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By molecular-dynamics simulations, we have studied the devitrifica-
tion (or crystallization) of aged hard-sphere glasses. First, we find that
the dynamics of the particles are intermittent: Quiescent periods,
when the particles simply “rattle” in their nearest-neighbor cages, are
interrupted by abrupt “avalanches,” where a subset of particles un-
dergo large rearrangements. Second, we find that crystallization is
associated with these avalanches but that the connection is not
straightforward. The amount of crystal in the system increases during
an avalanche, but most of the particles that become crystalline are
different from those involved in the avalanche. Third, the occur-
rence of the avalanches is a largely stochastic process. Random-
izing the velocities of the particles at any time during the
simulation leads to a different subsequent series of avalanches.
The spatial distribution of avalanching particles appears random,
although correlations are found among avalanche initiation
events. By contrast, we find that crystallization tends to take
place in regions that already show incipient local order.

colloidal glasses | ordered solid | amorphous solid |
dynamic heterogeneities

Glasses are formed from the supercooled liquid state when
motion is arrested on the scale of the particle diameter.

Such states are thermodynamically unstable and may crystallize
during, or shortly after, the initial quench. (This is the usual fate
of so-called “poor” glass formers.)
Computer simulations have shown that, in such cases, crys-

tallization readily proceeds by a sequence of stochastic micro-
nucleation events that enhance the mobility in neighboring areas,
leading to a positive feedback for further crystallization (1).
Importantly, however, crystallization can also arise in mature,
well-formed glasses after a long period of apparent stability.
The microscopic mechanism of this process, known as “devit-
rification,” remains elusive. Here, we simulate the dynamics of
a mature hard-sphere glass and find that crystallization is asso-
ciated with a series of discrete avalanche-like events character-
ized by a spatiotemporal burst of particle displacements on a
subdiameter scale. The locations of these avalanches cannot be
predicted from the prior structure of the glass, and they vary
among replicate runs that differ only in initial particle velocities.
Each avalanche leads to a sharp increase in crystallinity, but
remarkably the crystallizing particles are primarily not those that
participated in the avalanche itself. Instead, they tend to lie in
nearby regions that are already partially ordered. We argue that
a structural propensity to crystallize in these regions is converted
into actual crystallinity by small random disturbances provided
by the displacement avalanche. Although spontaneous rather
than externally imposed, this pathway may relate to designed
crystallization protocols such as oscillatory shear.
Devitrification is a phenomenon of both fundamental interest

(2, 3) and practical importance (4–10). Indeed, the prediction
and avoidance or control of devitrification represent major
formulation issues in materials science, arising for both metallic
(4–6) and network glasses (7, 8) as well as glass ceramics (9, 10). So

far, however, there is limited understanding of the mechanisms
whereby an apparently deeply arrested amorphous material can
transform itself into a crystalline packing without the large-scale,
diffusive particle motions whose absence [stemming from the for-
mation of cages (11)] is a defining property of glasses.
To gain such a mechanistic understanding, we study here by

molecular-dynamics (MD) simulation what is probably the sim-
plest model of a glass: a metastable, amorphous assembly of
equal-sized hard spheres in thermal motion. These systems un-
dergo a glass transition at a volume fraction of ϕ=ϕg ’ 0:585
(12). However, when the glass is prepared by rapid compression
to a density just above ϕg, crystallites develop and grow almost
immediately (1, 12). Put differently, monodisperse glasses nor-
mally crystallize before reaching maturity, where we define
“maturity” by persistence of the glass for decades beyond the
molecular time. This has so far precluded using hard spheres as
a model system for studying the devitrification of a mature glass.
Recently, however, we have shown that mature monodisperse

glasses can be created by a numerical protocol called “con-
strained aging” (13), in which motions that increase the global
crystallinity are actively suppressed. This protocol can be viewed
as selecting only the minority of dynamic trajectories in which the
fresh (newly quenched) glass accidentally outlives the quench.
In what follows, we present MD results for crystallization in

these mature glasses at ϕ= 0:61. This enables us to give a de-
tailed mechanistic analysis of the devitrification process, in what
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is arguably the simplest model system available. We work at fixed
volume (1, 12, 13) to match the conditions in colloidal glasses,
which are the nearest experimental realization of the hard-sphere
model system and have long formed a key testing ground for glass
physics concepts (11, 14).
Our first finding is that particle dynamics in a mature glass are

intermittent: quiescent periods of intracage motion are punctuated
by “avalanches” in which a correlated subset of particles undergo
cage-breaking displacements. Dynamic heterogeneities in glasses
(15–21) [as opposed to supercooled liquids (22–27)] have been
reported previously, but avalanches have not been investigated in
detail and no link has yet been made with crystallization dynamics.
Importantly, therefore, our second finding is that crystallization is
intimately associated with these avalanches. This connection is,
however, subtle: crystallinity increases during the avalanche, but
most of the crystallizing particles are not among those taking part
in the avalanche itself. Third, both the avalanche sequence and
final crystallization pattern are stochastically determined: they
depend not only on the initial particle coordinates but on their
velocities, and change if these are reassigned (following ref. 28)
in midsimulation. Finally, we nevertheless find that crystallization
preferentially occurs in regions already showing semicrystalline
correlations or “medium-range crystalline order” (MRCO) (29–31).
Although certain of the above features can be individually

discerned in our previous study of crystallization in fresh glasses
(1), only for mature glasses, which evolve more slowly, is the
chain of causality between these events resolvable.

