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ABSTRACT 

Cognitive abilities vary among people. About 40-50% of this variability is due to general 

intelligence (g), which reflects the positive correlation among individuals’ scores on diverse 

cognitive ability tests. g is positively correlated with many life outcomes, such as education, 

occupational status, and health, motivating the investigation of its underlying biology. In 

psychometric research, a distinction is made between general fluid intelligence (gF) - the 

ability to reason in novel situations - and general crystallized intelligence (gC) - the ability to 

apply acquired knowledge. This distinction is supported by developmental and cognitive 

neuroscience studies. Classical epidemiological studies and recent genome-wide association 

studies (GWASs) have established that these cognitive traits have a large genetic component. 

However, no robust genetic associations have been published thus far due largely to the 

known polygenic nature of these traits and insufficient sample sizes. Here, using two GWAS 

datasets, in which the polygenicity of gF and gC traits was previously confirmed, a gene- and 

pathway-based approach was undertaken with the aim of characterizing and differentiating 

their genetic architecture. Pathway analysis, using genes selected on the basis of relaxed 

criteria, revealed notable differences between these two traits. gF appeared to be 

characterized by genes affecting the quantity and quality of neurons and therefore neuronal 

efficiency, whereas long term depression (LTD) seemed to underlie gC. Thus, this study 

supports the gF-gC distinction at the genetic level and identifies functional annotations and 

pathways worthy of further investigation. 
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INTRODUCTION 

 

A large proportion (40-50%) of inter-individual variability in cognitive abilities is due to 

general intelligence (g), a quantitative trait that reflects the positive correlation among an 

individual’s scores on diverse cognitive ability tests (Deary, 2012; Spearman, 1904). A high g 

score is associated with many favorable life outcomes (Deary & Batty, 2011). Psychometric 

research distinguishes between general fluid intelligence (gF) – the ability to reason in novel 

situations – and general crystallized intelligence (gC) – the ability to apply acquired 

knowledge and learned skills (Carroll, 1993; Cattell, 1963). Although gF and gC are 

correlated at least 50% based on twin studies (Wainwright et al., 2005) and more so early and 

late in life (Li et al., 2004), developmental and cognitive neuroscience studies largely support 

the distinction between them. In normal aging, gF declines earlier and more rapidly than gC 

(Craik & Bialystok, 2006; Salthouse, 2004); in development, measures of verbal (gC) and 

non-verbal (gF) intelligence correlate differently with changes in brain structure (Ramsden et 

al., 2011). Furthermore, gF is closely associated with fronto-parietal and anterior cingulate 

brain networks, while gC is dependent on posterior frontal and temporal regions (Barbey et 

al., 2012; Glascher et al., 2009; Jung & Haier, 2007; Woolgar et al., 2010). Finally, at the 

population level, large gains in performance have been observed for tests that are strongly 

associated with gF, but not with gC (Flynn, 2007). 

 

More than half of the variability in intelligence tests is attributable to additive genetic effects 

(Deary et al., 2009a; Lee et al., 2010; Plomin & Spinath, 2004). In a recent genome-wide 

association study (GWAS), 40% and 51% of the phenotypic variability in gC and gF, 

respectively, could be accounted for by genetic variants in linkage disequilibrium with 

common single nucleotide polymorphisms (SNPs) (Davies et al., 2011), providing a lower-

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
bound estimate of the narrow-sense heritability of these traits. Furthermore, using only SNP 

data, ~1% of the variance in intelligence test scores in a sample could be predicted in an 

independent sample (Davies et al., 2011). However, at the single marker level, no robust 

genetic association with intelligence has yet been published, consistent with the observation 

that the effect of individual SNPs may be too weak to be detected in complex polygenic traits 

using the classical genome-wide P≤5x10-8 threshold (Wellcome Trust Case Control 

Consortium, 2007) on the sample sizes currently available (International Schizophrenia 

Consortium, 2009). Therefore, relaxing the significance criteria and exploiting the polygenic 

signal by going beyond the traditional single-marker approach to gene- and pathway-based 

methods may offer more power (Neale & Sham, 2004) and insight into the biological 

processes underlying these traits (Wang et al., 2010). 

 

The polygenic architecture of gF and gC was previously confirmed using the Cognitive Aging 

Genetics in England and Scotland (CAGES) cohort as the discovery sample and the 

Norwegian Cognitive NeuroGenetics (NCNG) adult lifespan sample for replication (Davies et 

al., 2011). Here, using the same datasets, we combine single-marker, gene- and pathway-

based approaches to characterize the genetic architecture of gF and gC with respect to known 

biological processes. 

 

MATERIALS AND METHODS 

 

GWASs: genotypes and phenotypes 

The genotype and phenotype protocols and the samples have been described previously 

(Davies et al., 2011; Espeseth et al., 2012). All participants gave written consent before the 

study started. All procedures were conducted according to the tenets of the Declaration of 
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Helsinki and approved of by the relevant Research Ethics Committees. An overview of the 

genotype and phenotype protocols in the discovery and replication samples is provided below, 

with further details available in the original publications. 

 

Discovery GWAS: The final NCNG GWAS consisted of 554,225 SNPs genotyped in a 

homogenous Norwegian sample of 670 individuals (457 females), ranging from 18 to 79 

years of age (M = 47.6; SD = 18.3) (Espeseth et al., 2012). Participants completed a battery of 

psychometric tests, assessing general cognitive ability, memory, attention and speed of 

processing. The protocol was approved by the Regional Committee for Medical and Health 

Research Ethics, Southern Norway (project ID: S-03116). DNAs were genotyped on the 

Illumina Human610-Quad Beadchip. Quality control was performed with the “check marker” 

function of the R package GenABEL (Aulchenko et al., 2007). Individuals were excluded 

based on relatedness (“ibs.threshold”=0.85), heterogeneity, unresolved sex discrepancies and 

call rate≤0.97. Population structure was assessed by multidimensional scaling (MDS) analysis 

(using 100,000 random SNPs), removing outlying samples with possible recent non-

Norwegian ancestry. No additional adjustment for population structure was performed due to 

the homogeneity of the sample (Espeseth et al., 2012). SNPs with a call rate≤0.95, minor 

allele frequency≤0.01 and Hardy-Weinberg Equilibrium (exact test) P-value≤0.001 were 

excluded. 

