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Marine Electrical Sensing for Detecting

Small Inhomogeneities

Nick Polydorides, Member, IEEE, and Fabrice Delbary.

ABSTRACT

We consider towed electrical sensing for detecting and localising small inhomogeneities in the marine

environment. Assuming the domain to be homogeneous apart from a few dispersed inclusions, the

low-frequency electrical measurements can be modelled using a single layer potential formulation for

a source function defined at the boundaries of the inclusions. A key component of these measurements

is the potential induced by the polarisation of the inclusions, which at the far-field can be shown to

be equivalent to the potential of dipole sources centred at the inclusions. Under this approximation we

formulate an inverse problem for localising the inclusions and then enforce some regularisation in the

form of an a priori assumption on the shape of the inclusions. In this context, solving the inverse problem

requires tracing some coordinates where the polarisation potential at the current injecting electrodes

becomes zero, since these define a set of lines intersecting at the centre of the targeted inclusions.

This methodology is implemented by a simple algorithm, whose computational complexity mounts

to solving a small number of low-dimensional linear systems. Analysis indicates a fair robustness of
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the algorithm to measurement noise and model inaccuracies, and this is also supported by numerical

simulation experiments.

Index Terms

Towed electrical survey, polarisation induced potential, single layer potential formulation, electric

dipole approximation.

I. INTRODUCTION

In towed marine electrical sensing, a long elastic cable equipped with a number of electrodes is

typically towed near the surface of the sea or at the seabed. While the cable is in motion, low-frequency

electric currents are applied through some of the electrodes and the induced electric potentials are

sampled on others. This data acquisition cycle iterates at regular time intervals gathering information

throughout the domain to be surveyed. As the sea water is conductive to electric current, the sensitivity

of these measurements to the electrical conductivity spans a considerable distance, both horizontally

and vertically, subject to the magnitude of the applied currents. It is thus unsurprising, that marine

electrical sensing has found numerous applications in geophysical investigations, including maritime

archaeology [1], environmental surveys [2], forensic investigations [3] and hydrocarbon exploration [4].

In these applications one typically utilises these voltage measurements in order to image the electrical

properties of the water column and the sub-seabed sediment. The image reconstruction problem is quite

similar to that of electrical resistivity tomography (ERT) [5], a well documented, ill-posed nonlinear

inverse problem, but it differs in that the positioning of the electrodes changes dynamically in response

to the motion of the towing vessel and the arbitrary sea currents in the vicinity of the cable [6].

Most image reconstruction algorithms for electrical tomography rely on the sensitivity of the voltage

measurements to the electrical conductivity of the medium of interest, see for example the relevant

chapters in [7] and [8]. These sensitivity-based approaches, are well suited for quantitative conductivity

imaging, but despite their popularity, their performance is compromised as the sensitivity drops expo-
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nentially away from the electrodes. Consequently, even moderate conductivity variations occurring

far from the electrodes have an insignificant impact on the measurements, and are thus rendered

electrically unobservable, even in the absence of noise. This is in fact the main reason for the severe

ill-posedness of the inverse problem, effectively manifested as a discontinuity in the mapping from

the voltage observations to their corresponding conductivity profiles. It is thus reasonable to conclude

that sensitivity-based methods are not suitable for imaging or even detecting the small inhomogeneities

targeted in this study.

To overcome these limitations some alternative schemes have been proposed, based on layer potential

techniques and the use of generalised polarisation and moment tensors, see for example the textbooks

[9] and [10] as well as the review [11]. Among them two notable paradigms are the location search

methods and the factorisation methods. A location search method for EIT, was proposed in [12], aimed

at localising, in real-time, the coordinates of a small, high-contrast, piecewise constant inhomogeneity

within the homogeneous unit disk, from a pair of current-voltage observations at its boundary. The

authors suggest an easy to implement methodology requiring only the boundary locations of zeros

and extrema of the single layer potentials associated with the targeted inclusion. According to [13],

the scheme’s performance relies strongly on the accurate a priori selection of some free parameters,

while any uncertainty in these parameters yields a substantial compromise. The effective dipole method

proposed as a location search method in [13], rectifies this shortcoming by postulating that the potential

induced by the polarisation of an inclusion can be adequately approximated to the far-field potential of

a dipole source, whose moment and magnitude depend on the shape and value of the inhomogeneity.

Evidently, this allows one to reformulate the inverse problem of detecting and localising small piecewise

constant inhomogeneities to that of localising dipole sources within a homogeneous domain. This prob-

lem has been previously studied in the context of electroencephalography and magnetoencephalography

[14]. The framework of generalised polarisation tensors is also utilised in [15] and [16] where a simple

method for locating a conductivity inclusion and reconstructing its polarisation tensor is developed.
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The factorisation methods on the other hand, in contrast to the location search methods, aim not only to

localise but also to image the shape of inclusions [17], as long as their conductivities are either higher

or lower than that of the hosting medium. These qualitative imaging methods deploy a dense grid of

points spanning the domain of interest and then utilise a binary criterion in order to infer whether a

point belongs to the closure of an inclusion [18]. The connection between the factorisation method and

other methods based on polarisation tensor theory is investigated in [19].

Our approach to localisation is based on the effective dipole formalism [13], while we rely also on

[20] for implementing the single layer potential framework. In particular we formulate the inverse local-

isation problem as a problem of finding the location of an ‘equivalent dipole source’, by reconstructing

its first-order polarisation tensor [11]. As shown in [21] and [22] the shape of an inclusion can be

resolved if the high-order polarisation tensors can be reconstructed from the measurements. Moreover

the high-order polarisation tensor can distinguish between multiple distinct inclusions positioned close

to each other. However, since we have no information on the number of inclusions, their conductivity

values or indeed their boundary shape we do not attempt to fit the polarisation potential measurements

to the equivalent dipole sources directly, but instead we choose to impose an a priori assumption on

the shape of the inclusions and then establish a geometric criterion that yields the locations of the

inclusions.

The report is organised as follows: We end this section by introducing some notation, and then

proceed to describe the low-frequency electrical measurement in towed motion. In particular we derive

the polarisation potential using a single layer potential formulation and show that the charge density

involved satisfies a boundary integral equation. Next we address the inverse problem of localising the

inhomogeneities, discussing explicitly the dipole approximation of the far-field polarisation potential

and the importance of the inclusion’s polarisation tensor. The algorithm for solving the inverse problem

is presented in the next section, supported by the derivation of a geometric criterion based on the dipole

approximation and an a priori assumption on the shape of the inclusions, designed to eradicate the
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non-uniqueness of the solution. Finally we present a brief noise analysis of the algorithm and a note

on de-noising the measurements, followed by a numerical results section including some simulation

tests designed to demonstrate the performance of the algorithm.