Results
Avalanches. Using the constrained aging method (13), we gen-
erated a mature monodisperse hard-sphere glass of ϕ= 0:61.
This had an initially low crystallinity, Xð0Þ≈ 1%, where crystal-
linity XðtÞ is defined as the fraction of solid-like particles (the
latter identified as described in Materials and Methods). Starting
from the same initial particle coordinates, we launched 15 MD
runs, each having a different random (Maxwellian) set of particle
momenta. We have repeated the procedure for different starting
configurations, all producing similar results.
In Fig. 1A, we show the growth of crystallinity XðtÞ for these 15

trajectories. One might expect that, because crystallization in
a glass takes place with only small (subdiameter) particle
motions (1), its course should depend only on the starting con-
figuration of the particles and not on their velocities. However,
Fig. 1A shows that the 15 replicas have strongly dissimilar XðtÞ
profiles. This establishes a key role for stochasticity in the de-
vitrification of mature glasses, like that reported previously for
the crystallization of freshly formed ones (1). However, the XðtÞ
curves seen here for devitrification differ qualitatively from those
of fresh glasses (figure 1A of ref. 1), which show slow monotonic
growth from the beginning of the run. By contrast, in the mature
samples, XðtÞ stays constant for between two and five decades of
time (measured in microscopic units; Materials and Methods)
before steep upward jumps in XðtÞ are seen. (These features
depend on system size, as we discuss later.) Because the crystal is
locally denser than the glass, each such upward step in XðtÞ
increases the free volume and speeds the approach of the next
step. Under this feedback, the system finally crystallizes cata-
strophically and XðtÞ goes rapidly to 1.
Key mechanistic insights are gained when we analyze one of

these step-like crystallization events in more detail. The black
curve in Fig. 1B is a close-up of the crystallinity jump shown in
the black curve of Fig. 1A at t≈ 2:2× 105. The mean-square
displacement (MSD) (Materials and Methods) is also plotted (red
curve). First, we notice that XðtÞ and the MSD are strongly
correlated: both quantities jump simultaneously. To understand
the MSD jump, we compute displacement vectors u of individual
particles over chosen time intervals Δt and select those with

juj> σ=3, with σ the particle diameter σ. (This threshold is jus-
tified in SI Appendix.)
Fig. 2 shows these vectors as red arrows for the time windows

indicated in Fig. 1B. In window Δt1, the system is largely im-
mobile; most particles rattle locally in their cages and less than
1% undergo significant displacements. During window Δt2,
which spans the jump, a burst of displacements is recorded, with
around 25% of all particles moving more than σ=3. After the
jump (window Δt3), the system returns to quiescence, with again
less than 1% of all particles moving significantly. We call such
a sequence an “avalanche” and denote those particles that move
by more than σ=3 during the jump “avalanche particles” (see SI
Appendix for a justification of this cutoff alongside a more
quantitative statistical analysis of the avalanches). It is clear from
the red arrows in the second frame of Fig. 2 that these particles
are not homogeneously distributed, but cluster into “avalanche
regions,” resembling in exaggerated form the milder dynamic
heterogeneities often reported on the fluid side of the glass
transition (32–34).
By interrogating the dynamics across narrower time intervals,

we have observed that avalanches start to build in localized
regions, then grow to peak activity, and finally die out (Movie
S1). From start to finish, an avalanche typically takes about
7× 103 time units. Highly cooperative movements can be seen
during the main avalanche phase, including particles moving in

Fig. 1. (A) Fraction of solid-like particles XðtÞ versus time for a system of
equal-sized hard spheres at volume fraction ϕ= 0:61. Fifteen trajectories are
started from the same spatial configuration of particles but with different
randomized momenta. (B) Crystallinity X (in black) and MSD (in red) versus
time around the step-like crystallization event shown in the black curve of
Fig. 1 at t ≈2:2 · 105. The green curve, Xavl, is the fraction of avalanche par-
ticles defined in time interval Δt2 that are solid-like.
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rows or circles (Fig. 3). Turquoise spheres in Fig. 2 correspond to
solid-like particles. As expected from Fig. 1B, the avalanche
leaves behind an increased population of solid-like particles.

Avalanches Mediate Crystallization. Figs. 1B and 2 show one rep-
resentative example of a jump in crystallinity partnered with
a displacement avalanche. This is a general phenomenon: in
none of the runs do we see crystallinity jumps that are not as-
sociated with avalanches. The question thus arises: do avalanches
cause crystallization, or vice versa? If avalanches cause crystal-
lization, one obvious hypothesis is that the particles that move to
become crystalline are the ones that form the avalanche. How-
ever, this hypothesis can be ruled out by visually inspecting Fig. 2
and realizing that there is no clear overlap between avalanche
regions and regions where new crystalline particles appear. The
fraction of crystalline particles is ’4% before the avalanche and
’9% afterward. Of the new crystalline particles, only 25% were
directly involved in the avalanche, as one can infer from the
green curve in Fig. 1B. (The proportion depends somewhat on
the exact threshold of displacement used to define avalanche
particles.) We conclude that the particles that crystallize are
mainly not the ones that participated in the avalanche.
An alternative hypothesis is that avalanches are caused by

crystallization in the sense of being triggered by the small rear-
rangements ðjuj< σ=3Þ (12, 13) needed to achieve local crystal-
linity. If so, avalanches would be absent whenever crystallization
is suppressed by size polydispersity. Fig. 4A shows the MSD and
XðtÞ of a glass with 6% polydispersity at volume fraction
ϕ= 0:60. As expected from our earlier work (12, 35), the crys-
tallinity stays flat throughout the run; yet we see that the MSD
jumps in a way that, by the methods already described, can be
identified as avalanches. Moreover, avalanche-like dynamic
heterogeneity (in less extreme form) was previously seen for
other noncrystallizing glassy systems in 2D and 3D simulations

