

Edinburgh Research Explorer

The Database Wiki Project: A General-purpose Platform for Data
Curation and Collaboration

Citation for published version:
Buneman, P, Cheney, J, Lindley, S & Mueller, H 2011, 'The Database Wiki Project: A General-purpose
Platform for Data Curation and Collaboration' ACM SIGMOD Record, vol. 40, no. 3, pp. 15-20. DOI:
10.1145/2070736.2070740

Digital Object Identifier (DOI):
10.1145/2070736.2070740

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
ACM SIGMOD Record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43708718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2070736.2070740
https://www.research.ed.ac.uk/portal/en/publications/the-database-wiki-project-a-generalpurpose-platform-for-data-curation-and-collaboration(6d625eea-0770-4b0d-ad62-e09e436d7783).html

The Database Wiki Project: A General-Purpose
Platform for Data Curation and Collaboration

Peter Buneman, James Cheney,
Sam Lindley

School of Informatics
University of Edinburgh

Edinburgh, United Kingdom
{opb, jcheney}@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Heiko Mueller
Tasmanian ICT Centre

CSIRO
Hobart, Australia

heiko.mueller@csiro.au

ABSTRACT
Databases and wikis have complementary strengths and
weaknesses for use in collaborative data management
and data curation. Relational databases, for example,
offer advantages such as scalability, query optimization
and concurrency control, but are not easy to use and
lack other features needed for collaboration. Wikis have
proved enormously successful as a means to collaborate
because they are easy to use, encourage sharing, and
provide built-in support for archiving, history-tracking
and annotation. However, wikis lack support for struc-
tured data, efficiently querying data at scale, and local-
ized provenance and annotation. To achieve the best
of both worlds, we are developing a general-purpose
platform for collaborative data management, called DB-
WIKI. Our system not only facilitates the collaborative
creation of structured data; it also provides features not
usually provided by database technology such as anno-
tation, citability, versioning, and provenance tracking.
This paper describes the technical details behind DB-
WIKI that make it easy to create, correct, discuss, and
query structured data, placing more power in the hands
of users while managing tedious details of data curation
automatically.

1. INTRODUCTION
Curated databases are finding use in all branches of

science and scholarship. Most curated databases are cre-
ated and maintained in a collaborative effort by a ded-
icated group of people – the curators – who produce a
definitive reference work for some subject area. Com-
mon examples include UniProt, a resource of protein se-
quence and functional information [8], and IUPHAR-
DB, the official database of the IUPHAR Committee
on Receptor Nomenclature and Drug Classification [7],
which contains contributions of a large community of
experts in the field. Some curated databases are also be-
ing developed in support of “citizen science”, where the

public at large can contribute to the database (see [3] for
examples). A system that maintains curated databases
faces several technical and usability challenges [20, 13]:

1. Past versions of data need to be archived and easy
to retrieve. The archiving system should also sup-
port temporal queries over the history of data.

2. Much curated data is copied and edited from exist-
ing sources. Since the value of curated databases
lies in their quality and organization, knowing the
origin of the curated data — its provenance — is
particularly important.

3. In addition to the actual data, curated databases
carry additional valuable annotations consisting of
opinions of curators about the quality of data or
suggested changes.

4. Curators should receive credit for their contribu-
tions. Thus, the system needs to make data items
citable and attributable to their contributors.

5. Curated databases are collections of entries that
predominantly follow a common structure. This
common structure (or database schema) may need
to change over time as the subject area evolves.

6. Many data curation projects rely on their web pres-
ence to distinguish themselves from other projects;
in fact, journals such as Nucleic Acids Research re-
quire databases to maintain Web interfaces in or-
der to be considered for publication.

It can be seen from these requirements that we are
asking for a mixture of functionalities provided by data-
bases and wikis. The ability to handle structured data
is to some extent already present in wikis through the
use of infoboxes, but they fall far short of the function-
ality of a database; in fact they are not even intended as
the primary representation of the data they contain [6].
Relational databases, on the other hand, provide little in
the way of generic support for these features. However,
while it is always possible to add them for individual ap-
plications, the ability to do this largely remains the pre-
serve of professional programmers and database admin-

SIGMOD Record, September 2011 (Vol. 40, No. 3) 15

istrators and requires substantial coding effort. The ex-
pense of doing this is unrealistic for many small projects
that lack the resources to employ this expertise.