A. Notation and symbols

We denote with C the unbounded two-dimensional domain R2 where the one-dimensional electric

array profile S is embedded, and specify location by z. In towed motion St ⊂ C indicates the support

of the array at time t. The domain C is assumed homogeneous with electrical conductivity σh apart

from a small unknown number NΩ of bounded connected Lipschitz inclusions Ωi whose closures are

pairwise disjoint, with uniform conductivities σ1, . . . , σNΩ
6= σh. For an inclusion, ∂Ω denotes the

boundary, |Ω| the area, ν the outward pointing unit normal vector on ∂Ω, Ω the closure, and zg ∈ C

the coordinates of its geometric centre. Two important coordinates on the towed cable are zp ∈ St

and zm ∈ St, denoting the positively and negatively charged electrodes respectively, through which

the current is applied. The electric potential generated in these conditions will be expressed as u(z, t),

emphasising its dependance on location and time where appropriate or simply u(z) when we refer

to the potentials at arbitrary times. With u+ (u−) we express the trace of u on ∂Ω from the outside

(respectively inside), ∂νu denotes the normal component of the gradient of the potential at ∂Ω, ∂νu+

(∂νu−) is the normal derivative of the electric potential from the outside (respectively inside) of ∂Ω, and

∂zu is the gradient of the potential along S. The physical medium to which S corresponds is a flexible

cable, also known as electric array, of length l and diameter d, towed neutrally buoyant at a constant

speed τ along a survey trajectory that is independent to the location of the inclusions. In the model

of the cable’s motion T (z) denotes the tension profile on S, as a result of the towing force and the

hydrodynamic loads, ρ is the density of sea water, κt and κn are the cable’s tangential and normal drag

coefficients, and θ(z) is the cable’s orientation angle. The tangential and normal velocity profiles of the

cable are expressed by at(z) and an(z), while ct(z) and cn(z) denote the corresponding components
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of the sea currents. The schematic diagram in figure 1 illustrates the system in consideration.

Considering an open subset V of R2, L2(V ) and L2(∂V ) denote respectively the Hilbert spaces of

Lebesgue square-integrable functions on V and ∂V . H1(V ) denotes the Hilbert space of functions in

L2(V ) whose first derivative in the sense of distributions is in L2(C). H1
loc(V ) denotes the topological

space of functions f on V such that f |K ∈ H1(K̊) for all compact subsets K of V . Consider now that

V is a Lipschitz domain, then H1/2(∂V ) denotes the Hilbert space of functions ϕ in L2(∂V ) such

that the function (x, y) 7→ |ϕ(x)− ϕ(y)|
|x− y|

is in L2(∂V × ∂V ). H−1/2(∂V ) denotes the dual space of

H1/2(∂V ). Denoting by Vi, i = 1, . . . NV the connected components of V (NV = 1 if V is connected),

H
−1/2
� (∂V ) denotes the space of functions ϕ in H−1/2(∂V ) such that

∫
∂Ωi

ϕds = 0 , i = 1 . . . NV ,

where by abuse of notation, for i = 1 . . . NV ,
∫
∂Ωi

ϕds denotes the duality product of ϕ and the

constant function of value 1, which is in H1/2(∂Vi).

II. THE ELECTROMECHANICAL MODEL

We begin by approximating the three-dimensional system on the horizontal plane by considering the

domain’s depth-averaged bulk conductivity

σ(z) =
1

dσ

∫
Cz
σ3d(z, z⊥) dz⊥, z ∈ C, (1)

as a volume integral of the conductivity function σ3d over a cylindrical domain Cz of infinitesimal

radius, centred at z, aligned orthogonally to the plane z⊥ = 0 and extending to a depth dσ according

to the electric field penetration. In this context let the piecewise constant conductivity within the domain

of interest to be defined by

σ(z) =


σh z ∈ C \

NΩ⋃
i=1

Ωi

σi z ∈ Ωi

(2)

where NΩ is the unknown number of inclusions, where σi 6= σh. Applying a current pattern of the

form

f = if
[
δ(z − zp)− δ(z − zm)

]
, zp, zm ∈ St, (3)
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Fig. 1. A schematic diagram for the marine electrical sensing application. A slender electric array (black line) is towed neutrally

buoyant while it acquires electrical data. The figure shoes the electric potential field at two perpendicular planes intersecting

near the support of the array: the horizontal plane considered in this study, and the vertical one utilised in marine resistance

tomography applications. The field symmetry allows one to consider either of the these planes in approximating the problem

in two-dimensions. The potential field in this illustration is based on the free space Green’s function for the three-dimensional

Laplacian equation.

where δ is the Dirac function and if the magnitude of the current yields an electric potential u ∈

H1
loc(C \ {zp, zm}) that verifies the generalised Poisson equation

−∇ · σ(z)∇u(z) = f(z, z′) in C, z′ ∈ St. (4)

Since the domain is unbounded the electric potential satisfies the decay condition

u(z) =
|z|→∞

O(|z|−1), (5)
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uniformly in all directions, thus the potential field we seek to measure belongs in the subspace of

H1
loc(C \ {zp, zm}) that conforms the decay condition (5). The location of the current source function

as well as the coordinates of the electrodes that measure u depend on the position and shape of the cable

at any given time. Assuming the velocity of the towing vessel is kept almost constant in magnitude

the motion of the cable can be approximated by the linear hydrodynamic model [23]

∂zT (z) =
1

2
ρπdκt

(
at(z)− ct(z)

)∣∣at(z)− ct(z)∣∣, (6)

T (z) ∂zθ(z) =
1

2
ρdκn

(
an(z)− cn(z)

)∣∣an(z)− cn(z)
∣∣, (7)

∂tθ(z) = ∂zan(z) + at(z)∂zθ(z), (8)

∂zat(z) = an(z)∂zθ(z), (9)

for z ∈ St yielding the velocity, tension and position of the cable subject to the influence of the towing

velocity and the impinging ocean currents. The array is hinged to the towing vessel, hence the velocity

components at its head satisfy

at(z0) = τx(t) cos θ(z0) + τy(t) sin θ(z0), (10)

an(z0) = −τx(t) sin θ(z0) + τy(t) cos θ(z0), (11)

where z0 ∈ St, τx(t) and τy(t) are the Cartesian components of the vessel’s velocity at time t. At the

other end a buoy is attached in order to keep the tail of the cable straight, effectively causing

T (zl) = |τ |−2Tl

√(
a2
t (zl) + a2

n(zl)
)
, (12)

for some known Tl > 0 tension value, while the zero tail curvature constraint essentially translates to

an(zl) = cn(zl), for all t. (13)

Under the conditions (6)-(13) the motion of the cable is uniquely determined to yield the coordinates

of the applied currents and measured voltages, within the numerical error margin [23]. In addition to

the electrical measurements, data acquisition involves also positioning measurements of the electrodes

in short, regular time intervals.
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Fig. 2. Left the electric potential field at a certain time instant of the survey, and right the polarisation induced potential field due

to three inclusions: σ1 = 10−3 S/m (kite, left), σ2 = 10−1 S/m (peanut, middle) and σ3 = 102 S/m (bean, right), immersed

in a background of 1 S/m. The solid line marks the towing vessel trajectory, the red markers are the current applying electrodes

and the blue the positions of the other electrodes on the 500 m long array. Note the difference in the magnitude of the two

potential fields.