(16, 18, 19, 22, 24, 25) and in colloid experiments (36, 37).
Therefore, we can discard the hypothesis that crystallization
causes avalanches, rather than vice versa.
The stochastic nature of avalanches was already shown in Fig.

1, where the trajectory of each replica has a different crystallinity
evolution XðtÞ. A further illustration is given in Fig. 4B, where we
compare a trajectory undergoing an avalanche with three systems
started from a common configuration just before the avalanche.
Each replica is launched with a different set of particle velocities,
and in all three cases the avalanche is averted. This finding shows
that the triggering of an avalanche from the quiescent state does
not depend on particle coordinates alone, but rather on the
appearance of a successful combination of positions and mo-
menta. We speculate that these rare events involve emergence of
cooperative motions such as those illustrated in Fig. 3. In con-
trast, if velocities are reassigned midway through an avalanche
(Fig. 4B), the avalanche does not stop, but continues along an
altered path. This implies that the “activated” state is structurally
distinguishable from the quiescent one, although we have not yet
found a clear static signature for it.
The requirement of an unlikely combination of positions

and velocities to trigger an avalanche, combined with the fact
that avalanches cause crystallinity to grow (explored further
below), explains the stochasticity of devitrification in our mature
samples and is likely also implicated in the stochastic crystal-
lization in fresh glasses (1). That displacement avalanches me-
diate crystallization in hard-sphere glasses is the central finding
of this paper.

Heterogeneities. As previously stated, the different trajectories in
Fig. 1 lead to different final crystallization patterns from the
same initial configuration. Visual inspection of these patterns
shows only limited similarity between them. Nonetheless, one
might expect some regions to be more likely to crystallize than
others. The crystallization propensity is assessed by super-
imposing the crystalline particles (XP) of all trajectories as these

first cross a fixed crystallinity threshold (we choose X = 0:1). To
quantify any heterogeneity in the resulting superimposition, we
divide the simulation box in 3 × 3 × 3 equal subvolumes and
evaluate the density in each, normalizing by the overall density.
The resulting normalized densities, ρ̂i = ρi=ρ, are plotted as
a function of subvolume index in Fig. 5A. By computing the

Fig. 2. Displacement vectors with modulus larger than σ=3 (red arrows with
yellow heads) and solid-like particles (turquoise spheres) for time intervals
Δt1, Δt2, and Δt3 shown in Fig. 1B. The lengths of the arrows correspond to
the modulus of the displacements. Solid-like particles are defined at the
beginning of each time interval.

Fig. 3. Displacement field for a typical avalanche in which cooperative
motion where particles follow each other are highlighted.
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fluctuations of ρ̂i around the average value, 1, we get a quanti-
tative measure of the degree of heterogeneity, hd = hρ̂2i i− hρ̂ii2.
For crystalline particles in our replicated runs, we find hd = 0:22,
more than four times above the background level, hd = 0:050,
computed by superposing crystalline particles for 15 runs starting
from independent initial configurations rather than from the
same one. We can conclude that there are some regions in the
initial configuration that are more prone to crystallize than
others. It has been found in supercooled liquids that these
regions correlate with a partial ordering known as MRCO, which
is quantified by an averaged local bond order parameter q6 (30,
31, 38). Fig. 5A compares the density of XP particles in our
simulations with the density of MRCO, identified as those
particles with q6 in the top 10%. As with the earlier work on
supercooled liquids (30, 31), there is a clear, although not
complete, correlation between MRCO in the initial configu-
ration and subsequent crystallization.
We also investigate whether there are regions where ava-

lanches have a higher propensity to take place by doing a similar
analysis as that described above but for particles involved in the
first avalanche (AP) instead. As seen in Fig. 5B, the density of
these particles shows only small variations between subvolumes,
suggesting that avalanches occur almost at random throughout
the system in mature glasses (whereas the crystallinity induced by
these avalanches has a significantly higher propensity to appear
in some regions than in others).
It has been found that dynamic heterogeneities in supercooled

fluids, involving large-scale rearrangement of the particle posi-
tions (the α process), tend to grow from regions of high dis-
placement in low-frequency quasilocalized phonon modes (so-
called soft spots) (18, 23, 39–41). In view of our result that
avalanches occur almost at random throughout the system, one
would be tempted to conclude that avalanches and dynamic

heterogeneities are fundamentally different dynamic events.
However, a closer study does reveal a clear correlation across
trajectories among avalanche initiator particles (AIP) (those
involved in the first steps of avalanche formation). In fact, the
density heterogeneities plot of AIP shown in Fig. 5B shows large
density variations between subboxes (in SI Appendix, we show
that this is a statistically significant result). Therefore, AIP and
dynamic heterogeneities share the tendency to develop in
certain regions of the system. Whether or not these regions
also correspond to soft spots for the case of mature glasses
requires further investigation beyond the scope of this paper.
Nevertheless, we show some preliminary analyses in SI Appendix,
alongside a more detailed account of heterogeneities, including
pictorial representations.

