

Edinburgh Research Explorer

Types of Depth and Formula Size

Citation for published version:
Kalorkoti, K 2014, 'Types of Depth and Formula Size' Asian-European Journal of Mathematics. DOI:
10.1142/S1793557114500314

Digital Object Identifier (DOI):
10.1142/S1793557114500314

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Asian-European Journal of Mathematics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43708091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1142/S1793557114500314
https://www.research.ed.ac.uk/portal/en/publications/types-of-depth-and-formula-size(1ad283d2-9cb9-41ea-9c0d-38aeb4388c97).html

TYPES OF DEPTH AND FORMULA SIZE

K. Kalorkoti
School of Informatics,

University of Edinburgh,
10 Crichton Street,

Edinburgh EH8 9LE, U.K.
kk@inf.ed.ac.uk

May 14, 2014

Abstract

We use a rank-based measure on rational expressions in indeterminates over a field and define
notions of size and depth with associated subparts of formulae for expressions. Formulae
are allowed to have as inputs expressions from a large set rather than just constants and
indeterminates. A general lower bound is derived and this is used to deduce an exponential
lower bound, subject to depth assumptions, on the formula size of the determinant with inputs
restricted to the usual constants and indeterminates. The general bound is also used to show
that a polynomial which is closely related to the determinant has exponential formula size if
either (i) some types of operations do not occur in the formula or (ii) some assumptions on
depth hold (the inputs allowed here are from a large set).

Keywords: Formula size, depth, determinant.
AMS Subject Classification: 03D15

1 Introduction

Algebraic complexity seeks to classify the computational cost of building objects by means of
arithmetic operations (+, −, ×, and optionally /) starting with constants and indeterminates
as inputs. In general once a subresult is obtained it can be used as many times as needed in
subsequent calculations; this is the circuit model of computing. However there are good reasons
to consider a restricted model in which subresults can be used only once, such a model corresponds
to the notion of a formula. For example, the depth of a formula (defined below) corresponds to
parallel computation time. Despite the apparent simplicity of these models, especially the latter,
we still do not have strong lower bounds for such important objects as the determinant (see below
for more details). In this paper we give a detailed classification of certain notions of size and depth
for a formula and use them to show exponential lower bounds but under some assumptions on
depth. Bounds are expressed, as usual, in terms of the number of input indeterminates.

Let k be a field and X a non-empty set of indeterminates over k. Normally one considers
formulae over k ∪X, i.e., trees whose leaves are labeled by members of k ∪X and whose non-leaf
vertices are labeled by an operation from {+,−,×}; divisions are sometimes also allowed but will
not be in this paper. In fact for most measures multiplication by scalars is free and so subtraction
can be left out as an operation, this makes little difference to the arguments of this paper. Leaving
out division is not quite so straigthtforward. The arguments of Brent [3] and Strassen [10] can be
used to show that for formulae over sufficiently large fields we can remove divisions at the cost
of a polynomial increase in size; see the survey by Shpilka and Yehudayoff [9] for further details.
However, to date, the largest unrestricted lower bound we have for the formula size of an explicit
expression is only quadratic, see Kalorkoti [6], and it would surely be of interest to improve on
this to some higher power.

1

In this paper the available inputs are extended from k ∪X to a larger set for all results except
for Theorem 2.1, see the final paragraph of this section for details. From now on we will use
‘vertex’ to mean a non-leaf of the tree. Edges are directed from the leaves towards the root. If
(u, v) is a directed edge from u to v then we call u a child of v. Each vertex v has two children,
a left child vL and a right child vR; thus (vL, v) and (vR, v) are edges. Paths always go from
parent to child, i.e., consistently against the direction of edges. In a formula (whether standard
or as extended later in this paper) each vertex v is labelled by an arithmetic operation and is also
called a computation vertex. If v is labeled by + or − we call it additive otherwise multiplicative.
Normally formulae are defined textually and it is observed that they correspond to trees, there is
no harm in identifying them with their corresponding trees; using textual or graphical notation as
is most convenient. At a vertex v the order of arguments for evaluation is the result of vL followed
by the result of vR (this matters only when the operation is − or /, when the latter operation is
allowed).

We use r(Φ) to denote the result computed by a formula Φ; if the inputs are from k ∪X then
r(Φ) is a polynomial. (Note that on occasion we use r as an integer variable, however there can
be no confusion since r() is always used with an argument when denoting the result of a formula.)
The size of Φ, denoted by |Φ| is the number of vertices, i.e., the number of operations. The depth
of Φ, denoted by d(Φ), is the maximum number of computation vertices from the root of Φ to any
leaf. Other notions of size and depth will be defined in §4. Note that in this paper we deal only
with fan in 2 rather than the unbounded case, see [9] for further details on this.