The ocean currents, although arbitrary and time-varying, are assumed known in simulating the motion

of the cable. Knowing their profile is not a requirement for localising the inclusions, although these can

be estimated using the methodology described in [23]. Their scope in this study is predominantly to

make the towing motion of the cable as realistic as possible, so that the trajectory of the cable differs

from that of the towing vessel. Effectively, this introduces the additional complexity of not knowing a

priori the exact location of the electrodes.

The position of the cable, and hence that of the electrodes, is measured using accelerometers embed-

ded in the cable. For electric arrays, the commercial standard involves fibre-optics based accelerometers,

that are accurate to about a centimetre. In conjunction with the global positioning system that is typically

mounted on the towing vessel, the positioning network resolves the coordinates of the cable every one or

two seconds. Tracking the position and curvature of the cable with accuracy is important, therefore the

analysis section addresses the performance of the proposed localisation algorithm against the inevitable

positioning errors and uncertainties.
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III. THE DIRECT PROBLEM

We consider the problem of computing the electric potential field u in the conductive domain C when

a low-frequency current f is applied through the electrodes of the cable St. For notational clarity we

derive the formulation of the potential assuming one inclusion.

The polarisation potential admits a single layer formulation and the total potential field satisfies

u(z) = uh(z) +

NΩ∑
i=1

vi(z), z ∈ C. (14)

Since σh and σ (where σ would be equivalent to σi for a multiple inclusion configuration) are constant,

u is the solution of (4) iff u is harmonic in Ω and C \ (Ω ∪ {zp, zm}) and also verifies the continuity

conditions at the interface of the inclusion

u+(z) = u−(z), z on ∂Ω

σh∂νu+(z) = σ∂νu−(z), z on ∂Ω

. (15)

Considering uh ∈ H1
loc(C \ {zp, zm}) defined by

uh(z) =
if
σh

[
Φ(z − zp)− Φ(z − zm)

]
, (16)

where Φ is the fundamental solution of the Laplace equation

Φ(z − z′) =
1

2π
ln

1

|z − z′|
, z 6= z′, (17)

uh is the homogenous electric potential in C such that

−∇ · σh(z)∇uh(z, t) = f, z ∈ C \ {zp, zm}, (18)

and uh verifies the decay condition (5). When a bounded inhomogeneity Ω appears in the support of

the electric potential uh, then that inclusion is said to be polarised by this potential. In turn, this induces

a surface charge density at its boundary yielding a polarisation potential v [11]. In these conditions, the

total potential field can be decomposed in the homogeneous and inhomogeneity-induced polarisation

potentials

u(z) = uh(z) + v(z), z ∈ C \ {zp, zm}, (19)
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where u is the solution of (4) and (5) iff −∆v(z) = 0 in Ω and C \ Ω and verifies the continuity

conditions

v+(z) = v−(z), z on ∂Ω

v+(z)× ν = v−(z)× ν, z on ∂Ω

σh∂νv+(z)− σ∂νv−(z) = −(σh − σ)∂νu
h(z), z on ∂Ω

(20)

as well as the decay condition (5) away from the inclusion. For a bounded inclusion Ω with Lipschitz

continuous boundary ∂Ω, given an integrable current density function ϕ ∈ H−1/2(∂Ω), the polarisation

potential can be expressed as a single layer potential [9]

v(z) =

∫
∂Ω

Φ(z − z′)ϕ(z′) ds(z′), z ∈ C \ ∂Ω, z′ ∈ ∂Ω, (21)

so that v is harmonic in Ω and C \ Ω and continuous across the interface ∂Ω. By virtue of the jump

condition of the normal derivative of the single layer potential

∂νv±(z) = ∓ϕ(z)

2
+

∫
∂Ω

∂ν(z)Φ(z − z′)ϕ(z′) ds(z′), z ∈ ∂Ω, (22)

v verifies the last continuity condition of (20) iff ϕ is solution of the boundary integral equation of the

second kind [20]

ϕ(z)− µK′ϕ(z) = 2µ∂νu
h(z), (23)

for a conductivity contrast coefficient

µ =
σh − σ
σh + σ

, (24)

and K′ : H−1/2(∂Ω)→ H−1/2(∂Ω) a bounded operator defined by

(K′ϕ)(z) = 2

∫
∂Ω

∂ν(z)Φ(z − z′) ϕ(z′) ds(z′), z ∈ ∂Ω, (25)

and ∫
∂Ω

ϕ(z′)ds(z′) = 0. (26)

The integrals in (25) and (22) are to be considered in their Cauchy principal value sense, while (26)

ensures the potential decay condition v(z) = O(|z|−1) away from the inclusion. The normal component



12

of the gradient of the potential across ∂Ω verifies the jump conditions

ϕ(z) = ∂νv−(z)− ∂νv+(z) z on ∂Ω (27)

= ∂νu−(z)− ∂νu+(z) z on ∂Ω. (28)

The equality (27) follows from

∂νv±(z) =
1

2

(
∓I + K′

)
ϕ(z), z ∈ ∂Ω,

(c.f. (25) - (22)) by solving for ∂νu−(z) − ∂νu+(z), and the one in (28) is due to the potential

decomposition uh = u+ − v+ = u− − v− from where we obtain u+ − u− = v+ − v−. Notice that

although u and uh are singular at the charged electrodes, v tends to be smooth throughout St when

the inclusion is away from the cable. Figure 2 depicts the two components of the potential field for

an arbitrary cable profile St, indicating also the scale difference in their respective magnitudes. In

the case for multiple inclusions, as treated in (Theorem 2.9) of [11], the surface current densities ϕi,

i = 1, . . . , NΩ are defined uniquely and satisfy

NΩ∑
j=1

(I− µiK′ij)ϕj(z) = 2µi∂νu
h(z), z ∈ ∂Ωi, (29)

where K′ij : H
−1/2
� (∂Ωj)→ H

−1/2
� (∂Ωi) is defined by

(K′ijϕ)(z) = 2

∫
∂Ωj

∂ν(z)Φ(z − z′) ϕ(z′) ds(z′), z ∈ ∂Ωi. (30)

This yields a potential field

u(z) = uh(z) +

NΩ∑
i=1

∫
∂Ωi

Φ(z − z′)ϕi(z′) ds(z′), z ∈ C \ ∂Ωi, z
′ ∈ ∂Ωi. (31)

Note that according to (Theorem 2.9) of [11]

ϕi(z) = 2µi(I− µiK′ii)−1∂νu
h(z) +O(∆z−2), (32)

where ∆z = min{|zgi− zgj | : i 6= j}. This derivation relies on the assumption that none of the active

electrodes resides within the inclusion [24]. From a practical prospective this is indeed a realistic
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scenario considering that the targeted inhomogeneities are few in number, highly dispersed, and of

very small diameters by comparison to the length of the cable. The case of a cluster is treated in [24]

where it is shown that the cluster’s polarisation tensor can be approximated to that of an inclusion

of elliptic shape. Although unlikely, if any of the electrodes enters the closure of the inclusion then

this will likely be manifested by the abrupt change in the electrical measurements. For the sake of

completeness in our derivation, note that if both active electrodes enter Ω, then the imposed potential

trivially changes to

uh(z) =
if
σ

[
Φ(z − zp)− Φ(z − zm)

]
(33)

while everything else remains the same, however if one of the two electrodes, for example zp, enters

Ω, then

uh(z) = if
[ 1

σ
Φ(z − zp)− 1

σh
Φ(z − zm)

]
, (34)

and now, uh and v do not verify the decay condition separately, however their sum u does. Similarly,

the solution ϕ to the boundary integral equation now verifies∫
∂Ω

ϕ(z) dz =
1

σh
− 1

σ
. (35)

For details on the numerical implementation of the electrical module, including the solution of the

boundary integral equation using the Nyström method we refer the reader to [20]. The mechanical

module was addressed using a linear finite difference time domain scheme as detailed in [23] and the

references therein.