We believe that the needs of database curation
projects could be met more reliably and cost-effectively
by developing new general-purpose systems that com-
bine the advantages of databases and wikis. We call such
systems Database Wikis. Much of the basic research on
curated databases needed to implement database wikis,
such as archiving, citation, provenance, and annotation
management, has already been conducted [10, 11, 13,
21]. However, there as yet is no single system that draws
these techniques together.

1.1 Contributions
We are developing DBWIKI, a Database Wiki that

aims to combine the ease of use and flexibility of a wiki
with the robustness and scalability of a database; fur-
thermore, DBWIKI provides unified generic techniques
for database curation that have previously been proto-
typed in separate systems.

DBWIKI provides the ability to create, populate and
browse curated databases using a standard web browser.
Data entry and modification is done either using system-
generated web forms or by import from other data
sources such as XML files. Each piece of information
has a provenance record. All changes to the data and the
database schema are logged in the database. The prove-
nance and prior versions of each individual data item are
browsable through the user interface. Moreover, each
piece of information within the database can be anno-
tated (including annotations themselves). Annotations
are free-form text that allow curators to share and dis-
cuss their opinions, much like comments on blogs or fo-
rums; however, annotations can be attached to any part
of the data, not just pages. To demonstrate the full ca-
pabilities of DBWIKI we have used it on data from sev-
eral existing curated databases, including the CIA World
Factbook [2], DBLP [4], and IUPHAR-DB [7].

In addition to the database capabilities, DBWIKI in-
cludes a declarative “markdown” language for defining
wiki pages. We extended a markdown syntax parser
with syntax for embedded queries for viewing data. This
extension enables querying and aggregating information
from the curated database, e.g., list the population of
countries in Europe. Similar proposals have been made
for embedding SPARQL queries in other wiki exten-
sion projects such as Semantic MediaWiki [1]. DB-
WIKI’s query capabilities, however, go beyond querying
the current state of the data, as we also allow embedded
queries over the history and the provenance of data, e.g.,
list all changes made to the population of Greece. Such
queries are not currently supported by other wiki exten-
sion projects.

Figure 1: DBWIKI System Architecture

2. SYSTEM OVERVIEW
We implemented DBWIKI as a stand-alone Java ap-

plication [12]. The architecture, divided in three layers,
is shown in Figure 1. The bottom layer is responsible
for storing the data and any additional information. The
middle layer is responsible for querying and manipulat-
ing the data. The top layer of the architecture handles
incoming HTTP requests and generates HTML pages in
response. In parallel to the Java-based prototype pre-
sented here, we used a high-level Web programming
language called Links [17] to develop another prototype,
where we experimented with wiki-embedded query lan-
guage design. Our experiences with the Links prototype
are presented in a companion paper [16]; the lessons
have been incorporated into the Java system.

2.1 Data Model and Storage
DBWIKI extends the XML archive management sys-

tem XARCH [21]. XARCH is an archiving system based
on a simplified XML data and schema model, as illus-
trated in Figure 2. The schema describes the set of
possible paths in the data tree and distinguishes inter-
nal ($) from text (@) nodes. In XARCH, the edges of
the data tree are annotated with time intervals indicating
the range of times (or version numbers) during which a
given subtree was present in the database. Timestamps
are similar to those proposed in [14] and implemented
in XARCH. For example, a timestamp [1− 5, 10− 12]
indicates that the associated node was present in data-
base versions 1− 5 and 10− 12. A special value “now”
indicates an open interval. XARCH supports an effi-
cient sorting-based merge operation that identifies the
differences between the current version of the database
and a new version. XARCH has been used to archive
real examples such as the CIA World Factbook [2] and
IUPHAR-DB [7].