Discussion and Conclusions
We have investigated the mechanism by which crystals develop in
amorphous glasses composed of equal-sized hard spheres. In
contrast with our previous work on freshly prepared samples, we
addressed here mature glasses, whose arrest is characterized by
a MSD that stays flat for several decades in time before the onset
of crystallization. We have shown that crystallization is intimately
associated with particle displacement avalanches (Figs. 1B and 2)
and that crystallization is caused by these avalanches and not vice
versa. However, the majority of avalanche participants do not
become crystalline (green curve in Fig. 1B), and most crystal-
lizing particles move little during the avalanche. Thus, the dis-
placement avalanche is not, of itself, the sequence of motions
needed to transform an amorphous region into crystal.
Instead, avalanches within the mature glass appear to be

autonomous structural rearrangements, involving cooperative
particle motion. These mesoscopic avalanches have a strongly
stochastic character, and are triggered by unlikely local combi-
nations of particle positions and momenta. An individual ava-
lanche can be averted entirely by reassigning momenta just
before its inception; once underway, however, such reassignment
only diverts it along a different path (Fig. 4). Although no ob-
vious propensity to occur in particular positions can be seen in

Fig. 4. (A) Crystallinity XðtÞ (black) and MSD (red) versus time for a 6%
polydisperse system at ϕ= 0:60. (B) Red curve: MSD versus time for a trajec-
tory of the monodisperse system showing an avalanche. Blue, green, and
black curves: MSDs for the same system when the particle velocities are
randomized immediately before the avalanche and in the middle of the
avalanche.

Fig. 5. Normalized density, ρi , as a function of the index i identifying each
subvolume of the simulation box for various particle types (see text). (A) Red:
crystalline particles (XP) are those of all of the trajectories in Fig. 1A as they
first cross the crystallinity threshold X = 0.1. Black: medium-range crystalline
order (MRCO) particles are those in the initial configuration with bond order
parameter q6 in the top 10%. (B) Dark green (solid line): avalanche particles
(AP) are those participating in the first avalanche of all trajectories. Light
green (dashed line): avalanche initiator particles (AIP) are those involved in
initiating the first avalanche of all trajectories as defined in SI Appendix.
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the statistics of avalanche participants, this can be detected among
AIP. This finding implies a correlation with static structure (ex-
plored further in SI Appendix), possibly including “soft spots” of
the type known to be linked to dynamic heterogeneity in super-
cooled liquids (18, 39, 40) and some glasses (18, 23, 41). If so, our
avalanches might be viewed as a limiting type of dynamic het-
erogeneity, arising as the system’s density or age increases so that
activity becomes rare. However, the stochastic character of the
avalanches might also be taken as support for suggestions (18, 24)
that a qualitatively different type of dynamics takes over in sys-
tems, such as ours, that are deep into the glassy state. In addition,
and in common with supercooled liquids, we find that the crystals
tend to grow in regions of MRCO [which seem to be themselves
anticorrelated with the soft spots (29–31); SI Appendix, Fig. S8].
The likely role of avalanches in crystallization is to create the

small disturbances required to accomplish ordering in regions
that, as noted above, already have a propensity to crystallize. Av-
alanche-induced disturbances might shake a nearly ordered region
into order, but could also facilitate growth of an established crys-
tallite at its perimeter. This avalanche-mediated mechanism for
devitrification somewhat resembles the breakdown dynamics
of an attractive colloidal gel (42). The process could also be
closely related to protocols such as shearing in which mature
glasses are induced to crystallize by gentle agitation (43–45).
In contrast to those protocols, here the required agitation is
spontaneously generated. Indeed, the intrinsic avalanche dy-
namics remain present even when crystallization itself is pre-
vented by polydispersity.
In keeping with previous findings for fresh glasses (1, 12), the

ordering induced by an avalanche reduces the pressure in the
system and creates positive feedback for further avalanches. This
process gives rise to a nontrivial system size dependence for the
time evolution of global properties such as the mean crystallinity,
as explained in SI Appendix. However, it does not qualitatively
change the mesoscopic mechanism of avalanche-mediated de-
vitrification that we have described.
To confirm that our findings are not some special feature of

systems prepared by constrained aging, we have additionally
performed simulations on fresh glasses prepared by rapid com-
pression to a higher concentration, ϕ= 0:62, where there is no
need to resort to constrained aging to obtain a mature glass. We
found that these glasses show similar behavior to that reported
above for the constrained-aged systems at ϕ= 0:61: long quies-
cent periods and sudden coincident jumps in the crystallinity
and MSD (SI Appendix). Therefore, this devitrification mech-
anism is evident for mature glasses, either prepared by con-
strained aging ðϕ= 0:61Þ or by quick compression ðϕ= 0:62Þ. By
contrast, a glass prepared by quick compression at ϕ= 0:61 (1)
crystallizes while still fresh and does not clearly show the
avalanche mechanism.