 

Replication GWAS: The CAGES sample consists of five cohorts, the Lothian Birth Cohorts of 

1921 (Deary et al., 2009b; Deary et al., 2004) and 1936 (Deary et al., 2007) (LBC1921, 

LBC1936), the Aberdeen Birth Cohort of 1936 (ABC1936) (Deary et al., 2009b; Deary et al., 

2004) and the Manchester and Newcastle Longitudinal Studies of Cognitive Aging cohorts 

(Rabbitt et al., 2004). The final GWAS dataset consisted of 549,692 SNPs genotyped in 3511 
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healthy individuals (2115 females) with detailed cognitive ability measurements taken in 

middle to older adulthood (mean age ranged from 64.6 in the ABC1936 to 79.1 in LBC1921; 

overall age range: 44-93) (Davies et al., 2011). Ethical approval was obtained from the 

relevant Research Ethics Committees. Individuals were excluded based on unresolved gender 

discrepancy, coefficient of relatedness>0.025 (based on 549,692 autosomal SNPs), call 

rate≤0.95 and evidence of non-Caucasian descent as determined by MDS analysis (Davies et 

al., 2011). SNPs were included if they met the following conditions: call rate≥0.98, minor 

allele frequency≥0.01 and Hardy–Weinberg equilibrium test with P≥0.001. Population 

structure was assessed by MDS analysis, and four MDS components were fitted as covariates 

to correct for any population stratification that might be present. 

 

Cognitive phenotypes: Different measures of gF and gC were employed for each of the five 

CAGES samples and the NCNG sample (Davies et al., 2011). In general, the different tests of 

gF aimed to assess each individual’s capacity to reason logically and solve problems in novel 

situations, relatively independently of acquired knowledge. gF employs aspects of processing 

speed, attention, memory and executive function. The gC tests were vocabulary-based, 

assessing each individual’s semantic knowledge. All measures were corrected for sex (with 

the exception of the CAGES Manchester and Newcastle gF, which was derived separately for 

males and females) and age. The standardized residuals were then extracted and used as the 

trait measures in all subsequent analyses. In the NCNG, of the 670 individuals, 629 and 643 

had scores for gF and gC, respectively. In the CAGES, of the 3511 individuals, 3400 and 

3482 had scores for gF and gC, respectively. 

 

Analyses  

Construction of gene lists 
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A ‘bottom-up’ approach (Liu et al., 2007) was undertaken. Both single-marker and gene-

based association analyses were performed, testing SNPs and genes individually first in order 

to construct a list of genes that would then be subjected to pathway analysis, via IPA, to 

identify over-represented functions and/or pathways. For each of gF and gC, genetic factors 

that showed evidence of association in the NCNG were identified and filtered further based 

on evidence of replication in the CAGES. Single-marker and gene-based statistical methods 

and thresholds were selected and applied, as appropriate, with the aim of controlling the Type 

II (false-negative) as well as the inversely related Type I (false-positive) error rates, 

incorporating instead prior biological knowledge to the interpretation of the findings and 

generating testable hypotheses for further investigation (Lieberman & Cunningham, 2009; 

Williams & Haines, 2011). 

 

The LDsnpR tool (Christoforou et al., 2012a) was used to (1) annotate individual SNPs and 

(2) assign SNPs to genes for the gene-based analyses. SNPs were assigned to genes (Ensembl 

54 definitions) if they were located physically within the boundaries of the gene (+/-10kb) or 

if they were in high linkage disequilibrium (LD; r2≥0.80 based on HapMap CEU 

(http://hapmap.ncbi.nlm.nih.gov/)) with another SNP located within the boundaries of the 

gene (+/-10kb). 

 

Single-marker analyses: In the NCNG sample, association between individual SNP alleles 

and cognitive phenotypes was tested using linear regression analysis (1 d.f. coefficient t-test), 

as implemented in PLINK (Purcell et al., 2007). The CAGES GWAS data comprised the 

inverse variance weighted model ‘meta P-values’ produced in the original CAGES five-

sample meta-analysis (i.e. as reported by Davies et al., 2011). A meta-analysis of the CAGES 
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and NCNG single-marker allele P-values was performed on the overlapping SNPs, using an 

inverse variance weighted model, as implemented in METAL (Willer et al., 2010).   

 

All SNPs with an asymptotic nominal P-value ≤0.05 in the NCNG were then mined for 

replication in the CAGES GWAS data. As advised in Konig (2011), positive single-marker 

replication was determined on the basis of P≤0.05 and the same direction of effect in both the 

NCNG and CAGES samples, resulting in a meta-analysis P-value that is more significant than 

either of the original P-values. Using LDsnpR, all SNPs that replicated were annotated, where 

possible, with a gene name or ENSEMBL identifier and taken forward for pathway-based 

analysis by IPA.  

 

Gene-based analyses: All 554,225 SNPs in the NCNG GWAS were assigned, where possible, 

to genes using LDsnpR. For each gene containing a SNP, association was assessed by 

applying PLINK’s permutation-based set test on the LDsnpR-generated sets. Gene-based 

statistics generated by permutation-based methods automatically account for potential 

confounding factors, such as LD structure and gene length or SNP number, through the 

generation of an empirical null distribution (Liu et al., 2010). Since the true underlying 

genetic architecture of these traits is unknown, three different models were tested to obtain a 

gene-based association score (Lehne et al., 2011):  

(1) the minimum P-value (minP) model, which assigns to each gene the association 

statistic, or P-value, of the most significant SNP in the gene, assumes that a single SNP within 

the gene contributes to the phenotype;  

(2) the all P-values model, which assigns to each gene the mean association statistic of 

all the SNPs in the gene, assumes that all or most SNPs within the gene contribute to the 

phenotype;  
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(3) the P<0.05 threshold model, which assigns to each gene the mean association 

statistic of all SNPs within the gene that have a P≤0.05, assumes that only a few or a subset of 

SNP contribute to the phenotype. 