In order to provide some context for the analysis presented in this paper, consider a polynomial
f =

∑
ν aνx

ν where the aν ∈ k are constant coefficients and the xν are finitely many distinct power
products, i.e., expressions of the form xν1

1 · · ·xνnn where νi ∈ N, for 1 ≤ i ≤ n (the notation is
discussed in the next section). We can build a formula Φf for f by using a balanced binary tree
with multiplicative vertices to compute each power product, then multiplying each tree with the
relevant constant to obtain the corresponding monomial and finally adding up all the monomials
using a balanced tree. While this is a naive approach it has the interesting property that it is
optimal with respect to the depth of non-scalar multiplications (this follows from a simple degree
argument). On the other hand, with this approach, there must be at least as many multiplicative
subtrees as there are monomials whereas a linear size formula such as (z1 + y1) · · · (zn + yn) has
2n distinct power products just by allowing simple additive trees of depth 1 (i.e., the formuale
zi + yi) to feed into the leaves of the single multiplicative tree.

The general analysis we provide applies to arbitrary formulae; identifying certain types of
subformulae and associated notions of size and depth, motivated by the properties of the rank-
based measure introduced in §3. There is a well known and widely used distinction between scalar
and non-scalar multiplicative operations, the latter being multiplications by non-constants (and
divisions by non-constants when / is allowed). The main contribution of this paper is to examine
a finer subdivision of operations and perhaps point to ways in which further research can exploit
them in order to relax the assumptions made for the lower bounds. In essence the method used is
an improvement on an approach based on monomial counting; the latter is not powerful enough
for the results given here. In terms of the previous paragraph, our specific lower bounds allow
the depth of non-scalar multiplications to be a little more than the minimum necessary (up to an
additive constant more) and layers of additive vertices to interleave with the multiplications, but
with a restriction on the depth of each layer.

For the general setting, we choose Y ⊆ X and set Z = X−Y . Apart from §2, our formulae will
be extended in such a way as to compute elements of k(Z)[[Y]], i.e., the ring of formal power series
in Y with coefficients from k(Z) (see Zarsiki and Samuel [12]). Note that we are working entirely
with algebraic objects rather than functions. See [6] for a discussion of the relation between
formula size in the algebraic setting as compared to the functional one. It must be stressed that
the model does not compute all elements of k(Z)[[Y]] but it does compute all elements of k(Z)[Y]
and hence all elements of k[X], details are given in §4. For the general results, our formulae are
allowed to have leaves labeled with members of k(Z) ∪ k[[Y]] rather than just k ∪X. Our aim is
to deduce lower bounds so that this extension simply makes the bounds more powerful.

The use of formal power series is not necessary for the main results. However the proofs would

2

not be simplified by their removal. In the presence of formal power series, it is an easy matter to
extend the results to include division but at the cost of some minor complications. This has been
left out of the paper because the main application results would not go through with divisions
allowed owing to the assumptions on depth. The use of formal power series makes available a
greater range of possible transformations of formulae that could prove useful in deriving lower
bounds by means of reductions.

2 Statement of the main result

The non-scalar depth of a formula Φ, denoted by µ(Φ), is the maximum number of non-scalar
multiplicative vertices on any path from the root to a leaf. The non-scalar additive gap of Φ,
denoted by γ(Φ), is the maximum number of additive vertices between two consecutive non-scalar
vertices over all paths from the root to a leaf or between the last non-scalar vertex of a path and
a leaf (scalar multiplicative vertices are ignored). Note that if the root is additive or scalar then
consecutive additive and scalar vertices starting at the root do not contribute to the non-scalar
additive gap. It follows that d(Φ) cannot be bounded from above in terms of µ(Φ) and γ(Φ).
This fact is illustrated by the formula Φf for f =

∑
ν aνx

ν discussed in §1. Take f to be the
determinant of an n × n matrix of distinct indeterminates, then µ(Φf) = dlg ne, γ(Φf) = 0 but
d(Φf) ≥ lg(n!) ≥ n lg(n/e); we use lg for log2 throughout the paper.

Theorem 2.1 Let M = (xij) be an n×n matrix where the xij are distinct indeterminates over k,
for 1 ≤ i, j ≤ n. Let Φ be a formula for detM with leaves labeled by members of k ∪X. Suppose
that µ(Φ) ≤ lg c1n and γ(Φ) ≤ c2 lg n+ o(lg n) where c1c2 < 2/3. Then |Φ| ≥ nΩ(n).