Our work suggests several avenues for future research. One
is to study hard-sphere devitrification at constant pressure. A
second is to address by our methods mixtures of different-sized
hard spheres. This would represent a first step toward modeling
bulk metallic glasses, which are generally multicomponent alloys
(46, 47). Mechanistic insights along the lines pursued in this
paper might then shed light on the devitrification of such glasses
during processing, which is a major issue in technology (5, 6).

Materials and Methods
Simulation Details. We perform event-driven MD simulations in the NVT
ensemble with cubic periodic boundary conditions for a system of n = 3,200
monodisperse hard spheres (48, 49). We also simulate a polydisperse system
of n = 2,000 particles where the particle diameters are chosen according to
a discrete Gaussian distribution with relative standard deviation s= 0:06.
Mass, length, and time are measured in units of particle mass m, particle
diameter σ (or σ for the polydisperse case), and t0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=κBT

p
, where κB is

the Boltzmann constant and T is the temperature, and we set κBT = 1. The
packing fraction is defined as ϕ= π

6Nσ
3=V (with V the system’s volume).

To generate the initial configuration, we follow the “constrained aging”
procedure described previously (13). We use a configuration resulting from
constrained aging as a starting point for unconstrained MD runs.

Analysis Details. The MSD is calculated as 1
N

PN
i=1ðriðtÞ− rið0ÞÞ2, where ri is the

position of particle i.
The crystallinity, X, is defined as the number of solid-like particles divided

by the total number of particles. As in previous work (35), we identify solid-
like particles according to a rotationally invariant local bond order param-
eter d6 (50, 51). To compute it, we first identify the number of neighbors
NbðiÞ of each particle i using the parameter-free SANN algorithm (52). Next,
for every particle i, we compute the complex vector q6 whose compo-
nents are given by q6mðiÞ= 1

NbðiÞ
PNbðiÞ

j=1 Y6mðθij ,ϕijÞ=ð
P6

m=−6q6mðiÞ ·q6m
ðiÞÞ1=2*

(with m∈ ½−6,6�), where Y6m are sixth-order spherical harmonics. Then we
compute the rotationally invariant bond order parameter d6 by calcu-
lating the scalar product between each particle’s q6 and its neighbors,
d6ði,jÞ=

P6
m=−6q6mðiÞ ·q6m

ð jÞ,* and consider particles i and j as having a
“solid connection” if their d6ði,jÞ exceeds the value of 0.7. A particle is
labeled as solid-like if it has at least six solid connections.
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I. AVALANCHE DEFINITION AND STATISTICS

We define avalanche particles as those whose displacement (|u|) during a given time
interval is larger than σ/3. To show that such displacements are indeed significantly large
we compute the cumulative probability distribution of displacements in the initial quiescent
plateau (before the first avalanche) for a time interval equal to the average duration of an
avalanche. By inspecting the 15 trajectories shown in Fig. 1 in the main text we found
that an avalanche lasts on average about 7000t0. (Here t0 is the time unit introduced in the
Methods section.) The black curve in Fig. 1 represents P (|u| < α), the probability that
the displacement of a particle is smaller than α, for a time interval of 7000t0 in the initial
quiescent plateau. Clearly, displacements larger than σ/3 are extremely rare in the quiescent
period, which justifies our threshold for the definition of avalanche particles. By contrast,
it is not unlikely that particles travel for even longer distances during an avalanche. This is
demonstrated by the red curve in Fig. 1, which corresponds to P (|u| < α) calculated during
a time interval that includes an avalanche. The curve is made with the collection of all the
displacements during the first avalanche of each of the trajectories shown in Fig. 1 of the
main text. About 15 per cent of the particles travel more than σ/3 during an avalanche.
This means that, according to our definition, an avalanche involves on average about 500
particles. Notice that particles do not move beyond their diameter during an avalanche
and only 6 percent of them travel beyond the radius. Therefore, the mobility during an
avalanche, even if much larger than that during a quiescent period, is still rather restricted.

The rate at which avalanches nucleate is the limiting factor for the growth of crystals in
a glass. We can estimate the avalanche nucleation rate for our configuration by counting
the number of avalanches and dividing it by the time the system takes to fully crystallize
and by the volume of the system. The value we get after averaging over all trajectories is
6·10−9 σ−3t−1

0 . This nucleation rate implies that the first avalanche takes place, on average,
in 6·104t0 in our system of volume 143σ3. Of course, the larger the system’s volume, the
shorter the time it takes for the first avalanche to nucleate.

Below we discuss the influence of the system size on the crystallization pathway, and
present a more quantitative description of the avalanches than that given in the main text.
This type of analysis should be interpreted with care, though. As discussed below, the qual-
itative picture of the crystallization mechanism is not affected by the way the configuration
is generated. However, since we are dealing with a system out of equilibrium, the history of
formation and, of course, the packing fraction, may have an impact over the precise value
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FIG. 1: Probability that the displacement of a particle is smaller than a certain distance, P (|u| <
α), versus the distance, α, in particle diameters. We compare P (|u| < α) for a quiescent period

(black) with P (|u| < α) when an avalanche takes place (red). In the quiescent plateau, P (|u| < α)

is calculated for a time interval equal to the average duration of an avalanche (7000t0).

of the variables here discussed.