Remark III.1. The forward problem study has been presented for general Lipschitz inclusions. In the

case of more regular inclusions, like C2, the density function for the single layer potential is in the

Hölder space C0,α(∂Ω) and the potential is in C1,α(R2 \ Ω) and C1,α(Ω) [25].



14

IV. THE INVERSE PROBLEM

We now address the inverse problem of detecting and localising the inclusions using electrical

potential measurements captured on St at discrete regular time instants t ∈ {t1, t2, . . . , tend}. We

begin by examining the far-field measurement of the polarisation potential v(z), i.e. through the actual

measurements of u(z), in order to assess what information about an inclusion Ω is incorporated in these

measurements. Following [11], assume for notational consistency that z = (z1, z2) where z1 = <{z},

z2 = ={z} are the cartesian coordinates, and i, j ∈ N2 are double-index variables. As per the standard

multi-index notation i! = i1!i2!, |i| = i1 + i2, ∂if = ∂i11 ∂
i2
2 f and zi = zi11 z

i2
2 . Since uh is a harmonic

function in C then it admits a Taylor expansion uh(z) =
∑+∞
|i|=0

1
i!∂

iuh(zg)zi, while the fundamental

solution Φ on which uh depends can now be expressed as Φ(z − z′) =
∑+∞
|j|=0

(−1)|j|

j! ∂jΦ(z)z′
j as

|z| → ∞. Based on these the far-field polarisation potential takes the form of

v(z) =

+∞∑
|i|=1

+∞∑
|j|=1

(−1)|j|

i!j!
∂iΦ(z − zg)Mij(Ω)∂iuh(zg), as |z| → ∞, (36)

where

Mij(Ω) =

∫
∂Ω

z′
j
φi(z

′)ds(z′), (37)

is the generalised polarisation tensor associated with the inclusion Ω and

φi(z
′) = 2µ(I− µK′)−1(νz · ∇zi)(z′), z′ ∈ ∂Ω. (38)

Evidently, at the far-field an inclusion’s geometry and conductivity value are observable through

its generalised polarisation tensors M, which in the special case where |i| = |j| = 1 is a 2 × 2

symmetric matrix depending on the shape of ∂Ω and the contrast σh/σ (Pólya-Szegö polarisation

tensor). Otherwise it is a symmetric tensor in the sense of the theorem 3.8(ii) of [11]. When Ω is a
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disk (hence ∂Ω is a circle on C) with a non-zero radius r and conductivity σ,

(K′ϕ)(z) = 2

∫
∂Ω

∂ν(z)Φ(z − z′)ϕ(z′) ds(z′)

= − 1

π

∫
∂Ω

〈z − z′, ν(z)〉
|z − z′|2

ϕ(z′) ds(z′)

= − 1

πr

∫
∂Ω

ϕ(z′) ds(z′)

= 0,

hence the jump condition at the boundary of the inclusion reduces to

∂νv±(z′) = ∓ϕ(z′)

2
, z′ ∈ ∂Ω,

while the Pólya-Szegö polarisation tensor admits an explicit expression [9]

Mo(Ω) = (σh − σ)|Ω|

 2r
r(σh+σ) 0

0 2r
r(σh+σ)

 = 2µπr2I, (39)

where |Ω| is the area of the inclusion. At the far-field v(z) can be approximated to the far-field of

an electric dipole source with moment p centred at zg. Let the dipole potential be Dp(zg)(z) then the

appropriate dipole moment p should yield

v(z) ≈ Dp(zg)(z) as |z − zg| → ∞. (40)

According to [13], this approximation is accurate to second-order when

p = M∇uh(zg).

In the case of multiple inclusions, we have

v(z) ≈
NΩ∑
k=0

Dpk(zgk)(z) as |zgi − zgj | → ∞ for i 6= j, (41)

where

pk = Mk∇uh(zgk).

Note that the above condition depends on the properties of the targeted inclusion(s) through the

generalised polarised tensor, hence it is impractical to compute the optimum dipole moment ahead
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of reconstructing the inclusion. Invariably, p does not have a unique representation unless the shape

and the conductivity value of the inclusion are specified. To alleviate this difficulty we apply a shape

regularity assumption, namely that ‘any inclusion will have the shape of a disk’. In effect, we are now

considering dipole moments of the form

po = Mo∇uh(zg), (42)

such that as |z − zg| → ∞,

vo(z) ≈ Dpo(zg)(z) =
〈po

2π
,
z − zg

|z − zg|2
〉

(43)

= µr2
〈
∇uh(zg),

z − zg

|z − zg|2
〉

= −µr2 if
2πσh

〈 zg − zp

|zg − zp|2
− zg − zm

|zg − zm|2
,
z − zg

|z − zg|2
〉

where vo(z) is the far-field polarisation potential expansion (36) with M = Mo.

V. THE ALGORITHM

The algorithm for locating the inclusions is based on the dipole approximation of the polarisation

potential for disk shaped inclusions. In particular, it uses two particular measurements in order to locate

the geometric centre zg of an inclusion. Each of these ‘measurements’ corresponds to the coordinates

of the active electrodes zp or zm at a certain St where the polarisation induced potential measured

there becomes zero. In particular, if there exist z∗p or z∗m such that v(z∗p) = 0 or v(z∗m) = 0, then the

corresponding pairs (z∗p, zm) ∈ St (or (zp, z
∗
m) ∈ St) will be utilised for localising the inclusion to

which v corresponds. Identifying a pair of such points, by following a simple measurement procedure,

yields the definition of two lines embedded in C that intersect at zg. Note that in these measurements, the

actual quantity being measured is the total electric potential u, thus what we refer to as measurements

here are simply the difference between the measured signal and the homogenous potential field.