The result applies to the permanent as well. The assumptions of the preceding result are quite
strong but it is worth noting that, even so, the overall depth of a formula allowed by the assump-
tions can be as high as c2 lg2 n + o(lg2 n). Naturally c1 ≥ 1, since the degree of the result of
Φ is at most 2µ(φ), and thus c2 < 2/3. Since a formula of size nΩ(n) must have depth at least
Ω(n lg n), Theorem 2.1 shows that most of the depth of the formula consists of operations that do
not contribute to the non-scalar depth or the additive gap.

See Bshouty, Cleve and Eberley [4] on size-depth trade offs. As noted in [4], the classical result
of Brent [3] implies that if a formula has size S then it can be transformed into one of size SO(1)

and depth O(lgS). Thus if the determinant has a polynomial size formula then it has one with
depth O(lg n). There is therefore good reason to examine formulae with depth O(lg n); the results
here allow us to go to depth proportional to lg2 n but with strong restrictions.

The best known upper bound for the formula size of the determinant is nO(lgn) obtained by
Csanky [5] for fields of characteristic 0. The same bound was obtained for all fields by Borodin, von
zur Gathen and Hopcroft [2]. It follows that formulae which satisfy the constraints of Theorem 2.1
cannot be optimal.

Raz [7] proves a lower bound of nΩ(lgn) for multilinear formulae for the determinant. The key
underlying feature of multilinear formulae is that at each multiplication vertex the two subtrees
have disjoint sets of indeterminates which is likely to be a significant restriction. Potentially,
it puts quite strong constraints on the ‘garbage collection’ ability of algebraic computation, see
Valiant [11]. The largest unrestricted lower bound is Ω(n3) due to the author [6]. Shpilka and
Wigderson [8] prove a lower bound of Ω(n4/ lg n) for ΣΠΣ circuits (these consists of a layer of
additive vertices, then a layer of multiplicative ones and another additive layer). Finally, Agrawal
and Vinay [1] show that if we allow unbounded fan in and are interested in proving exponential
lower bounds for the circuit size of polynomials then we need only consider depth four.

3 Algebraic preliminaries

Set Y = {y1 . . . , ym}. Let ν range over tuples from Nm (we include 0 in N) and define yν =
yν1

1 · · · yνmm where ν = (ν1, . . . , νm). Define also |ν| =
∑m
i=1 νi and addition of tuples to be compo-

nent wise. An element f of k(Z)[[Y]] has a unique expression f =
∑
ν fνy

ν where fν ∈ k(Z) for

3

all ν. We define Ld(f, Y) to be the k-linear subspace of k(Z) spanned by all fν with |ν| ≤ d and
set Dd(f, Y) = dimk Ld(f, Y), as usual the dimension of the zero vector space is 0.

When f is a polynomial the measure is essentially the one based on matrix rank, e.g., see
Shpilka and Wigderson [8], Raz [7] or Shpilka and Yehudayoff [9].

Lemma 3.1 For all f, g ∈ k(Z)[[Y]] and all d ≥ 0

1. Dd(f ± g, Y) ≤ Dd(f, Y) +Dd(g, Y).

2. Dd(fg, Y) ≤ Dd(f, Y)Dd(g, Y).

proof. If fg = 0 the claims are trivial so assume this is not the case. Let Sf and Sg be
bases for Ld(f, Y) and Ld(g, Y) respectively. If f ± g = 0 the first inequality is trivial, otherwise∑
ν fνy

ν ±
∑
ν gνy

ν =
∑
ν(fν ± gν)yν so that Sf ∪ Sg is a spanning set for Ld(f ± g, Y).

For the second inequality we have

(∑
µ

fµy
µ
)(∑

ν

gνy
ν
)

=

∞∑
i=0

∑
|µ|+|ν|=i

fµgνy
µ+ν

so that SfSg = {f ′g′ | f ′ ∈ Sf , g′ ∈ Sg} is a spanning set for Ld(fg, Y) whose cardinality is no
larger than Dd(f, Y)Dd(g, Y). �

Recall that by definition k(Z)k[[Y]] = {fg | f ∈ k(Z), g ∈ k[[Y]]}.