 

The P-values were computed based on 10,000 permutations, and the lowest of the three 

permuted P-values was retained as the gene-based P-value for each gene. No additional 

correction was applied to the gene-based score to account for testing three models due to the 

high correlation between the tests. Genes with gene-based permuted P≤0.05 were mined for 

replication in the CAGES.  

 

In order to preserve the Type II error rate, the replication criteria in the CAGES were relaxed 

to include any gene that contained at least one SNP with a ‘meta-P’≤0.05, ensuring that 

significance under any genetic architecture was captured. In the NCNG, for example, all 

genes with a minimum gene-based permuted P≤0.05 contained at least one SNP with a 

P≤0.05 (data not shown). This replication criterion of at least one SNP with a ‘meta-P’≤0.05 

is equivalent to the unadjusted minimum P-value approach. Thus, the CAGES SNPs were first 

assigned to genes using LDsnpR, as described above, and the genes were scored using the 

minimum P-value approach, assigning to the gene the P-value of the most significant SNP in 

that gene (without further adjustment). All genes that were selected from the NCNG and that 

also replicated in the CAGES (i.e. meta-P≤0.05) were taken forward for analysis with IPA. 

Finally, after the relevant gene lists were pruned for LD on the basis of their association 

signals and position, the hypergeometric distribution, as implemented in 

www.geneprof.org/GeneProf/tools/hypergeometric.jsp, was used to assess whether the 

number of genes replicating in the CAGES was greater than expected by chance. 
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Construction of gene lists – stringent replication criteria: Since the aforementioned single-

marker and gene-based replication criteria in the CAGES are prone to inflating the Type I 

error rate due to gene-length bias, the robustness of the subsequent main IPA findings was 

assessed by re-running IPA on gene lists constructed using more stringent statistical 

thresholds and methods. Firstly, for the single-marker analysis, only genes tagged by the 

SNPs that met the previously described replication criteria and resulted in a meta-analysis 

P≤1x10-5, as supported by the National Human Genome Research Institute GWAS catalog 

(Welter et al., 2014), were taken forward for IPA analysis. For the gene-based analysis, 

replication in the CAGES was determined using two gene-scoring methods which accounted 

for the number of SNPs per gene and, critically, for LD without requiring genotype-level data. 

The first method scored each gene with the most significant P-value (i.e. the minP approach), 

adjusting for the number of SNPs using a modified Sidak’s correction (Saccone et al., 2007). 

This approach has been shown to perform as well as regression-based methods (Segre et al., 

2010; Christoforou et al., 2012a). The second approach was comparable to the regression-

based ‘all P-values’ model described above, combining all SNPs mapped to the gene using 

Brown’s approximation method, as implemented in PLINK (Moskvina et al., 2011; Purcell et 

al., 2007). The NCNG genotype data was used to estimate the LD between SNPs. Thus, the 

genes with gene-based permuted P≤0.05 in the NCNG which met a P≤0.05 with either of 

these two methods in the CAGES were subjected to IPA analysis. 

 

Ingenuity Pathway Analysis (IPA) 

Genes that showed evidence of association in the NCNG and of replication in the CAGES 

based on either the single-marker and/or the gene-based analysis were selected for pathway 

analysis with IPA (Ingenuity® Systems, www.ingenuity.com) to identify the most relevant 

biological functions and pathways. IPA gathers information from published data from ~3600 
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peer-reviewed journals regarding relationships between genes and proteins. The information 

is updated weekly, manually curated and stored within the Ingenuity® Knowledge Base, 

which is then queried during an analysis to identify specific biological functions, or “function 

annotations”, and pathways enriched within the submitted gene list. 

 

In this study, the Ensembl 54 gene identifiers were uploaded into IPA and mapped, if 

possible, to their corresponding object in the Ingenuity® Knowledge Base (Genes Only). A 

“Core Analysis” was performed, including both direct and indirect relationships and using all 

available data sources in all species available. Molecules and/or relationships that were either 

experimentally observed or predicted with high confidence were considered. For the main 

analyses, which aimed to differentiate gF and gC as it relates, most relevantly, to the nervous 

system, tissues and primary cells were restricted to those of the nervous system and cell lines 

were restricted to those of the central nervous system. Additional analyses were performed to 

evaluate the robustness and relevance of the main findings, including (1) re-running the IPA 

having excluded genes known to be extensively studied to assess the possibility of publication 

bias driving the main findings and (2) re-running the IPA having included all tissues and cell 

lines, except those specific to cancer, to assess the relevance of the main findings in the 

context of more global annotation. 

 

In particular, we focused on the significant function annotations. The function annotations are 

organized based on Ingenuity® Ontology, which consists of a manually built and maintained 

hierarchical data structure of hundreds of thousands of unique classes. As part of the ‘Core 

Analysis’, IPA performs a Fisher Exact Test (FET) to determine whether the submitted gene 

list consists of genes of a particular function annotation more than expected by chance given 

the proportion of genes of that particular function annotation in the entire Ingenuity 
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Knowledge Base. It also uses the Benjamini-Hochberg (BH) multiple testing correction 

method to adjust for the number of ontologies tested, providing a false discovery rate for a 

particular function annotation. In this study, all functional annotations with a FET P<0.05 

(and corresponding BH P<0.25) were considered significant. 