To explain how the algorithm works consider that at z = zp, the dipole approximation of the



17

−2 −1.5 −1 −0.5 0

−2

−1.5

−1

−0.5

0

 Re {z}

 Im {z}

 

 

+++++++++
+
+
+
+
+

+++++++++++++++++
+

−
−
−

−
−−−−−−−−−−−−−−−−

−
−
−−−−−−−−

−
−

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 3. At the top row, the polarisation of a kite-shaped inhomogeneity by a potential field imposed by a current applied through

two point electrodes at zp = 0 and zm = −1−2i. Notice the polarity of the source density function ϕ defined at the boundaries

of the inclusion. At the middle row, the dipole induced potential approximation of the polarisation potential assuming a dipole

source whose moment conforms the polarisation tensor of the kite-shaped inclusion. To its right, the relative error in this dipole

approximation of the far-field polarisation induced potential. At the bottom row, the dipole potential approximation of the induced

potential, this time assuming a dipole moment that conforms a dish-shaped inclusion instead, and next the relative error in the

approximation. The figures illustrate the validity of the dipole approximation and the adopted shape regularity assumption.
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polarisation potential assuming a disk-shaped inclusion (43) becomes

Dpo(zg)(zp) =
〈po

2π
,
zp − zg

|zp − zg|2
〉
, (44)

= µr2 if
2πσh

〈 zg − zp

|zg − zp|2
− zg − zm

|zg − zm|2
,
zg − zp

|zg − zp|2
〉
,

∝
〈 z̄gp

|zgp|
,
z̄gp

|zgp|
− z̄gm

|zgm|

〉
,

∝
〈
z̄gp, z̄gp −

|zgp|
|zgm|

z̄gm

〉
where zgp = zg − zp, zgm = zg − zm are the displacement vectors, and z̄gp = zgp/|zgp| and z̄gm =

zgm/|zgm| their respective unit vectors for zp, zm ∈ St. Similarly, it can be shown that at z = zm

Dpo(zg)(zm) =
〈po

2π
,
zm − zg

|zm − zg|2
〉
, (45)

∝
〈
z̄gm,

|zgm|
|zgp|

z̄gp − z̄gm

〉
.

Now suppose away from the inclusion there is a point z∗p where v(z∗p) = 0. Then subject to the

dipole approximation Dpo(zg)(z) ≈ vo(z), and the incorporated shape regularity assumption, one may

establish the geometric criterion

v(z∗p) = 0 =⇒
〈
z̄∗gp, z̄

∗
gp −

|z∗gp|
|zgm|

z̄gm

〉
= 0, (46)

and respectively for a point z∗m away from the inclusion,

v(z∗m) = 0 =⇒
〈
z̄∗gm,

|z∗gm|
|z̄gp|

z̄gp − z̄∗gm

〉
= 0. (47)

Developing further the criteria (46) and (47) yields a linear system
〈zg − zm, zm − z∗p〉 = 0,

〈zg − zp, zp − z∗m〉 = 0,

(48)

representing two straight lines that are either parallel or intersecting at zg. It is easy to see that these

are perpendicular to the line connecting the charged electrodes at the point zm for v(z∗p) = 0 and zp

for v(z∗m) = 0 respectively. This observation is central to the development of our algorithm and we

formalise it in the form of the next theorem.
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Theorem V.1. If Dpo(zg)(z) is the dipole potential approximation of the potential vo(z) induced by the

polarisation of a disk-shaped inclusion Ω centred at zg ∈ C such that |z− zg| → ∞, and zp, zm ∈ St

are the coordinates of the positively and negatively charged electrodes then if there is a point z∗p such

that Dpo(zg)(z
∗
p) = 0 then the condition 〈zg − zm, zm − z∗p〉 = 0 holds. Similarly, if there is a point

z∗m such that Dpo(zg)(z
∗
m) = 0, then 〈zg − zp, zp − z∗m〉 = 0 holds true.

Proof. Developing the inner product in (47) yields

|z̄gp|2 −
|zgp|
|zgm|

〈
z̄gp, z̄gm

〉
= 0

hence since z̄gp is unit,

|zgp|
|zgm|

〈
z̄gp, z̄gm

〉
= 1.

Utilizing
〈
zgp, zgm

〉
= |zgp||zgm|

〈
z̄gp, z̄gm

〉
the above becomes

1

|zgm|2
〈
zgp, zgm

〉
= 1.

Let zmp = zm − zp such that zmp = zgp − zgm. Introducing to the above yields

1

|zgm|2
〈
zgp, zgm

〉
= 1

1

|zgm|2
〈
zmp + zgm, zgm

〉
= 1

1

|zgm|2
(〈
zmp, zgm

〉
+
〈
zgm, zgm

〉)
= 1

1

|zgm|2
〈
zmp, zgm

〉
= 0

Since |zm − zg| 6= 0 at the far field, the above is true only when
〈
zmp, zgm

〉
= 0, which proves the

required relation. The case for 〈zg − zp, zp − z∗m〉 = 0 follows similarly.

These criteria are graphically illustrated in figure 4, showing that at z∗p or z∗m the current injecting

electrodes and the geometric centre of the inclusion zg are at the vertices of a right-angle triangle.

Moreover, notice that the vector zmp is defined by the coordinates of the two charged electrodes,

irrespectively of the curvature of the cable.
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Fig. 4. For the figure at the left, the conditions where Dpo(zg)(z
∗
p) = 0 and Dpo(zg)(z

∗
m) = 0 are satisfied, signify that the

charged electrodes and the centre of the inclusion are at the vertices of some right angle triangles. Notice the right angles at zm and

zp respectively. For the pair of triangles to the right, the equivalent conditions for Dpo(zg)(zp
∗
i ) = 0 and Dpo(zg)(zp

∗
j ) = 0.

From a practical prospective, establishing a pair (z∗p, z
∗
m) so that to yield the necessary lines inter-

secting at the inclusion can become difficult, since even if one measures a zero polarisation potential

at one of the injecting electrodes, this does not guarantee a subsequent zero at the other pole soon

after. To circumvent this problem suppose that at time t, a measurement v(z∗pi) = 0 is obtained while

the array is towed along some predefined survey trajectory. At the same time let the corresponding

negative electrode be positioned at zmi
∈ St. Suppose now that the towing vessel executes a 2π turn of

circumference that is bigger than the length of the cable, starting and ending near z∗pi . This manoeuvre

is likely to yield another pair of points at zp∗j
and zmj . In this case the two lines intersecting at the

centre of the inclusion are 
〈zg − zmi

, zmi
− z∗pi〉 = 0,

〈zg − zmj
, zmj

− z∗pj 〉 = 0,

(49)

and the geometric arrangement of the points is similar to the previous case as depicted in figure 4.

The first equation is the line normal to the vector zmi
− z∗pi passing through zmi

while the second is

the line normal to zmj − z∗pj at zmj . The procedure for when encountering v(z∗mi
) = 0 first follows
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similarly with the relevant equations changed to
〈zg − zpi , zpi − z∗mi

〉 = 0,

〈zg − zpj , zpj − z∗mj
〉 = 0.