Lemma 3.2 Let f, g ∈ k(Z)[[Y]]. Then, for all d ≥ 0,

1. Dd(fg, Y) ≤ 1, whenever f, g ∈ k(Z)k[[Y]].

2. Dd(fg, Y) ≤ Dd(f, Y), whenever g ∈ k(Z)k[[Y]].

3. Dd(fg, Y) ≤ Dd(f, Y), whenever g ∈ k(Z) ∪ k[[Y]].

proof. We may assume that fg 6= 0. The first inequality follows from the second: Dd(fg, Y) =
Dd(1 · fg, Y) ≤ Dd(1, Y) = 1. The second inequality follows from the third since g = h1h2 with
h1 ∈ k(Z) and h2 ∈ k[[Y]] so that Dd(fg, Y) = Dd(fh1h2, Y) ≤ Dd(fh1, Y) ≤ Dd(f, Y). For the
third inequality, if g ∈ k(Z) and {g1, . . . , gr} is a spanning set for Ld(f, Y) then {g1g, . . . , grg}
is a spanning set for Ld(fg, Y). On the other hand if g ∈ k[[Y]] then each coefficient of fg of
degree d is a k-linear combination of the coefficients of f of degree at most d, i.e., it is in the space
Ld(f, Y). �

4 Formulae

Recall from §1 that our formulae are allowed to have leaves labeled with members of k(Z)∪ k[[Y]]
rather than just k∪X (where Y ⊆ X and Z = X −Y). In all other respects there is no difference
from the standard definition.

Any formula Φ can be converted to a formula Ψ with the following properties:

1. r(Ψ) = r(Φ) and |Ψ| ≤ |Φ|.

2. The result at each computation vertex is not a member of k(Z) ∪ k[[Y]].

3. If the result at a multiplicative vertex is fg with f ∈ k(Z) and g ∈ k[[Y]] but fg 6∈
k(Z) ∪ k[[Y]] then the subformula rooted at v is just f × g.

These properties simplify some definitions and proofs. The formula Ψ is obtained from Φ by
replacing each maximal size subtree whose result f is in k(Z) ∪ k[[Y]] with a leaf labeled by f .
Likewise for multiplicative vertices whose result is in k(Z)k[[Y]]−(k(Z)∪k[[Y]]). Clearly |Ψ| ≤ |Φ|
and the depth of Ψ is no larger than that of Φ. Indeed the number of vertices in Ψ of any given

4

type is no more than the number in Φ. The same applies to the notions of depth defined below.
From now on we will assume that formulae have the stated properties.

A simple induction argument shows that the set of expressions computed by our model is
{f1g1 + · · · + frgr | r ≥ 1, fi ∈ k(Z), gi ∈ k[[Y]], for 1 ≤ i ≤ r}, i.e., the smallest subring
of k(Z)[[Y]] that contains k(Z) ∪ k[[Y]] (this is a standard algebraic fact). Note that if f =
f1g1 + · · · + frgr is an element of this ring then Dd(f, Y) ≤ r, for all d ≥ 0, by the first part of
Lemmas 3.1 and 3.2. Thus Dd(f, Y) is bounded from above independently of d; naturally this is
not true for arbitrary members of k(Z)[[Y]], e.g., consider

∑∞
i=0 z

iyi. The bounds we provide in
the rest of the paper do not depend on the degree and so we will use D(f, Y) rather than Dd(f, Y).
Also, if Φ is a formula, we use D(Φ, Y) as short hand for D(r(Φ), Y).

An extended formula is the same one defined at the start of this section but we allow the
leaves to be labeled by elements of k(Z)[[Y]] rather than k(Z)∪ k[[Y]] (or just k∪X for the usual
definition). This is a convenient device that allows us to collapse subformulae and replace them by
leaves labeled with the expressions computed by the collapsed subformulae. Clearly the resulting
formula computes the same expression. For the rest of this section we will use the term ‘formula’
to mean an extended formula unless otherwise stated. The notion of an extended formula is used
later on in Lemmas 4.3 and 5.1 however it is necessary to have the preceding definition in place
so that preliminary results can be applied to the two lemmas.

A multiplicative vertex is non-scalar if the neither of the results of its left and right children
is in k. Let v be a non-scalar multiplicative vertex of a formula Φ whose left and right children
have results f , g respectively. We say that v is

• separated : if f ∈ k(Z)k[[Y]] or g ∈ k(Z)k[[Y]].

• essential : if f, g 6∈ k(Z)k[[Y]];

Naturally these definitions are relative to Y and Z which we have fixed throughout. The reason for
this distinction is that if v is a separated vertex with, e.g., g ∈ k(Z)k[[Y]] then D(fg, Y) ≤ D(f, Y),
by Lemma 3.2. Note that, by definition, a separated vertex is non-scalar, thus a multiplicative
vertex that is not essential is either separated or scalar. Note also that in a non-extended formula
every essential vertex is the root of a subtree that has at least four leaves.