II. DEPENDENCE ON SYSTEM SIZE

To check that our description of crystallization mechanism of an HS glass also applies
for larger systems, we initiated a run from a large configuration made from tiling together
3×3×3 copies of the configuration used as a starting point for the trajectories shown in Fig.
1a of the main text. Previous work [1] shows that the artificial periodicity induced by such
spatial replication is soon lost under the randomizing influences of the momenta (which are
assigned independently in each sub-box). Visual inspection shows that avalanches appear
throughout the large system (Fig. 2D)).

Important differences can be seen with respect to the small system in the time evolution
of the overall crystallinity and the fraction of avalanche particles. The first avalanche occurs
sooner in the large system, as expected for a rare event initiated by local stochasticity,
and because the feedback between avalanches and free volume is global, X(t) accelerates
faster thereafter. Moreover, most of the time there is at least one avalanche present so that
the globally averaged fraction of avalanche particles, and with it X(t), evolves much more
smoothly (Fig. 2B) than in the smaller systems reported above (Fig. 2A).

On the other hand, if attention is restricted to a part of the large system (Fig. 2C)
(matched in size to the smaller systems of Fig. 2A) then the dynamics of individual
avalanches, including their extent and consequences for crystallization, remain qualitatively
similar to before (the dynamics of supercooled fluids shows a similar system size dependence
[2]). Since our mechanistic interpretation of the devitrification process is formulated at the
mesoscopic scales already captured by the simulations of 3200 particles, this interpretation
remains unaltered. Any further system-size-dependence of the crystallization time is not ex-
pected once the density of avalanches is higher than one per simulation box volume, which
is the case in our large system.

The simulation of the replicated system allows us calculate a distribution of the size of
clusters formed by avalanche particles. A cut-off distance of 1.1 particle diameters is used to
identify neighbors in the same cluster and avalanche particles are defined in a time interval
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FIG. 2: Fraction of crystalline particles and of particles belonging to an avalanche as a function

of time for different system sizes. Avalanche particles are defined in a time interval given by the

distance between consecutive points (which depends on the case under study). (A) a 3200-particle

system (black trajectory in Fig. 1a of the main text); (B) a 3× 3 × 3 replica of the 3200-particle

system; (C) a cubic subset of system (B) containing ∼ 3200 particles; (D) Snapshot of the large

system (B) at t = 22000t0. Solid-like particles are turquoise spheres and avalanche particles in

[t, (t+ 1000t0)] are red arrows with yellow heads.

of 500t0. The cluster size (number of particles) distribution is plotted in Fig. 3. Clusters
as large as ∼ 1000 particles are observed. The distribution of cluster sizes is typical of a
random percolation, where clusters randomly appear and merge; this is shown by the −2.18
slope [3] of the cluster size distribution in the log-log plot of Fig. 3. By contrast, the size
distribution of crystalline clusters found in a fresh glass at the same density has a slope
of −1.7, indicating a loss of randomness due to the preferable appearance of crystalline
particles in the vicinity of existing clusters [4].

We note that the X(t) profile of the replicated system is qualitatively similar to that of
the immature (fresh) glass investigated in Ref. [1] (Fig. 1a). Our preliminary investigations
on this respect suggest that avalanches are also present in samples of fresh monodisperse
hard spheres glasses, although in a less evident form. This would be consistent with the
stochastic growth of crystals via micro-nucleation events described in Ref. [1].
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FIG. 4: Pressure (A), crystallinity X (B) and msd (C) versus time for 7 independent trajectories

of a monodisperse hard spheres suspension at φ = 0.62 generated by quick compression.

III. PREPARATION PROTOCOL OF THE INITIAL CONFIGURATION

The results discussed in the main text correspond to glassy configurations generated
with a constrained aging algorithm [5] that prevents the appearance of crystallites as the
system is compressed to its final density. In this section we show that the crystallization
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mechanism described in the main text does not depend on the use of this particular protocol
to generate the initial configuration. Simply by quickly compressing the system it is also
possible, although less likely, to obtain dense amorphous configurations of monodisperse hard
spheres that do not readily crystallize. The odds to successfully generate such configurations
increase with the compressing rate and the target density. We have been able to generate by
quick compression configurations at φ = 0.62 that stay amorphous for a few decades before
crystallizing. In Fig. 4 we show the time evolution of the pressure, the crystallinity and
the mean squared displacement for 7 of these configurations. This plot is not qualitatively
different from that of Fig. 1 in the main text. Crystallization jumps are correlated to jumps
in the msd (avalanches). Moreover, we also show that the pressure drops in a sequence of
steps, as a consequence of the more efficient packing achieved in crystallization events.