(50)

Assuming that the ocean current disturbances have a small impact on the displacement of the cable,

let the cable be towed on a circular trajectory CR of radius R > l/2π, such that CR overlays St with

|zp−zm| < l. As zp completes a 2π turn, the line orthogonal to the distance vector zp−zm at zm, rotates

tangentially to the periphery of a smaller, concentric circle cr whose diameter scales to the distance

|zp − zm|. This manoeuvre is aimed to yielding a second zero polarisation potential measurement

irrespectively of the direction of the turn. If the cable moves on CR without being displaced by sea

currents, then a zero crossing is certain, unless zg is situated within a region comprising the inner circle

cr or a small region adjacent to CR (see for example figure 5). In such case the inclusion remains

undetectable through this scheme, however given the proximity of cr to the array it is likely that the

inclusion will be detected by the large variation in the electrical potential measurements instead. The

main steps of the algorithm for localising the centre of an inclusion are:

Note that the algorithm does not require excessive data acquisition or storage, as the localisation

of the inclusion ultimately requires solving a 2 × 2 linear system. On the other hand, the induced

potential measurements are substantially weaker than the imposed ones, and therefore extracting the

time series v(zp, t) from u(zp, t) becomes challenging in the presence of noise. Nonetheless, even

without additive noise, the algorithm will encounter some systematic sources of errors, primarily due to

the dipole approximation of the polarisation potential that also incorporates the circular shape regularity

assumption. A further complication arises by the fact that the required z∗p and z∗m are not likely to

be sampled directly, but rather estimated from adjacent measurements of opposite polarity. Moreover,

although addressed by assumption 1, one has to consider what happens when the measured polarisation

potential arises not by one, but various distinct inclusions that happen to be in the vicinity of the

measurement. Indeed, the case of multiple inclusions poses the challenge of identifying which pairs
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Fig. 5. The CR manoeuvre to establish a second zero in the polarisation induced potential. In the right column there are four

snapshots of the 500 m long electric array as it performs a complete turn with a radius of about 180 m, and the corresponding

polarisation potential due to an inclusion situated at the bottom right. The figures on the left column, show the (dashed) lines

that are normal to line connecting the active electrodes (red dots) as the cable is changing its position. The inclusion becomes

detectable if it resides in a region where two or more lines are intersecting. At the last row notice the region in the interior and

the left of CR that does not contain any line crossings. Any inclusions situated therein remain detectable under this scheme.
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Algorithm 1 Detecting and localising the centre of an inclusion zg from v(zp, t)

Ensure: At t = 0 initiate the survey by towing the array on a predefined trajectory with constant

velocity τ

for t← t+ δt do

Move the cable to new position St,

Apply current f ,

Simulate/measure u(zp, t),

Compute v(zp, t) = u(zp, t)− uh(zp, t),

if sgn(v(zp, t)) 6= sgn(v(zp, t− δt)) then

Perform manoeuvre CR

end if

end for

De-noise the time series v(zp),

Identify the points where v(zp
∗
i ) = 0 and v(zp

∗
j ) = 0,

Identify the zero-crossing coordinates {zp
∗
i , zmi} and {zp

∗
j , zmj},

Solve a 2× 2 linear system to obtain zg.

of lines correspond to each inclusion? As we demonstrate in the numerical results section, we process

the points {(z∗pi , zmi)}ni=1 sequentially, computing a number of plausible zg points, anticipating that

these will concentrate around the true inclusion centres.

VI. ERROR ANALYSIS

In this section we address the sensitivity of the localisation algorithm to additive noise and default

inaccuracies in positioning data and electric measurements. Recall that the zero polarisation potential

coordinates z∗p, z∗m are unlikely to be sensed directly, but rather estimated from nearby points where

subsequent polarisation data change in polarity. Consider for example the linear system arising from
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the two line equations in (49) and let us normalise the vectors to

z̄mpi =
zmi
− zpi

∗

|zmi
− zpi

∗|
, z̄mpj =

zmj − zpj
∗

|zmj
− zpj

∗|
,

so that the two line equations are compactly expressed as

〈z − zmi
, z̄mpi〉 = 0, 〈z − zmj

, z̄mpj 〉 = 0.

Considering the errors in the measurements we can pose the problem of finding where these lines cross

as a least squares problem. Effectively, squaring the distance of a point z from either line and then

adding together yields

S(z) = (z − zmi)
′z̄mpi ⊗ z̄mpi(z − zmi) + (z − zmj )

′z̄mpj ⊗ z̄mpj (z − zmj ),

where ⊗ is the exterior vector product on C. Upon setting the gradient of the above to zero we obtain

A zg = b (51)

where

A = z̄mpi ⊗ z̄mpi + z̄mpj ⊗ z̄mpj , and (52)

b = (z̄mpi ⊗ z̄mpi)zmi + (z̄mpj ⊗ z̄mpj )zmj . (53)

If the errors are small enough such that ‖δA‖ < ‖A‖ and ‖δb‖ < ‖b‖, then subtracting the exact

system (51) from the perturbed (A+ δA)(zg + δzg) = (b+ δb), yields the localisation error in analytic

form

δzg = (I + A−1δA)−1A(δb− δAzg). (54)

Based on perturbation theory [26], if ‖A−1δA‖ < 1 then the relative error in the solution can be

shown to be bounded by

‖δzg‖
‖zg‖

≤ cond(A)

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
, (55)

noting briefly that a tighter bound can be obtained by exploiting the particular structure of the errors

in A and b in an element-wise basis such as |δaij | ≤ ε, if such information is available. From (55) it
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is evident that the localisation error scales proportionally to the condition number of A, but further to

that we ask how can this result be utilised to improve the performance, e.g. stability, of the method.

In other words, what does this error bound tell us about the way that data are acquired? Recall the

definition

A = z̄mpi ⊗ z̄mpi + z̄mpj ⊗ z̄mpj ,

let ψ be the angle between the unit vectors z̄mpi and z̄mpj . Notice that A is the sum of two rank-

1 symmetric matrices. In this setting some limiting cases are readily observable, for example when

ψ = π/2 or 3π/2 then 〈z̄mpi , z̄mpj 〉 = 0, and thus A is orthogonal with eigenvectors z̄mpi and z̄mpj

and a double eigenvalue equal to one. In this case the matrix attains a condition number of one, and

thus we anticipate the estimate of zg to be robust against the errors. On the other hand, if ψ = 0 or

ψ = π, then z̄mpi and z̄mpj are collinear or parallel and thus A will have one non-zero eigenvalue,

and thus a very large condition number. In the general case, as we sketch in the appendix,

cond(A) =


| cot(ψ/2)| if cosψ ≥ 0

| tan(ψ/2)| if cosψ < 0,

(56)

affirming that data (z∗pi , zmi
) and (z∗pj , zmj

) obtained at Si and Sj respectively yield a robust estimate

of zg if the lines connecting the charged electrodes in their respective cable orientations are close to

being orthogonal.

VII. FILTERING THE DATA

Instead of forming and solving the system (51) directly using the noisy data, it may be advantageous

to apply some noise filtering beforehand. The inherent smoothness of the polarisation measurements

zp(t) or zm(t) can be exploited to de-noise the data without a significant compromise in the signal.