DBWIKI currently supports a common set of data
and schema modification operations including insert,
delete, and update. It is also easy to copy-and-paste

16 SIGMOD Record, September 2011 (Vol. 40, No. 3)

$COUNTRY {
@NAME,
$CATEGORY {
@NAME,
$PROPERTY {
@NAME,
@TEXT,
@NOTE,
@RANK,
$SUBPROP {
@NAME,
@TEXT,
. . .

}}}}

"Population" "29,835,392 ..." "40"

"Birth rate" "37.83 ..."

"Population" "84,825 ..." "198"

"People"

$CATEGORY@NAME$CATEGORY@NAME

$COUNTRY $COUNTRY

@RANK@TEXT

@NAME"Andorra"@NAME"Afghanistan" $PROPERTY

@TEXT@NAME

"People"@NAME @TEXT @RANK $SUBPROP @NAME

$PROPERTY

Figure 2: A schema and data tree

nodes and subtrees within or among different curated
databases. Each operation creates a new version of the
database (efficiently using the archiving approach from
XARCH). With each node we associate a timestamp that
describes those database versions in which the node was
present, using the same interval annotation approach as
in XARCH. Based on the timestamp and information
about the action that created each database version we
derive provenance information for data nodes following
the provenance model defined in [11]. Each node may
also be associated with a list of annotations. Annota-
tions are timestamped but not versioned, and creating
an annotation does not create a new version of the data.

We use a relational database back-end to store the
data tree, annotations, and version information, i.e., we
shred the data tree, schema, and other metadata into re-
lations. The data is stored relationally using the edge
relation. Each tree is given its own entry number which
identifies all the rows corresponding to that tree. More-
over, each row is associated with a timestamp indicat-
ing the versions when that edge was present in the tree.
The main difference between the storage model of DB-
WIKI compared to XARCH is that instead of using XML
files with special string-valued attributes to store times-
tamps, we store both the tree data and the temporal in-
formation in a relational database. This is useful for sup-
porting annotation and provenance-tracking since we do
not have to serialize this extra data into a textual XML
form. DBWIKI supports different RDBMS back-ends
using the Java JDBC interface. The relational database
also stores the wiki page markup sources and configura-
tion files used for web page layout (see below). Each of
these files is also versioned.

2.2 User interface
Users interact with DBWIKI through a web browser,

making requests encoded using URLs for either brows-

Figure 3: CIA World Factbook web interface in DB-
WIKI with time machine and edit menu

ing or modifying the data, or for viewing or editing
wiki pages. The URLs for wiki pages are similar to
those in Wikipedia, i.e., the page title is used as the
page identifier. When browsing the data tree, we al-
low URLs similar to the query formats (see Section 3.1
for details). Once requested data has been retrieved, it
is passed to the HTML generator that generates the re-
sponse page. One of the design criteria of DBWIKI was
to keep HTML generation separate from the rest of the
system, hence highly customizable, as in typical wikis
or content management systems. HTML generation is
guided by three configuration files.

The first file is a HTML template. The template speci-
fies the basic HTML to be used for all web pages of a data
collection. Besides standard HTML tags, the template
contains placeholders for predefined user-interface com-
ponents. These components take the data node to be dis-
played and database version information as parameters
and generate standard HTML snippets. One such com-
ponent is the “time-machine”. The time-machine pro-
vides links to different views of the data, i.e., the current
version, each previous version, highlights of changes
since a given previous version, and the full history of
the data. Other examples for predefined user-interface
components are HTML and JavaScript code for display-
ing and editing annotations and provenance information.
The second configuration file is a layout definition that
specifies how to map the tree-structured data to HTML
pages, tables or lists. The simplicity of the schema lan-
guage makes it easy to specify different layouts for the
data. The layout system allows configuring which at-
tribute names are used in paths, whether groups are ren-
dered as tables or lists, and how subtrees are grouped,
i.e., all on one page or split into several pages. The third
configuration file is a cascading style-sheet (CSS) file
used to format the HTML output produced by the tem-

SIGMOD Record, September 2011 (Vol. 40, No. 3) 17

Figure 4: Wiki pages (from left to right) embedded query result, page source, and data update form.

plate and layout engine.
The wiki interface also allows editing all configura-

tion files on-the-fly. Together, these configuration files
give the user a great amount of flexibility in customiz-
ing the look-and-feel of the web pages. An example
is shown in Figure 3 which shows a DBWIKI version
of the CIA World Factbook using some of the features
of the original Web site. Figure 4 shows another three
pages from the Factbook wiki using the default layout.
However, while DBWIKI supports automatic browsing
and editing of Factbook data, it cannot at present exactly
duplicate all aspects of the existing interface. There is
a trade-off between simplicity and expressiveness of the
template and layout language, and we are interested in
exploring richer stylesheet languages.

