 J̃j(x)dx = 1.

We are now ready to prove that the distributions {pb}b∈{−1,1}k satisfy properties (1) and (2)

of Assouad’s lemma with α = Ω(ε/k) and γ = O(ε2/k) as described in the discussion following
Theorem 43. Fix b ∈ {−1, 1}k with b` = 1 and b′ ∈ {−1, 1}k which agrees with b except in the `-th
coordinate. We establish properties (1) and (2) in the following two claims:

Claim 48. We have
∫ 2`

2`−2 |pb(x)− pb′(x)|dx ≥ Ω(ε/k).

Proof. Recall from (26) that

pb(x) =
2k∑
j=1

ωb,j · J̃j(x) and pb′(x) =
2k∑
j=1

ωb′,j · J̃j(x).

We have that ωb,j = ωb′,j for all but exactly two (adjacent) values of j, which are j = 2` − 1
and j = 2`. For those values we have

ωb,2`−1 = (1 + ε)/(2k), ωb′,2`−1 = (1− ε)/(2k)

while
ωb,2` = (1− ε)/(2k), ωb′,2` = (1 + ε)/(2k).

So we have
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∫ 2`

2`−2
|pb(x)− pb′(x)|dx =

∫ 2`

2`−2
|(ωb,2`−1J̃2`−1(x) + ωb,2`J̃2`(x))− (ωb′,2`−1J̃2`−1(x) + ωb′,2`J̃2`(x))|dx

= (ε/k) ·
∫ 2`

2`−2
|J̃2`−1(x)− J̃2`(x)|dx.

Claim 48 now follows immediately from∫ 2`

2`−2
|J̃2`−1(x)− J̃2`(x)|dx = Ω(1),

which is an easy consequence of Fact 47.

Claim 49. We have
∫ 2k

0

√
pb(x)pb′(x)dx ≥ 1−O(ε2/k), i.e. h(pb, pb′)

2 ≤ O(ε2/k).

Proof. As above ωb,j = ωb′,j for all but exactly two (adjacent) values of j which are j = 2`− 1 and
j = 2`. For those values we have

ωb,2`−1 = (1 + ε)/(2k), ωb′,2`−1 = (1− ε)/(2k), ωb,2` = (1− ε)/(2k), ωb′,2` = (1 + ε)/(2k).

We have

h(pb, pb′)
2 =

1

2

∫ 2k

0

(√
pb(x)−

√
pb′(x)

)2
dx = A/2 +B/2,

where

A =

∫
[2k]\[2`−2,2`)

(√
pb(x)−

√
pb′(x)

)2
dx

and

B =

∫
[2`−2,2`]

(√
pb(x)−

√
pb′(x)

)2
dx.

We first bound B, by upper bounding the value of the integrand
(√

pb(x)−
√
pb′(x)

)2
on

any fixed x ∈ [2k] \ [2` − 2, 2`]. Recall that pb(x) is a sum of the 2k values ωb,j · J̃j(x). The
0.1/(2k) contribution to each J̃j(x) ensures that pb(x) ≥ 0.1/(2k) for all x ∈ [0, 2k], and it is
easy to see from the construction that pb(x) ≤ 2/(2k) for all x ∈ [0, 2k]. The difference between
the values pb(x) and pb′(x) comes entirely from (ε/k)(J̃2`−1(x) − J̃2`(x)), which has magnitude at

most (ε/k) · (1/k4) = ε/k5. So we have that
(√

pb(x)−
√
pb′(x)

)2
is at most the following (where

cx ∈ [0.1, 2] for each x ∈ [2k] \ [2`− 2, 2`]):[√
cx
k

+
ε

k5
−
√
cx
k

]2

= (cx/k) ·
[√

1 +
ε

cxk4
− 1

]2

= (cx/k) · [Θ(ε/k4)]2 = Θ(ε2/k9).

Integrating over the region of width 2k − 2, we get that B = O(ε2/k8).
It remains to bound A. Fix any x ∈ [2` − 2, 2`]. As above we have that pb(x) equals cx/k for

some cx ∈ [0.1, 2], and (26) implies that pb(x) and pb′(x) differ by at most Θ(ε/k). So we have(√
pb(x)−

√
pb′(x)

)2
≤

[√
cx
k
−
√
cx
k
− Θ(ε)

k

]2

=
cx
k

[
1−

√
1−Θ(ε)

]2
=
cx
k

Θ(ε2) = Θ(ε2/k).