Consider the noise model of the measurements

v(zp, t) = u(zp, t)− uh(zp, t) + η, zp ∈ St, t ∈ [0, t1, . . . , tend], (57)
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where η is the additive random noise, then we require that for |η| → 0, v(zp, t) is sufficiently smooth.

This remark is formalised in the form of the next theorem.

Theorem VII.1. Let v(zp), v(zm) the induced potential at injecting electrodes zp, zm, consider a

time tend > 0 and suppose that zp, zm ∈ Cn([0, tend], C \ Ω) for n ≥ 0, then v(zp, t), v(zm, t) ∈

Cn([0, tend],<).

Proof. Recalling that

uh(z) =
if
σh

[
Φ(z − zp)− Φ(z − zm)

]
, z ∈ C \ {zp, zm},

where if is the magnitude of the applied current and Φ is the fundamental solution of the Laplace

equation

Φ(z − z′) =
1

2π
ln

1

|z − z′|
, z 6= z′.

It is obvious that t 7→ ∂Φν(z)(z− zp(t)) and t 7→ ∂Φν(z)(z− zm(t)) are Cn functions from [0, tend] to

H−1/2(∂Ω), hence ∂νuh ∈ Cn([0, tend], H−1/2(∂Ω)). In fact, since none of the active electrodes is in

Ω, we have ∂νuh ∈ Cn([0, tend], H
−1/2
� (∂Ω)). Moreover, (I−µK′)−1 is a bounded linear operator of

H
−1/2
� (∂Ω) and t 7→ Φ(z−zp(t)) and t 7→ Φ(z−zm(t)) are Cn functions from [0, tend] to H1/2(∂Ω).

Since

v(zp, t) = 2µ

∫
∂Ω

Φ(z − zp(t))
(
(I− µK′)−1∂νu

h(t)
)

(z) ds(z) , t ∈ [0, tend]

and

v(zm, t) = 2µ

∫
∂Ω

Φ(z − zm(t))
(
(I− µK′)−1∂νu

h(t)
)

(z) ds(z) , t ∈ [0, tend],

we have v(zp, t), v(zm, t) ∈ Cn([0, tend],<).

In order to estimate the exact v(zp, t) from the measurements under these extreme noise conditions,

suppose that at time t we sample the potential field s times on each active electrode, for example

{u(1)(zp, t), . . . , u
(s)(zp, t)}, from where the induced potential samples {v(1)(zp, t), . . . , v

(s)(zp, t)}

can be extracted. Since both u and v contain the same noise the s-sample based average measurement
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Fig. 6. At the left, the true (red) and noise infused (blue) polarisation potential data at zp, and to the right the estimated

de-noised time series data for v(zp) using the smooth regularisation filter approach.

at time t is v̄t = 1
s

∑s
i=1 v

(i)(zp, t), and let v̄ ∈ <Nt the vector of averaged polarisation potentials over

Nt time instants. Further let S ∈ <Nt×Nt be a discrete, smoothness-imposing regularisation operator

[27], then an estimator of v can be obtained by solving

v̂ = arg min
v∈<Nt

{∥∥v̄ − v∥∥2

Σ−1
η

+
∥∥S v∥∥2

}
, (58)

where Ση ∈ <Nt×Nt is the sample-based noise covariance of the data, in this case a diagonal matrix.

This problem has an analytic solution

v̂ =
(
S + Σ−1

η

)−1
Σ−1
η v̄. (59)

In addition to the smoothness of the time series v(zp, t) and v(zm, t) one may also opt to exploit the

smoothness of the polarisation potential profile on St by considering the measurements on electrodes

adjacent to zp and zm. The graphs in figure 6 show a simulated time series of polarisation measure-

ments infused with Gaussian noise of variance equal to 5% of the recorded total potential u(zp), the

polarisation data sample-averages v̄, and the de-noised signal v(zp).
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VIII. NUMERICAL RESULTS

In this section we present some numerical results aimed at testing the performance of our algorithm.

We consider a domain with uniform background conductivity of σh = 1 S/m, in which we position three

small inclusions centred at zg1 = 150 + 1350i, zg2 = 805, and zg3 = 1850 + 625i as shown in figure

7. The simulation of the measurements involves a 200 m long electrical array of 0.0225 m in diameter,

towed at a constant speed of 2 m/s. The array is equipped with eight equidistant point electrodes,

including the pair that applies the currents at front and rear ends of the cable respectively, through

which a direct current of 20 A was applied every two seconds. To the simulated data a zero-mean

white Gaussian noise was added at a standard deviation of 5% of the recorded u(zp, t) measurement,

noting that this was in the region of 30 V. For each measurement 300 samples have been simulated

from where the sample mean and variance are estimated. This data acquisition rate is well within reach

using state-of-the-art instrumentation, under a single current pattern excitation [28]. Subsequently these

data were smoothed using a second-order discrete gradient operator as in (58). The zero-crossing points

are estimated by averaging the coordinates of the two consecutive polarisation potential measurements

of opposite polarity. The vessel is set to perform data acquisition on a predefined trajectory where it

comes under the influence of time-varying ocean currents with amplitude no bigger than 2 m/s. As

the electric potentials are sampled at zp and zm, when a polarity change in the measurements v(zp)

is recorded then the vessel may opt to perform a full turn manoeuvre, with the direction of the turn

chosen arbitrarily. To solve the forward problem, the integral equation (23) was solved numerically on

a grid with 0.5 m resolution.

In the first test we assume that the inclusions have conductivity values σ1 = 10−3, σ2 = 10−1, and

σ3 = 102 S/m. As shown in the left figure in 7, a total of six manoeuvres were performed triggered

by zero-crossings in the filtered time-series v̂(zp). The simulation yielded a time series of 4007 data

for v(zp) and v(zm), from where a total of 75 zero-crossings have been resolved after the de-noising

process, compared to 51 in the exact data. The overall duration of the survey was about 2.2 h, covering
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Fig. 7. Two simulated survey trajectories used in the numerical simulation tests, with six and seven manoeuvres respectively.

The figures indicate also the three targeted inhomogeneities.

an area of about 6 Km2. The localisation results of this simulation are plotted in figure 9. To the left

the processing of the linear systems (51) considering all v(z∗p) = 0 and v(z∗m) = 0 points without any

additive noise, allowing only the default positioning errors due to the estimation of z∗p and z∗m. The

results show a good concentration of the estimated zg points in the vicinity of the three inclusions,

however there are a few isolated prediction points away from them. These ‘ghost points’ are caused

by pairing zero polarisation data points that correspond to different inclusions. Note that although it is

easy to work out the intersection of lines arising from the same inhomogeneity, this task is no longer

trivial when having several such inclusions. To the right of the same figure we plot the corresponding

results after infusing the noise signal into the measurements. In this case, we notice some dispersion

among the estimators, although arguably these maintain a reasonable clustering around the targets. In

both cases the leftmost inclusion is localised the best and the rightmost the worst, however it must

also be noted that the later was only sensed from one side.