2.3 Database Queries
With DBWIKI one can query the data tree and em-

bed the results in wiki pages. Thus, DBWIKI’s wiki
pages are dynamic, combining hypertext with views of
the structured data. Wiki page queries are translated to
SQL queries against the relational data store. We cur-
rently support three different query formats. The first
format uses the node identifier to retrieve a node (and its
subtree) from the database.

The second query format is a special form of path ex-
pression, i.e., sequences of node labels with optional
constraints. Path expressions allow positional refer-
ences as well as constraints on values of a node’s chil-
dren. For example, the query /COUNTRY:2 returns the
second country in the CIA World Factbook [2]. Note
that the order of nodes is defined by the order of their
node identifiers which in turn reflects the order in which
the nodes have been inserted into the database. The fol-
lowing query returns the population for Chile in our ver-
sion of the Factbook.

/COUNTRY[NAME=’Chile’]/

CATEGORY[NAME=’People’]/

PROPERTY[NAME=’Population’]

The third query format (currently in development) is
an adaptation of the XAQL query language that was im-
plemented with XARCH. This format allows to select
multiple sub-trees from a node as well as posing con-
straints on the timestamps and provenance information
of nodes. For example, the following query returns the
name and GDP of all countries that were modified by
user admin since 2010:

SELECT $c/NAME, $p/TEXT FROM $c IN /COUNTRY,

$p IN $c/CATEGORY[NAME=’Economy’]/PROPERTY[NAME=’GDP’]

WHERE $c WAS MODIFIED SINCE 2010-01-01 BY admin

The path expressions in our queries correspond to a
simple fragment of XPath, and we can use a wide vari-
ety of known techniques to evaluate them efficiently. We
currently use a simple two-step approach: Based on the
constraints in the path expression we first generate a SQL
query that retrieves all candidate entries that potentially
satisfy the constraints. We then load each candidate en-
try into memory and evaluate the path expression on it.
For XAQL queries there is a third step to filter the results
using the path expressions in the SELECT-clause.

3. TECHNICAL HIGHLIGHTS
In this section we give further details of the various

components of the system. In this short paper we cannot
give full details of algorithms but we refer when possible
to similar techniques in the literature.

3.1 URLs
DBWIKI provides unique URLs for each node in the

data tree. These URLs are essential for displaying and
editing individual nodes in separate web pages, and for

18 SIGMOD Record, September 2011 (Vol. 40, No. 3)

node annotation. The URLs and the provenance infor-
mation that we store, furthermore, provide a mechanism
that can be used to cite (parts of) database entries and
give credit to users for their contributions.

URLs in DBWIKI are based on node identifiers
and they take the form http://server/database/node-id.
While this URL scheme fulfills the need for persistent
and unique identifiers, it is not very intuitive for human
users, nor is it robust if data is exported and re-imported.
In addition, DBWIKI is able to decode URLs that reflect
the current path under which a node is located based
on predefined node identification rules. For each group
node in the database schema one can define a descen-
dant attribute node whose value is to be used as node
identifier. These identifiers are similar to keys for XML
as defined in [15]. An example specification for the CIA
World Factbook is:

IDENTIFY /COUNTRY BY NAME,

IDENTIFY /COUNTRY/CATEGORY BY NAME,

IDENTIFY /COUNTRY/CATEGORY/PROPERTY BY NAME

Based on this specification the following URL refers
to the the population of Chile in our Factbook collec-
tion: http://server/CIAWFB/Chile/People/Population.
To avoid ambiguities each path component can be pre-
fixed with the element label, e.g., /COUNTRY:Chile.
These URLs are not stable as the data and schema are
likely to change over time; we plan to extend them with
time information to make them more useful as stable ci-
tations [10].