 

RESULTS 

Construction of gene lists 

Single-marker analyses: A total of 554,225 SNPs were tested for allelic association to gF 

(N=629 individuals) and gC (N=643 individuals) in the NCNG sample. As these GWAS data 

results were not presented in the previous study (Davies et al., 2011), the traditional SNP-

level diagnostics and results are provided in the Supporting Information (Figure S1 and 

Dataset S1). The genomic inflation factor was 1 for both gF and gC (Figure S1), indicating 

that the data did not suffer from population stratification or other systematic bias. When 

mining the CAGES data, 816 SNPs in gF and 884 SNPs in gC met the replication criteria of 

P≤0.05 and the same direction of effect (Supporting Information Dataset S1). Using the LD-

based binning approach implemented in LDsnpR (Christoforou et al., 2012a), 481 (59%) of 

the gF SNPs and 549 (62%) of the gC SNPs were assigned to Ensembl 54 genes. 159 gF 

SNPs and 160 gC SNPs mapped to more than one gene on the basis of LD. Since it is not 

possible to identify the true source of the association on the basis of the SNP P-value alone 

(Christoforou et al., 2012a,b), all genes were retained for pathway analysis. The significant 

function annotations or pathways were subsequently manually examined to ensure that they 

did not consist of clusters of genes representing the same genetic association signal. Thus, 503 

and 530 Ensembl 54 genes for gF and gC, respectively, (Supporting Information Dataset S1) 

were taken forward for IPA analysis. 171 (34%) of the gF genes and 212 (40%) of the gC 

genes were implicated by more than one replicated SNP. 
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Gene-based analyses: A gene-based approach was also used to identify candidate genes for 

pathway analysis, allowing for locus heterogeneity and the aggregation of multiple weaker 

association signals. In the NCNG, of the 34,109 eligible Ensembl 54 gene entries, 2698 and 

2615 met the nominal significance threshold of set-based permuted P≤0.05 in gF and gC, 

respectively (Supporting Information Dataset S2). Of these, 841 gF genes and 920 gC genes 

had a minimum P-value gene-based score of P≤0.05 in the CAGES (Supporting Information 

Dataset S2). After the relevant gene lists were first pruned for LD based on position and 

association signal, resulting in 607 and 652 relatively independent association signals for gF 

and gC, respectively, the number of genes showing evidence of replication was more than 

expected by chance for gC (hypergeometric P=4.5x10-4), but not for gF (hypergeometric 

P=0.25). The 841 gF genes and 920 gC genes were added to the list of genes identified by 

single-marker analysis and taken forward for IPA.  

 

Ingenuity Pathway Analysis 

Figure 1 summarizes the number of SNPs and genes identified in each analysis and the 

relevant corresponding overlaps. 1182 genes for gF and 1294 genes for gC were identified 

through both the single-marker and gene-based analyses and subjected to IPA analysis. Of 

these genes, 853 for gF and 893 for gC were identified by their Ensembl Gene identifier in the 

IPA database (i.e. “IPA Ready” genes; Supporting Information Dataset S3) and were thus 

available for pathway analysis. 117 genes were in common between the two traits.  

 

IPA’s “Core Analysis” was run on the two lists of genes, restricting the analysis to tissues and 

cell lines related to the nervous system. Function annotations that were significantly enriched 

with a Fisher Exact Test (FET) P<0.05 and a Benjamini-Hochberg (BH) P<0.25, which 
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account for all of the function annotations tested, were declared significant and evaluated. For 

both traits, function annotations involved in the biological function “Nervous System 

Development and Function” were the most common, accounting for >25% of the function 

annotations. These were followed by annotations involved in “Cell-to-Cell signaling” and 

“Cellular Assembly and Organization” in both gF and gC (~8%) (Supporting Information 

Dataset S3). However, it is important to note that some function annotations are categorized 

under multiple biological functions, resulting in redundancy in the data (e.g., “axonogenesis” 

appears under “Nervous System Development and Function”, “Cell Morphology”, “Cellular 

Function and Maintenance”, “Cellular Assembly and Organization” and “Tissue 

Development”). When considering only the non-redundant function annotations, specifically 

those identified on the basis of at least two genes from the inputted gene list, 85 and 54 

function annotations were identified as significantly enriched in gF and gC, respectively 

(Supporting Information Dataset S3). 

 

Only four function annotations were enriched in both gF and gC, including “microtubule 

dynamics” and “chemotaxis of neurons”, which could be generally categorized as 

architectural features of neuronal development. The set of genes leading to the enrichment of 

these overlapping annotations in gF was different to that in gC (Table 1), except for the 

“migration of GABAergic neurons” annotation which was attributed to the same two genes in 

gF and gC. 

 

The most statistically significant functional annotations were identified in gC. “Synaptic 

depression” ranked at the top (FET P=2.9x10-6; BH P=0.0015), with the related “long term 

depression” in general (LTD; FET P=2.0x10-5; BH P=0.0052) and LTD of specific cells 

(Table 2), all of which are highly related as indicated by the composite genes. “Guidance of 
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axons” and “schizophrenia” were also significantly enriched in gC (FET P=4.8x10-4 and 

0.042, respectively), the former also ranking third (Table 2 and Supporting Information 

Dataset S3). 