To investigate the impact of conductivity contrast on the performance of the algorithm, we repeat

the simulation for the same inclusions but we interchange their values to σ1 = 10−1, σ2 = 102, and

σ3 = 10−3 S/m. This time the survey trajectory ended up including seven manoeuvres yielding a total
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Fig. 8. The filtered data for the first simulation test with and without additive noise. The ◦ correspond to the estimated z∗p

coordinates, the O to the estimated z∗m coordinates. The figure on the left is without the additive noise, and that on the right

is with 5% zero-mean Gaussian noise. The values of the inhomogeneities from left to right are 0.001, 0.1 and 100 S/m in a

conductivity background of 1 S/m.
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Fig. 9. The results for the first simulation test with and without additive noise. The × and + are the zg estimators from z∗p

and z∗m respectively. The figure on the left is without the additive noise, and that on the right is with 5% zero-mean Gaussian

noise. The values of the inhomogeneities from left to right are 0.001, 0.1 and 100 S/m in a conductivity background of 1 S/m.
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Fig. 10. The results for the second simulation test with and without additive noise. The × and + are the zg estimators from z∗p

and z∗m respectively. The figure on the left is without the additive noise, and that on the right is with 5% zero-mean Gaussian

noise. This figure is similar to 9 except the values of the inhomogeneities from left to right were changed to 0.1, 100 and 0.001

S/m in a conductivity background of 1 S/m.

of 4169 measurements for for v(zp) and v(zm), lasting about 2.3 h. Among them from where a total 77

zero-crossings have been resolved after the de-noising process, compared to 55 in the noise-free data.

The measurements were subsequently infused with zero-mean Gaussian noise just like the previous

case, and the results from the algorithm are illustrated in figure 10. Comparing with the previous test,

it is apparent that the impact of additive noise in the performance of the algorithm is sustained, but

we observe no significant variation in the results with respect to the change of conductivity values.

A. Model limitations and extensions

The 2D model used in this study is based on the depth-averaged bulk conductivity of the 3D domain.

In this context the third dimension is incorporated into the 2D model through the integral of the

conductivity profile along the third dimension. This projection is clearly not unique, and thus our

method cannot resolve the z coordinate of the inclusion. In general, the polarisation potentials of 3D

inclusions will differ from those considered here even if those are situated close to the horizontal plane.

However, as the current injecting electrodes are always on the plane, if the inclusions are assumed to be



32

spherical and close to the surface then their equivalent electric dipoles will have moments predominantly

aligned to the plane. As the inclusion moves to a higher depth then the vertical component of the dipole

moment will increase and the 2D model approximation will no longer be valid. In effect, the 2D model

is more appropriate to small 3D inclusions when these are close to the surface.

The measurements of electric potential are sensitive to the depth-averaged bulk conductivity as

defined in (1). The proposed framework is thus appropriate for localising depth-invariant inhomo-

geneities of small diameter as well as small discrete inclusions situated near the surface as long as

their conductivity value provides an adequate contrast to the bulk conductivity of the background

medium. In this context the methodology is suitable for detecting submarine groundwater discharge,

considering the small volume of the flow and the high contrast in electric conductivity between spring

water and seawater [29]. Previous studies on this topic have utilised towed electrical tomography in

conjunction with chemical analysis sampling in order to delineate the aquifer and image the fluid

interactions [30].

This work can be viewed as a step toward a more realistic 3D model and inversion scheme. In regards

to the forward problem the extension appears to be obvious, but the localisation problem has some

complications. In principle, the integral equation (23) for the polarisation density can be formulated

in three dimensions and then the effective dipole approximation can be applied by assuming spherical

inclusions, using the framework in [10]. The imposed potential will be adapted according to the Green’s

function for the Laplacian equation in 3D, the criteria on the measured polarisation potential will remain

as in theorem IV.1, only this time one should be looking for the equations of three crossing planes.

However, if the zero-crossing coordinates z∗p and z∗m are restricted to the horizontal plane then the

vertical coordinate of the inclusion’s centre cannot be resolved, as the intersecting planes will all be

orthogonal to the horizontal. This indicates the need to measure the potential at various different depths,

which in turn implies towing the electrical array on a 3D trajectory.
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IX. CONCLUSIONS

We have addressed the problem of detecting and localising a small number of inhomogeneities

immersed in the homogeneous open plane, using towed electrical sensing. Assuming these are dispersed

away from each other, we have modelled the measurement using an electromechanical system based

on the single layer potential formulation. We have showed that sampling the potential induced by

the polarisation of these inclusions at the current injecting electrodes yields sufficient information to

locate them without knowing their conductivity values or shapes. In particular, subject to an a priori

assumption on the shape of the inclusions, the far-field polarisation potential can be approximated to

second-order accuracy to a dipole potential. Using this approximation we have proposed an algorithm

based on a geometric criterion that a zero polarisation measurement at a charged electrode requires the

two charged electrodes and the centre of the inclusion to be at the vertices of a right angle triangle.

The performance of the proposed methodology has been assessed using error analysis and numerical

simulation. The results indicate that the algorithm maintains a fair robustness to data noise and has a

low computational implementation cost.

APPENDIX

Using the trigonometric identity tan(ψ/2) = ±
√

1−cosψ
1+cosψ , to show that

cond(A) =


| cot(ψ/2)| if cosψ ≥ 0

| tan(ψ/2)| if cosψ < 0,

is equivalent to showing

cond(A) =

√
1 + cosψ

1− cosψ
if cosψ ≥ 0 and

√
1− cosψ

1 + cosψ
if cosψ < 0.

For the later it suffices to prove that the two eigenvalues of A are λ1 = (1−cosψ) and λ2 = (1+cosψ)

where cosψ = 〈z̄mpi , z̄mpj 〉. Recall the definition of the matrix as a sum of exterior products

A = z̄mpi ⊗ z̄mpi + z̄mpj ⊗ z̄mpj ,
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hence if 〈z̄mpi , z̄mpj 〉 = 0 then z̄mpi and z̄mpj are the two eigenvectors of the matrix with corresponding

eigenvalues λ1 = λ2 = 1. If these are not orthogonal then there exists a new orthogonal basis of two

vectors such that the sum of their individual exterior products is equal to A. Let the phasor definitions

of the two unit vectors as z̄mpi = eiψi , z̄mpj = eiψj then the entries of the matrix become

A =

 cos2 ψi + cos2 ψj cosψi sinψi + cosψj sinψj

cosψi sinψi + cosψj sinψj sin2 ψi + sin2 ψj


Taking the trace and the determinant of the 2× 2 matrix gives

Tr(A) = λ1λ2 = 2, |A| = λ1λ2 = sin2(ψi − ψj).

Using the fact that ψ = ψi−ψj and the identity λ1λ2 = (1− cos2 ψ) we obtain the required result. To

locate the corresponding eigenvectors we first form the unit vector zk = (z̄mpi + z̄mpj )/|z̄mpi + z̄mpj |

and then z1 = R⊥zk and z2 = R⊥z1 where R⊥ is the orthogonal anti-clockwise rotation operator,

thus A = λ1z1 ⊗ z1 + λ2z2 ⊗ z2.
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