3.2 Update operations

Updating the data. DBWIKI supports atomic inser-
tion and deletion of subtrees and editing of attribute
nodes. These operations were not previously supported
efficiently in XARCH, which focuses on merging whole
database versions instead. Each update operation is cur-
rently implemented by first loading the entry to which
the update applies (including all past version informa-
tion) into memory. We then perform consistency checks
and translate the update operation into a set of INSERT
and UPDATE statements to the relational database. De-
tails for each type of operation are given below. We fur-
ther record the system time of the update and the op-
eration itself in the version table. We refer to the new
database version by t in the following. In many cases it
would be more efficient to translate tree updates to SQL
queries instead of loading and storing the whole entry.
We regard this as an opportunity for future work.

An insertion is handled in several steps. First, we en-
sure that the parent node is alive and check whether the
subtree being inserted matches the schema. If not, de-
pending on the database’s policy we either reject the up-
date, ignore non-matching data, or extend the schema.

Next, we insert the subtree as a child of the parent. Each
node in the subtree results in an additional tuple in the
relational database. Only for the root of the inserted
subtree we also explicitly store a timestamp [t − now].
Similar to XARCH, all nodes that do not have an explicit
timestamp inherit the timestamp of their parent.

A deletion of a node in a given entry is handled by ad-
justing the timestamps of the deleted node and any live
descendants that have explicit timestamps. Depending
on whether the deleted node has an explicit timestamp
we either replace “now” with t− 1 in that timestamp or
insert a new timestamp for the node that ends at t − 1.
We then replace “now” with t− 1 for all explicit times-
tamps of live descendants. Note that we do not delete
any tuples from the relational database to ensure that all
past versions of the data are available.

Each attribute can have multiple text nodes as chil-
dren. We refer to these nodes as attribute values. A live
attribute can only have one live value. When editing an
attribute a we first terminate the current value of a. Let
v denote the new attribute value. If a has had value v
sometime in the past, then we extend the timestamp of
the corresponding text node with [t− now]. If not, then
we create a new child of a with timestamp [t − now].
We avoid performing (and recording) spurious updates
that do not actually change the value.

Copy and paste. DBWIKI supports a simple form of
copy and paste for data subtrees, following the design
given in [11]. Copy and paste is implemented as an in-
sert with the data to be inserted being retrieved using a
DBWIKI URL. That is, one first selects the target node
for the paste operation and then specifies the URL that
points to the root of the subtree that is to be copied. This
URL can either point to the current or a previous version
of the subtree; in either case the value of the subtree at a
single time instant is copied and pasted as a child of the
target node. DBWIKI sends a copy of the subtree that is
to be copied in XML format in response to a parameter
“?cpxml” on the URL. The source URL of a copy and
paste operation is recorded in the version table. Using
URLs enables copy and paste between different servers.

Schema updates. DBWIKI currently supports only in-
sertion and deletion of schema elements. The schema is
versioned, so that past versions of the data can be under-
stood. Insertion happens automatically when inserting
data that require schema extensions. Deletion is imple-
mented by deleting from the schema in the same way
as for data deletion, and then deleting the corresponding
data subtrees. We are currently investigating more effi-
cient implementations of insertion and deletion as well
as considering additional operations such as renaming.

3.3 Provenance and annotation
The initial provenance record for any database is the

SIGMOD Record, September 2011 (Vol. 40, No. 3) 19

record of when it was imported, by whom, and (option-
ally) a URL pointing to the source. Of course, we have
no way of ensuring that the source URL is stable; it
is just for documentation purposes. We also store one
provenance record per insert, delete, copy-paste or up-
date operation. Some of this information can be inferred
from the change history. We also support annotations (as
textual comments) to any part of the database.

4. EXTENSIONS
The choice of a very simple data model already pays

some dividends, and suggests that we can select among
a wide variety of techniques for querying and manipulat-
ing XML or tree-structured data, as well as for publish-
ing relational data as XML. It should also be straightfor-
ward to export DBWIKI data as RDF/Linked Data, an
approach to data exchange that is becoming popular in
scientific data communities. Other techniques for XML
such as security views [18] should also be easy to incor-
porate into DBWIKI.