 

The general functional enrichment profiles of gF and gC were different. No function emerged 

as notably significant in gF, a finding which was further emphasized by the ‘flat’ multiple-

testing corrected BH P-value of 0.18 for all significant annotations. The most significantly 

enriched functional annotation identified was “synaptic fatigue of synapse” (FET P=0.0021), 

followed by “apoptosis of spinal cord cells” (FET P=0.0041) and “inhibition of neurons” 

(FET P=0.0053) (Table 3). However, the predominance of function annotations relating to 

“quantity”, particularly of neurons and of other structures of the nervous system was notable 

(Table 3, Supporting Information Figure S2 and Dataset S3). Other functions were related to 

the quantity (e.g., formation, loss, survival, and apoptosis), quality (e.g. synaptic fatigue, 

degradation, atrophy and myelination), or morphology of neurons or related structures. Long-

term potentiation (LTP) was another repeated function for gF (Supporting Information Figure 

S2). One gene, brain-derived neurotrophic factor (BDNF), which showed gene-based 

association with gF (Supporting Information Dataset S2), contributed to the enrichment of 

several significant function annotations for gF (Table 3 and Supporting Information Dataset 

S3). As BDNF is one of the most extensively studied genes in the field (Green et al., 2008), it 

could bias the IPA results, which are based on peer-reviewed publications. However, when 

IPA was run without BDNF, most of the significant findings withstood its exclusion (Table 3 

and Supporting Information Dataset S3) and the general functional enrichment profile 

observed in gF was preserved. A manual examination of the chromosomal positions of the 

sets of genes leading to the enrichment of the significant annotations listed in Tables 1-3 
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ensured that these significant enrichments are due to independent association signals and not 

to clusters of genes in LD representing the same association signal. 

 

In order to gauge the robustness of the above findings in the absence of the gene-length bias 

that may have been introduced with the relaxed replication criteria, the CNS-specific IPA 

analysis was also performed on gene lists constructed on the basis of more stringent 

replication criteria. For gF, the single-marker analysis identified two genes which contained 

replicated SNPs that met the meta-analysis P≤1x10-5 threshold (Supporting Information 

Dataset S1). The gene-based analysis identified 178 genes with gene-based P≤0.05 using 

either the modified Sidak approach or Brown’s approximation method (Supporting 

Information Dataset S2). Together, this resulted in a total of 180 genes available for IPA 

analysis for gF. For gC, 5 and 224 genes were identified via the single-marker and gene-based 

analyses, respectively, resulting in 225 unique genes available for IPA analysis. Nine genes 

were common to both gF and gC. 

 

The IPA results emerging from the abridged gene lists were not as impressive in terms of the 

number of significant unique function annotations (N=26 and 8 for gF and gC, respectively) 

and in terms of their general enrichment profiles for gF and gC (Supporting Information 

Dataset 3). Also, for both traits, different function annotations emerged as most significant, 

namely “neuritogenesis” for gF (FET P=2.8x10-4) and “hypoplasia of cerebellar vermis” (FET 

P=0.0015) (Supporting Information Dataset 3). However, the main functions which were 

found to distinguish gF from gC in the original, less conservative analysis remained 

significant. “LTD” and “synaptic depression” remained unique to gC albeit at a reduced 

significance level (FET P=0.018 and 0.047, respectively) (Table 2 and Supporting 

Information Dataset 3). For gF, functions which related to quantity, quality or morphology of 
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neurons and synapses still predominated. These included “quantity”, “morphogenesis” and 

“development” of neurons, synapses and other brain structures (Supporting Information 

Dataset 3). No function annotations were common to both traits in this analysis. 

 

Finally, returning to the original gene lists based on the relaxed criteria, IPA was run again on 

both traits, using information from all cell lines, with the exception of cancer cell lines, in the 

Ingenuity® Knowledge Base. This helped to evaluate the primary CNS-restricted results 

relative to more global annotation, to identify annotations that may be related to cognitive 

ability and to enable the inclusion of published studies of brain-related traits that were 

executed in non-CNS cell lines, such as lymphoblastoid cell lines (Gladkevich et al., 2004). 

The significance of the original, CNS-restricted findings was largely unaffected. The most 

significant annotations for gF in this analysis fell under the Disease and Disorder Category of 

Cardiovascular Disease (e.g. “vascular disease”, FET P=7.1x10-6; Supporting Information 

Dataset S3). In addition, the function annotations “development of brain”, “behavior”, 

“cognition disorders”, “cognitive impairment” and “schizophrenia” were also significantly 

enriched in gF (Supporting Information Dataset S3). For gC, “synaptic depression” remained 

the most significant annotation. However, it was followed by the Cardiovascular Disease 

function annotation “coronary artery disease” (FET P=1.8x10-6; Supporting Information 

Dataset S3). The significance of the enrichment of “schizophrenia” also marginally improved 

(from FET P=0.042 to FET P=0.026, Supporting Information Dataset S3). 
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DISCUSSION  

Novel polygenic approaches to analysing GWAS data have greatly improved our 

understanding of complex traits and have captured more of the “hidden heritability” (Davies 

et al., 2011; Visscher et al., 2012; Maher, 2008; Manolio et al., 2009) but have failed to 

identify the markers or genes implicated. Pathway-based techniques are complementary 

polygenic methods that support biological analysis of GWAS data. Gene-based methods, 

which are ideal for pathway-based approaches (Liu et al., 2010), permit the aggregation of 

SNPs of smaller effect and test the gene as a whole, potentially increasing power (Neale & 

Sham, 2004). These analyses are also more permissive to locus heterogeneity, where multiple 

independent variants within a locus have independent effects on a trait (Christoforou et al., 

2012a; Yang et al., 2012), and they use prior biological knowledge, facilitating a more 

meaningful interpretation of data (Wang et al., 2010). Therefore, if the genetic signals 

underlying gF and gC, two highly heritable and polygenic traits, cluster in known biological 

pathways, it should be possible to use pathway-based analyses to identify which biological 

processes are most strongly implicated in these subcomponents of g. We particularly wanted 

to determine whether gF and gC could be differentiated at the level of biological pathways or 

functions as they have been shown to be distinct in terms of development and brain structure. 

Taking a ‘bottom-up’ approach (Liu et al., 2007), we analysed two GWAS datasets using both 

single-marker and gene-based analyses to construct gene lists for IPA analysis. Although 

some significantly enriched functions overlapped in the two traits, the overall picture 

suggested distinct functional enrichment profiles, supporting the gF-gC distinction at the 

genetic level. 