Integrating over the region of width 2, we get that A = O(ε2/k).
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This concludes the proof of Theorem 42 and with it the proof of Theorem 8.

A.3 Proof of Lemma 22. Recall Lemma 22:

Lemma 22. Let p1, . . . , pk each be an (τ, t)-piecewise degree-d distribution over [−1, 1) and let
p =

∑k
j=1 µjpj be a k-mixture of components p1, . . . , pk. Then p is a (τ, kt)-piecewise degree-d

distribution.

Proof of Lemma 22: For 1 ≤ j ≤ k, let Pj denote the intervals Ij,1, . . . , Ij,t such that pj is
τ -close to a distribution gj whose pdf is given by polynomials gj1 , . . . , gj,t over intervals Ij,1, . . . , Ij,t
respectively. Let P be the common refinement of P1, . . . ,Pk. It is clear that P is a partition of
[−1, 1) into at most kt intervals.

For each I in P and for each 1 ≤ j ≤ k, let gj,I ∈ {gj,1, . . . , gj,t} be the polynomial corresponding

to I. We claim that p =
∑k

j=1 µjpj is τ -close to the kt-piecewise degree-d distribution g which has

the polynomial
∑k

j=1 µjgj,I as its pdf over interval I, for each I ∈ P. To see this, for each interval
I ∈ P let us write p̃j,I to denote the function which equals pj on I and equals 0 elsewhere, and
likewise for g̃j,I . With this notation we may write the condition that pj is τ -close to gj in total
variation distance as ∥∥∥∥∥∑

I∈P
p̃j,I − g̃j,I

∥∥∥∥∥
1

≤ 2τ. (27)

We then have

‖p− g‖1 =

∥∥∥∥∥∥
∑
I∈P

 k∑
j=1

µj p̃j,I − µj g̃j,I

∥∥∥∥∥∥
1

≤
k∑
j=1

µj

∥∥∥∥∥∑
I∈P

(p̃j,I − g̃j,I)

∥∥∥∥∥
1

≤ 2τ,

and the proof is complete.

A.4 Proof of Lemma 24. Recall Lemma 24:

Lemma 24. With probability at least 99/100, Find-Heavy(γ) returns a set S satisfying conditions
(1) and (2) in the “Output” description.

Proof of Lemma 24: Fix any x ∈ [−1, 1) such that Prx∼p[x] ≥ 2γ. A standard multiplicative
Chernoff bound implies that x is placed in S except with failure probability at most 1

200 ·
1

2γ . Since

there are at most 1
2γ values x ∈ [−1, 1) such that Prx∼p[x] ≥ 2γ, we get that condition (1) holds

except with failure probability at most 1
200 .

For the second bullet, first consider any x such that Prx∼p[x] ∈ [ γ2c ,
γ
2 ] (here c > 0 is a

universal constant). A standard multiplicative Chernoff bound gives that each such x satisfies
p̂(x) ≥ 2 Prx∼p[x] with probability at most 1

400 ·
2c

γ , and hence each such x satisfies p̂(x) ≥ γ with

probability at most 1
400 ·

2c

γ . Since there are at most 2c/γ such x’s, we get that with probability at

least 1− 1
400 no such x belongs to S.

To finish the analysis we recall the following version of the multiplicative Chernoff bound:

Fact 50. [[MR95], Theorem 4.1] Let Y1, . . . , Ym be i.i.d. 0/1 random variables with Pr[Yi = 1] = q
and let Q = mq = E[

∑m
i=1 Yi]. Then for all τ > 0 we have

Pr

[
m∑
i=1

Yi ≥ (1 + τ)Q

]
≤
(

eτ

(1 + τ)1+τ

)Q
≤
(

e

(1 + τ)

)(1+τ)Q

.
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Fix any integer r ≥ c and fix any x such that Prx∼p[x] ∈ [ γ
2r+1 ,

γ
2r ]. Taking 1 + τ in Fact 50 to

equal 2r, we get that

Pr[x ∈ S] ≤
( e

2r

)Θ(mγ)
=
( e

2r

)Θ(log(1/γ))
.

Summing over all (at most 2r+1/γ many) x such that Prx∼p[x] ∈ [ γ
2r+1 ,

γ
2r ], we get that the prob-

ability that any such x is placed in S is at most 2r+1

γ ·
(
e
2r

)Θ(log(1/γ)) ≤ 1
400 ·

1
2r . Summing over all

r ≥ c, the total failure probability incurred by such x is at most 1/400. This proves the lemma.
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