A more sophisticated approach to path querying
based on Grust et al.’s XPath Accelerator [19] has been
implemented in a student project. However, the inter-
action between XML indexing and temporal issues re-
mains largely unexplored. Another student has added
facilities to query data and plot query results using
charts, graphs, or maps, much as Google Fusion Tables
allows plotting table data using Google APIs. For DB-
WIKI, this problem is more difficult because the data is
nested. A third student has developed ways to visualize
and query the provenance information, such as showing
the number of edits or annotations per user over a given
period as a chart or graph.

5. CONCLUSION
This paper presents DBWIKI, a system that combines

the insights of wiki-style user interfaces with the capa-
bilities to structure and query data efficiently charac-
teristic of database management systems. The system
is still under development, but we believe it represents
solid progress towards the goal of making curated data-
base technology available to those who need it the most:
namely, scientific database curators and consumers of
scientific data, where provenance, annotation, citation,
and versioning are key requirements that currently need
to be revisited for each new database. We also hope that
DBWIKI will help us evaluate the effectiveness of re-
search so far on these topics, and identify new research
directions or unmet needs. The DBWIKI source code
has been made publicly available under open-source
terms [9], and we invite other researchers or projects to
experiment with it, extend it or critique it.

Acknowledgments. This work has been supported
by an EPSRC platform grant, by Google and by the

University of Edinburgh IDEA Lab. Hui Li, Haoli Qu
and Snehal Waychal have contributed code as part of
their MSc projects. We are grateful to Tony Harmar and
his colleagues for giving us access to the IUPHAR [7]
source data.

6. REFERENCES

[1] http://semantic-mediawiki.org.
[2] https://www.cia.gov/library/publications/the-

world-factbook/index.html.
[3] http://www.citizensciencealliance.org/.
[4] http://www.informatik.uni-trier.de/∼ley/db.
[5] http://www.geneontology.org.
[6] http://en.wikipedia.org/wiki/Help:Infobox
[7] http://www.iuphar-db.org.
[8] http://www.uniprot.org.
[9] http://code.google.com/p/database-wiki/

[10] P. Buneman. How to cite curated databases and
how to make them citable. In SSDBM, pages
195–203. IEEE, 2006.

[11] P. Buneman, A. Chapman, and J. Cheney.
Provenance management in curated databases. In
SIGMOD, pages 539–550. ACM, 2006.

[12] P. Buneman, J. Cheney, S. Lindley and H. Müller
DBWiki: a structured wiki for curated data and
collaborative data management In SIGMOD,
demo, pages 1335–1338. ACM, 2011.

[13] P. Buneman, J. Cheney, W.-C. Tan, and
S. Vansummeren. Curated databases. In PODS,
pages 1–12. ACM, 2008.

[14] P. Buneman, S. Khanna, K. Tajima, and W.-C.
Tan. Archiving scientific data. ACM Trans.
Database Syst., 29(1):2–42, 2004.

[15] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W.-C. Tan. Keys for XML. In WWW, pages
201–210, 2001.

[16] J. Cheney, S. Lindley, and H. Müller. Using Links
to prototype a Database Wiki. In DBPL, 2011.

[17] E. Cooper, S. Lindley, P. Wadler, and J. Yallop.
Links: web programming without tiers. In FMCO,
pages 266–296. Springer-Verlag, 2007.

[18] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure
XML querying with security views. In SIGMOD,
pages 587–598, 2004.

[19] T. Grust, M. Van Keulen, and J. Teubner.
Accelerating XPath evaluation in any RDBMS.
ACM Trans. Database Syst. 29(1):91–131, 2004.

[20] H. V. Jagadish, A. Chapman, A. Elkiss, M.
Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. in SIGMOD, pages
13-24. ACM, 2007.

[21] H. Müller, P. Buneman, and I. Koltsidas. XArch:
archiving scientific and reference data. In
SIGMOD, pages 1295–1298. ACM, 2008.

20 SIGMOD Record, September 2011 (Vol. 40, No. 3)