 

The most statistically significant finding was the enrichment in gC of genes involved in 

synaptic depression and LTD. This finding, which was unique to gC, also survived the FDR 
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multiple testing correction at the more conservative 0.05 threshold and the application of 

more stringent replication criteria for the construction of gene lists. It was also the top finding 

when the pathway analysis included non-CNS-related tissue types and conditions. LTD and 

long-term potentiation are the major forms of long-lasting synaptic change in the mammalian 

brain (Collingridge et al., 2010). LTD is involved in synaptic pruning during development 

(Peineau et al., 2007) and is thus important in adult neuroplasticity. Synaptic LTD is mediated 

by the effect of L-glutamate and other neurotransmitters on several types of receptors. The 

resulting synaptic plasticity is necessary for hippocampus-dependent learning and memory, 

certain types of behavioral flexibility and novelty detection (Collingridge et al., 2010). LTD 

deficits have been associated with reduced working memory and reversal of memory 

performance in rats. Studies focusing on medial temporal lobe regions have revealed a role of 

LTD in memory stabilization (in the amygdala) (Migues et al., 2010) and recognition memory 

(in the perirhinal cortex) (Winters & Bussey, 2005), implicating LTD in the development and 

maintenance of knowledge representations. 

 

For gF, the association signal was less striking in terms of statistical significance. gF was 

predominantly characterized by genes that control the quantity, morphology and integrity of 

neurons and synapses. These factors affect the quality and efficiency of neuronal signaling 

(Brown et al., 2008), which, in turn, affect cognition, as indicated by reduced activation in 

individuals with higher cognitive ability (Prat et al., 2007; Reichle et al., 2000). Since gF 

declines in cognitive ageing, the enrichment of these functions is consistent with the decline 

in synapse number, brain volume, and white matter integrity in the ageing brain (Fjell et al., 

2009; Morrison & Hof, 1997; Walhovd et al., 2011; Westlye et al., 2010). 
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Only four function annotations were common to both traits. These were related to 

development and structural aspects (e.g., microtubule dynamics, dendrite formation), which 

play central roles in synapse formation and are thus likely to be important for cognitive 

function (Bramham et al., 2010). The genes leading to enrichment of three of these functions 

were different for gF and gC, reflecting the gain of information that gene-set or pathway-

based approaches offer by enabling the identification of overlap between related traits or 

replication of the same trait. 

 

The function annotation “schizophrenia” was also significantly enriched in gF and gC, 

indicating that the identified genes have also been implicated in schizophrenia by other 

studies. A polygenic risk score for schizophrenia was recently shown to be associated with 

lower IQ at age 70 and greater decline in IQ level in one of the CAGES cohorts (Mcintosh et 

al., 2013), confirming previous observations at the single candidate level of a genetic relation 

between general cognition and schizophrenia (Toulopoulou et al., 2010). Furthermore, 

enrichment of the terms “behavior”, “cognition disorders” and “cognitive impairment” 

suggests that the genes identified here have been implicated in other studies of cognition. 

Finally, annotations relating to “cardiovascular disease” ranked in the top two in both gF and 

gC. Cognitive dysfunction is well documented in patients with cardiovascular disease (Vogels 

et al., 2007). 

 

The heritability for gF and gC are similar, but the strength of association, extent of replication 

and strength of enrichment were all greater for gC than for gF (Davies et al., 2011). There are 

several possible reasons for this. First, gF may be more heterogeneous at the phenotype level. 

While gC was defined as the standardized score of a single measure in each sample, gF 

estimation was based on a hierarchical principal component analysis from an array of specific 
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measures. The idea that the psychometric structure of gF is more heterogeneous is consistent 

with another major model of intelligence (Johnson & Bouchard, 2005; Vernon, 1964), in 

which verbal abilities are retained as a single second stratum component, while fluid abilities 

are separated into perceptual and mental rotation skills, thus reflecting higher phenotypic 

complexity. Second, assessment of gF was not based on identical subsets of specific tests in 

NCNG and each of the CAGES subsamples. However, the different batteries of cognitive 

tests yield almost identical estimates of general intelligence (Johnson et al., 2004). Third, the 

age differences between the samples could have a differential effect given that gF decreases 

with age while gC is relatively stable, even though the correlation between them increases 

with age (Li et al., 2004). Finally, the difference in enrichment profiles may be magnified by 

gene-length bias, given that a stronger association was identified for gF when IPA was re-run 

using the genes that passed the more stringent criteria. 

 

The main complicating factor in this and other studies of brain-related traits is gene-length 

bias, as it presents an analytical ‘Catch-22’.While it is important to correct genes for their 

length, or equivalently, the number of SNPs tested, to control for false findings, doing so risks 

over-penalizing and thus eliminating the most relevant candidate genes and therefore 

pathways for intelligence. It is recognized that gene length is related to functional complexity 

(Xu et al., 2006) and it is known that brain-expressed genes involved in relevant neuronal 

processes and/or associated with autism and intellectual disability are substantially longer 

(King et al., 2013; Michaelson et al., 2012). Also, it has been suggested that longer genes are 

larger targets and therefore more prone to random mutation and are subject to different 

transcriptional mechanisms that may be functionally relevant to brain-related traits (King et 

al., 2013; Solier et al., 2013). Thus, in order to balance the competing Type I and II error 

rates, we focused our analysis on a well-accepted and recommended discovery-replication 
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approach (Jia et al., 2011), running the replication in one of the largest samples of its kind 

(the CAGES). Strict replication criteria were used in the single-marker analyses (Konig, 

2011). For the gene-based analyses, a robust permutation-based approach, which accounts for 

LD structure and SNP number, was used to select genes for replication, the criteria for which 

were subsequently relaxed to avoid over-penalizing the larger, more relevant genes. In order 

to then assess the robustness of these findings, IPA was also run on genes that survived the 

more stringent approach which corrects for SNP number. Since the power of the IPA analysis 

was greatly compromised by the ~6-fold reduction in the number of genes available for the 

analysis, it was not surprising that the evidence for the genetic distinctiveness of the two traits 

was weaker. Nevertheless, the main distinguishing features between gF and gC were upheld. 