IV. CRYSTALLIZATION AND AVALANCHE PROPENSITY

In Fig. 5 we show some snapshots to give a qualitative view of the propensities analysis
presented in the main text. In Fig. 5A we show a snapshot resulting from the superimposition
of the crystalline particles found at X = 0.1 for the 15 trajectories of Fig.1a (main text).
This is compared with a superimposition of the crystalline particles found at X = 0.1 for
15 trajectories starting from different configurations (Fig. 5F). In Fig. 5F particles are
noticeably more homogeneously distributed than in Fig. 5A, which indicates that in the
configuration from which the 15 runs of Fig.1a (main text) were initiated there are some
regions which are more prone to crystallize than others. Figure 5E shows MRCO particles
(see main text) in the initial configuration of the 15 trajectories of Fig.1a. Comparison of
Fig. 5E with Fig. 5A shows some correlation between MRCO regions and those with a
high propensity to crystallize, for example a high density of particles in the centre of the
simulation box. Figure 5B shows a superimposition of the particles taking part of the first
avalanche (AP) in each of the 15 trajectories of Fig. 1a. Differently from Fig. 5A, where
there is a noticeable heterogeneity in the propensity to crystallize, here the probability
to participate in an avalanche looks rather homogeneous throughout the system (density
heterogeneities are comparable to those seen in the random case shown in Fig. 5F). By
contrast, when we plot in Fig. 5C only those particles involved in the initiation of the first
avalanche (see below) of each trajectory there is a clear heterogeneity of the distribution of
such particles throughout the system. Fig. 5D shows the superimposition of the particles
with the top 10% variance with respect to their average position during the initial quiescent
plateau for the 15 trajectories (rattler particles (RP)). We note that there is a mild anti-
correlation between MRCO and RP, as it has been found in supercooled liquids [6–8] (see
also Fig. 8).

We have shown that crystallization in hard-sphere glasses tends to take place in regions
which have a high degree of medium range crystalline order. This observation agrees with
what has been found in a number of other systems in their more mobile “supercooled” liquid
states, e.g. [7]. However we also found that the avalanche participants are almost randomly
distributed through the sample (green solid line in Fig. 5 (b) of the main text). This,
in principle, suggests that there may be distinct differences between the avalanches found
in high-concentration glasses and the dynamic heterogeneity (DH) of lower-concentration
supercooled liquids (in supercooled liquids, dynamic heterogeneities tend to develop with a
higher probability in so-called soft spots [10]). However, closer inspection of our data reveals
that avalanches are initiated preferentially in certain regions of the system. As explained in
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FIG. 5: A-D superimposition of different types of particles for 15 trajectories starting with different

set of momenta from the configuration analysed in the main text: (A) crystalline particles at

X = 0.1 (XP); (B) particles involved in the first avalanche (AP); (C) particles involved in the

initiation of the first avalanche (AIP); (D) particles with the top 10% variance with respect to

their average position during the initial quiescent plateau (RP). (E) particles with top 10% value

of the averaged local bond order parameter q̄6 in the configuration from which all trajectories were

started (MRCO). (F) superimposed crystalline particles at X = 0.1 of 15 trajectories starting from

different configurations. To better observe the density distribution, the particles’ size has been

reduced to 30% of their original size.

the main text, we identify avalanches by pinpointing the particles that displace beyond a
certain threshold during a time interval of activity that separates two long quiescent plateaux
in the mean squared displacement. An example of such time interval is shown by the red
box in Fig. 6. Careful inspection of the avalanche shown in Fig. 6 reveals that it develops
as a cascade of successive mini-avalanches separated by short-lived plateaux. This feature
is shared by most avalanches we observe. We therefore define avalanche initiating particles
(AIP) as those that move beyond σ/3 in a time interval that comprises only the first mini-
avalanche (black box in Fig. 6). By superimposing the AIP of 20 trajectories starting from
the same configuration – in fact, the configuration of Fig. 1 of the main text – with different
sets of momenta we find that the propensity for an avalanche to be initiated (as opposed
to avalanche participation) is clearly heterogeneously distributed (light-green dashed line in
Fig. 5 (b) of the main text). Fig. 7, where the AIP propensity curves of two different
halves of the total available trajectories are compared, shows that this result is statistically
significant. Therefore, avalanches, like DH, tend to be triggered preferentially in particular
regions of the system.

To investigate further any connection between avalanches and DH, we next inspect
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Property DH A

Heterogeneous in space Yes [14, 15] Yes

Cooperative dynamics Yes [16] Yes

Stochastic in space and time Yes [9, 17] Yes

Spacial propensity Yes [9] Yes (initiation)

Propensity correlated to soft spots Yes [10] Further investigation required

TABLE I: Comparison between the properties of dynamic heterogeneities (DH) in supercooled

fluids and avalanches (A) in a crystalizing hard sphere glass (this work).

whether AIP-rich regions are also rich in particles that have a high rattling freedom in
the initial quiescent plateau. (Such rattlers are in turn equivalent to soft spots, which were
found to be correlated to DH in metastable fluids [10–13]). In Fig. 8 we show the density
profile of AIP particles compared to that of rattling particles (RP) for two set of simulations
started from two different configurations. Our results are not conclusive, but offer plausible
evidence of some correlation in at least one of these two configurations. If this is confirmed
by future work, avalanches could plausibly be viewed as a limiting type of DH that arises
when activity becomes rare as the system’s density/age increases. In table I we summarize
the comparison between the characteristics of avalanches in a crystallizing hard sphere glass
and those of dynamic heterogeneities in a supercooled fluid.

0 10000 20000 30000 40000
t

0
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0.04

m
s
d

FIG. 6: Mean squared displacement versus time for one trajectory. The avalanche is indicated

with a red square and the time interval in which the avalanche is defined is given by the red arrow.

Whereas the avalanche initiation is indicated with a black square and the avalanche initiation

period is given by the black arrow.