This suggests that the true genetic architecture of these two traits may lie in the middle, and is 

inaccessible using current approaches which either ignore or over-penalize for the length of 

the gene.  

 

As larger consortia form and pathway analyses continue to improve, a better understanding of 

the genetic architecture of gF and gC will emerge (Lencz et al, 2014; Khatri et al., 2012). 

Meanwhile, our study serves as a starting point, supporting the gF-gC distinction at the 

genetic level and critically converging with the findings of developmental and cognitive 

neuroscience studies. The specific function annotations, or pathways, identified are worthy of 

further replication and interrogation, using, for example, ‘top-down’ approaches such as gene 

set enrichment analysis (Fernandes et al., 2013) to test specific gene sets constructed on the 

basis of these findings.  
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FIGURE LEGEND 

 

Figure 1. Summary of SNP- and gene-based analyses and corresponding numbers of 

genes identified for IPA for both gF (left) and gC (right). The boxed numbers in the centre 

represent the number of genes identified as a result of the SNP-based analyses (from top, 

down), the gene-based analyses (from bottom, up), the resulting total number of unique genes 

submitted to IPA and the number of relevant overlapping genes (in parentheses). * indicates 

that the GWAS SNPs were assigned to genes by LDsnpR. 
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Table 1. Significant IPA Function Annotations in both gF (left) and gC (right). 
 
 
  gF   gC   
Function Function 

Annotation (FA) 
FET P-
value 

BH P-
value 

Genes FET P-
value 

BH P-
value 

Genes

chemotaxis chemotaxis of 
neurons 

0.025 0.18 BDNF, GFRA1, RGS3 0.0037 0.17 EPHB2, GFRA1, SEMA3A, SLIT2

formation formation of 
dendrites 

0.028 0.18 ACHE, BCL11A, BDNF, CTNNA2, GRIN3A, 
NRG1, PRKG1, SGK1, SYNE1 

0.035 0.22 DAB1, DSCAM, KLF7, KNDC1, MAP2, 
NRG1, PPP1R9B, RAC2, SEMA3A 

organization microtubule 
dynamics 

0.030 0.18 ACHE, ATXN10, BAX, BCL11A, BCL2, BDNF, 
BSN, CDH1, CNTN4, CNTNAP2, CTNNA2, 
CTNND2, CYP19A1, DISC1, EGFR, GDA, 
GRIN3A, GSN, IGF1R, KATNB1, MAPK8, 
NFIB, NRG1, PRKG1, PTPRM, RND1, SGK1, 
SLC18A3, SLIT1, SLIT3, SNCA, SYNE1, 
UHMK1 

0.032 0.22 ATXN2, BBS10, CDH4, CNTN4, DAB1, 
DCC, DSCAM, EPHB1, EPHB2, GPM6A, 
KLF7, KNDC1, LAMB1, LRRC7, MAP2, 
MBP, MTOR, NRG1, PCDH15, PLD1, 
POU3F1, PPP1R9B, PRICKLE2, PRKCA, 
PTPRM, RAC2, RIT2, RUFY3, SEMA3A, 
SLIT1, SLIT2, TNFRSF12A, TRPV4, VANG 

migration migration of 
GABAergic neurons 

0.012 0.18 GFRA1, SLIT1 0.013 0.22 GFRA1, SLIT1

 

For each general function, the specific function annotation (FA) is shown together with the corresponding Fisher Exact Test (FET) P-value, the 

Benjamini-Hochberg (BH) multiple testing corrected P-value and the genes responsible for the enrichment signal in the function annotation. 

Individual genes that contribute to the enrichment of a particular FA in both gF and gC are in bold. 
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Table 2. Top 25 IPA Function Annotations for gC 
  
Function Function Annotation (FA) FET P-value BH P-value # Genes Genes
synaptic 
depression 

synaptic depression 2.9x10-6 0.0015 13 ADCY5, ADCY8, CNR1, DRD5, EPHB1, EPHB2, GRM7, LRRC7, MTOR, PRKCA, RYR3, ST8SIA4, SYNJ1, (ITSN1)

long term 
depression 

long term depression 2.0x10-5 0.0052 11 ADCY5, ADCY8, CNR1, DRD5, EPHB2, GRM7, LRRC7, MTOR, PRKCA, RYR3, ST8SIA4

guidance guidance of axons 4.8x10-4 0.061 16 ALCAM, ANK3, CDH4, CNTN4, DCC, EPHB1, EPHB2, ERBB4, EXT1, GLI3, KLF7, NFASC, PLXNA2, SEMA3A, 
SLIT1, SLIT2 

long term 
depression 

long term depression of cells 4.8x10-4 0.061 6 ADCY5, CNR1, DRD5, PRKCA, RYR3, ST8SIA4

long term 
depression 

long term depression of brain 
cells 

7.2x10-4 0.075 5 ADCY5, CNR1, PRKCA, RYR3, ST8SIA4

long term 
depression 

long term depression of 
neurons 

0.0013 0.11 5 ADCY5, CNR1, DRD5, RYR3, ST8SIA4

assembly assembly of olfactory cilia 0.0020 0.13 3 BBS10, PCDH15, VANGL2 
long term 
depression 

long term depression of 
corticostriatal neurons 

0.0023 0.13 2 ADCY5, CNR1

positioning positioning of cholinergic 
neurons 

0.0023 0.13 2 SLIT1, SLIT2

contact repulsion contact repulsion 0.0034 0.17 3 DCC, SEMA3A, SLIT2
chemotaxis chemotaxis of neurons 0.0037 0.17 4 EPHB2, GFRA1, SEMA3A, SLIT2 
development development of optic chiasm 0.0068 0.22 2 SLIT1, SLIT2
size size of lateral cerebral ventricle 0.0068 0.22 2 ANK2, NRG1 (includes EG:112400) 
apoptosis apoptosis of sensory neurons 0.0076 0.22 3 CDKN2D, HIPK2, KLF7
metabolism fatty acid metabolism 0.010 0.22 5 DAB1, ERBB4, NRG1, SEMA3A, ST8SIA1
abnormal 
morphology 

abnormal morphology of 
nervous system 

0.013 0.22 2 CNR1, UHRF1

formation formation of oligodendrocytes 0.013 0.22 2 ERBB4, NRG1 
guidance guidance of thalamocortical 

axons 
0.013 0.22 2 SLIT1, SLIT2

migration migration of GABAergic 
neurons 

0.013 0.22 2 GFRA1, SLIT1

pathfinding pathfinding of axons 0.013 0.22 2 DCC, EXT1
chemotaxis chemotaxis of cells 0.014 0.22 5 EPHB2, FPR2, GFRA1, SEMA3A, SLIT2
development development of diencephalon 0.014 0.22 3 SIM2, SLIT1, SLIT2
long term 
depression 

long term depression of 
synapse 

0.018 0.22 3 CNR1, GRM7, MTOR

synthesis synthesis of fatty acid 0.020 0.22 4 DAB1, ERBB4, NRG1, SEMA3A 
synthesis synthesis of lipid 0.020 0.22 6 CNR1, DAB1, ERBB4, NRG1, SEMA3A, ST8SIA1
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Table 2. Top 25 IPA Function Annotations for gC. For each general function, the specific function annotation (FA) is shown together with its 

corresponding Fisher Exact Test (FET) P-value, the Benjamini-Hochberg (BH) multiple testing corrected P-value, the number of genes and the 

symbols of the genes responsible for the enrichment signal in the FA. The functions and FAs that remained significant in the IPA analysis of the 

genes that passed the more stringent criteria are underlined. The gene(s) in parentheses are those that emerged from the more conservative 

analysis. 
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Table 3. Top 25 IPA Function Annotations for gF. 
 
Function Function Annotation (FA) FET P-

value 
BH P-
value 

# 
Genes 

Genes 

synaptic fatigue synaptic fatigue of synapse 0.0021 0.18 2 BDNF, SYN3 
apoptosis apoptosis of spinal cord cells 0.0041 0.18 4 BAX, BCL2, BDNF, FAM134B 
inhibition inhibition of neurons 0.0053 0.18 4 BDNF, NPPA, NPPB, NRG1  
development development of sensory nervous 

system 
0.0062 0.18 2 BDNF, KIF1A 

inhibition inhibition of pyramidal neurons 0.0062 0.18 2 BDNF, NRG1  
concentration concentration of arachidonic 

acid 
0.0062 0.18 2 DGKE, KNG1

endocytosis endocytosis of synaptic vesicles 0.0067 0.18 4 AMPH, CABIN1, ITSN1, SNCA
damage damage of cortical neurons 0.0067 0.18 3 BAX, BDNF, GRIN3A 
quantity quantity of central nervous 

system cells 
0.0090 0.18 9 ACHE, AVPR1B, CCND2, EGFR, GDA, IGFBP6, LEF1, LHX5, TSC1 

long-term 
potentiation 

long-term potentiation 0.0092 0.18 13 B3GAT1, BDNF, CDH1, CHRNA7, CYP19A1, DGKE, LRP1, LRP8, NRG1, PLG, SNCA, VAV2, 
VAV3 

apoptosis apoptosis of dorsal root ganglion 
cells 

0.0093 0.18 3 BAX, BCL2, FAM134B 

mobilization mobilization of Ca2+ 0.0093 0.18 3 BDNF, PROK2, TRPV1 
morphogenesis morphogenesis of neurites 0.0097 0.18 22 ACHE, ATXN10, BDNF, BSN, CNTN4, CNTNAP2, CTNNA2, CTNND2, CYP19A1, EGFR, GDA, 

IGF1R, MAPK8, NRG1, PRKG1, PTPRM, RND1, SGK1, SLC18A3, SLIT1, SYNE1, UHMK1, 
(TLR7) 

growth growth of dendrites 0.0099 0.18 5 BDNF, CTNND2, CYP19A1, NRG1, SLIT1 
morphology morphology of dendrites 0.0099 0.18 5 BDNF, DISC1, GRIN2D, NPAS3, NRG1 
quantity quantity of acetylcholine 0.012 0.18 2 ACHE, SLC18A3 
survival survival of dorsal root ganglion 0.012 0.18 2 BAX, BDNF 
synaptogenesis synaptogenesis of brain cells 0.012 0.18 2 BDNF, CYP19A1
long-term 
potentiation 

long-term potentiation of granule 
cells 

0.012 0.18 2 BDNF, DGKE

sensitization sensitization of neurons 0.012 0.18 2 BDNF, KNG1 
migration migration of GABAergic neurons 0.012 0.18 2 GFRA1, SLIT1 
quantity quantity of astrocytes 0.012 0.18 4 ACHE, EGFR, IGFBP6, TSC1 
cell viability cell viability of motor neurons 0.015 0.18 5 BAX, BCL2, BDNF, GFRA1, REG3G 
loss loss of motor neurons 0.016 0.18 3 BCL2, BDNF, GFRA1 
quantity quantity of nerve ending 0.016 0.18 3 BDNF, SLC18A3, SNCA 
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Table 3. Top 25 IPA Function Annotations for gF. For each general function, the specific function annotation (FA) is shown together with the 

corresponding Fisher Exact Test (FET) P-value, the Benjamini-Hochberg (BH) multiple testing corrected P-value, the number of genes and the 

symbols of the genes responsible for the enrichment signal in the function annotation. FAs that remained significant after excluding BDNF are in 

bold. The functions and FAs that remained significant in the IPA analysis of the genes that passed the more stringent criteria are underlined. The 

gene(s) in parentheses are those that emerged from the more conservative analysis. 
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