V. ONLINE VIDEO

The video (Movie SI) represents solid and avalanche particles participating to the
avalanche shown in Fig. 1(b) of the main text. Solid-like particles are turquoise spheres
and avalanche particles in [t, (t+ 1000t0)] are red arrows with yellow heads. The avalanche
starts to build in localized regions, then grows to peak activity, and finally dies out leaving
behind an increased population of solid-like particles. Highly cooperative movements can be
seen during the main avalanche phase, including particles moving in rows or circles. From
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FIG. 7: Propensity curves of AIP using all available trajectories (black) and two different halves

of them (red and green) to perform the analysis. Plots (a) and (b) correspond to two different

starting configurations. Note that plot (a) corresponds to the same configuration as that analysed

in Fig. 1 of the main text.
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FIG. 8: Normalised density for the 27 sub-volumes in which the system is divided for different

types of particles (as indicated in the legend) and for two different configurations (a) and (b). Plot

(a) corresponds to the same configuration as that analysed in Fig. 1 of the main text.

start to finish, an avalanche typically lasts about 7000t0, with t0 the time unit defined in
the Methods Section.



9

[1] Sanz, E., Valeriani, C., Zaccarelli, E., Poon, W.C.K., Pusey, P.N. & Cates, M.E. Crystalliza-

tion mechanism of hard sphere glasses. Phys. Rev. Lett. 106, 215701 (2011).

[2] Alarcon L.M., Freccero M.A., Montani R.A.& Appignanesi, G.A. Determining the heterogene-

ity in time of the dynamics within a slowly relaxing region of a supercooled liquid: role of

sharp relaxation events. Phys. Rev. E 80, 026127 (2009).

[3] Stauffer, D. & Aharony, A. Introduction to percolation theory. CRC Press (1994).

[4] Valeriani, C., Sanz, E., Pusey, P.N., Poon, W.C.K., Cates, M.E. & Zaccarelli E. From compact

to fractal crystalline clusters in concentrated systems of monodisperse hard spheres. Soft

Matter 8, 4960–4970 (2012).

[5] Valeriani, C., Sanz, E., Zaccarelli, E., Poon, W.C.K., Cates, M.E. & Pusey, P.N. Crystalliza-

tion and aging in hard-sphere glasses. J. Phys.:Condens. Matt. 23, 194117 (2011).

[6] Kawasaki, T., Araki, T., Tanaka, H. (2007) Correlation between dynamic heterogeneity and

medium-range order in two-dimensional glass-forming liquids. Phys. Rev. Lett. 99:215701.

[7] Kawasaki, T. , Tanaka, H. (2010) Formation of a crystal nucleus from liquid. Proc. Natl. Acad.

Sci. USA 107:14036–14041.

[8] Kawasaki, T. , Tanaka, H. (2010) Structural origin of dynamic heterogeneity in three-

dimensional colloidal glass formers and its link to crystal nucleation. J. Phys.: Condens.

Matter 22:232102.

[9] Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic hetero-

geneities in a supercooled liquid? Phys. Rev. Lett. 93, 135701 (2004).

[10] Widmer-Cooper, A., Perry, H., Harrowell, P. , Reichman, D.R. (2008) Irreversible reorganiza-

tion in a supercooled liquid originates from localized soft modes. Nature Physics 4:711–715.

[11] Brito, C., Wyart, M. (2009) Geometric interpretation of previtrification in hard sphere liquids.

J. Chem. Phys. 131:024504.

[12] Widmer-Cooper, A., Perry, H., Harrowell, P., Reichman, D.R. (2009) Localized soft modes

and the supercooled liquid’s irreversible passage through its configuration space. J. Chem.

Phys. 131:194508.

[13] Chen, K., Manning, M.L., Yunker, P.J., Ellenbroek, W.G., Zhang, Z., Liu, A.J., Yodh, A.G.

(2011) Measurement of correlations between low-frequency vibrational modes and particle

rearrangements in quasi-two-dimensional colloidal glasses. Phys. Rev. Lett. 107:108301.

[14] Schmidt-Rohr, K. and Spiess, H. W. (1991) Nature of Nonexponential Loss of Correlation

above the Glass Transition Investigated by Multidimensional NMR Phys. Rev. Lett. 66:3020.

[15] Kob, W., Donati, C., Plimpton, S. J., Poole, P. H., Glotzer, S. C. (1997) Dynamical hetero-

geneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79:2827.

[16] Donati, C., Douglas, J. F., Kob, W., Plimpton, S. J., Poole, P. H. and Glotzer, S. C. (1998)

Stringlike Cooperative Motion in a Supercooled Liquid Phys. Rev. Lett. 80:2338.

[17] Appignanesi, G. A., Rodriguez Fris, J. A., Montani, R. A. and Kob, W. (2006) Democratic

Particle Motion for Metabasin Transitions in Simple Glass Formers Phys. Rev. Lett. 96:057801.



Supporting Information
Sanz et al. 10.1073/pnas.1308338110

Movie S1. The movie represents solid and avalanche particles participating to the avalanche shown in Fig. 1B of the main text. The solid-like particles are
turquoise spheres, and avalanche particles in [t, (t + 1,000t0)] are red arrows with yellow heads. The avalanche starts to build in localized regions, then grows to
peak activity, and finally dies out, leaving behind an increased population of solid-like particles. Highly cooperative movements can be seen during the main
avalanche phase, including particles moving in rows or circles. From start to finish, an avalanche typically lasts about 7,000t0, with t0 the time unit defined in
Materials and Methods.
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