Let v1, . . . , vn be a path in a formula where v1 is the root and both children of vn are leaves.
We identify three consecutive sections of the path, some of which might be empty:

1. Upper essential-free section v1, . . . , vr: no essential vertices.

2. Essential section vr+1, . . . , vs: where vr+1 and vs are essential, other vertices are arbitrary.

3. Lower essential-free section vs+1, . . . , vn: no essential vertices.

If a path has no essential vertices then it consists of only an upper section and is called an essential
free path. Let u1. . . . , ur be an essential-free path. We divide it into two subparts (again either
part can be empty):

1. Separated section u1, . . . , us: where us is separated (hence non-scalar);

2. Additive section us+1, . . . , ur: all vertices are additive or scalar.

Figure 1 is helpful in understanding the preceding definitions as well as those in the next paragraph.
The various measures are understood to be the maximum over all paths.

For a formula Φ the essential depth, denoted by e(Φ), is the maximum number of essential
vertices on any path from the root to a leaf. The essential additive gap, denoted by g(Φ), is the
maximum number of additive vertices between any two consecutive essential vertices in any path
from the root to a leaf. Note that if e(Φ) ≤ 1 then g(Φ) = 0. The lower separated additive depth,
denoted by aL(Φ), is the maximum number of additive vertices in the separated section of the
lower essential-free part of any path from the root to a leaf. Naturally we could define an upper
counterpart but it will not play any role in our analysis.

5

v1

Upper essential free section.
...

vr
vr+1

Essential section.
...

Essential depth, e(Φ).
Essential additive gap, g(Φ).

vs
vs+1

... Lower separated additive depth, aL(Φ).
Lower essential free section. vt

vt+1

...
vn

Figure 1: Sections of a path where vr+1 and vs are essential, vt is separated.

Before proceeding with the next few definitions it is worthwhile commenting that the main
general result, the second part of Theorem 5.1, can be established by using only the notions of
depth introduced above. In the lemmas of this section we would replace all occurrences of formula
size of various types by the obvious upper bound implied by the appropriate depth. However the
proofs are more natural in the form given and of course the various subformulae could in principle
be much smaller than the upper bound based on depth; the price is the need to introduce some
extra definitions.

A formula is essential-free if it has no essential vertices, thus every path from the root to a
leaf consists only of an essential free section. Note that such a formula is not required to have
any computation vertices at all; thus every leaf is an essential-free formula no matter how it is
labelled. For such a formula Φ, we will use |Φ|a to denote the total number of additive vertices
in the separated sections of all paths from the root to a leaf counting each vertex only once (this
is not the same as the total number of additive vertices in Φ). Given an arbitrary formula Φ the
last vertex of every non-empty essential section has two essential-free formulae attached to it. Let
Φ1, . . . ,Φr be all the essential-free formulae thus obtained. We define |Φ|L = max1≤i≤r |Φi|a. If
Φ has no essential vertices then |Φ|L = 0.

A formula Φ is essential if the root is essential, and so |Φ| ≥ 1. The essential size of such a Φ,
denoted by |Φ|e, is the number of essential vertices of Φ. For an arbitrary formula Ψ its essential
size is |Ψ|e = max |Φ|e where Φ ranges over all essential subformulae of Ψ. If Φ has no essential
vertices then |Φ|e = 0. In order to avoid misunderstanding, we note here that a formula which
is not essential is not necessarily an essential-free formula since it could have an essential vertex
other than the root.

Let Φ be a formula and let Φ1, . . . ,Φr be all the maximal essential subformulae of Φ. Replacing
each Φi with a leaf labeled by r(Φi) yields an essential-free formula Ψ (which could consist of just
a leaf). Define |Φ|U to be |Ψ|a. Note that if Φ is essential-free then |Φ|U = |Φ|a.

Since most of the preceding definitions are not standard, a summary of them is given in Figure 2
as an aid to the reader.

We now define a function α on formulae as follows.

1. α(Φ) = 1, if Φ is essential-free.

2. α(Φ1 ± Φ2) = 1 + max(α(Φ1), α(Φ2)), where Φ1 ± Φ2 has an essential vertex.

3. α(Φ1 × Φ2) = max(α(Φ1), α(Φ2)), if the operation is not essential.

4. α(Φ1 × Φ2) = α(Φ1) + α(Φ2), if the operation is essential.

6

Extended formula: a formula with leaves labeled by elements of k(Z)[[Y]].

Non-scalar vertex: a multiplicative vertex for which neither of the results of its left and right
children is in k.

Separated vertex: a non-scalar vertex s.t. the result of at least one child is in k(Z)k[[Y]].

Essential vertex: a non-scalar vertex s.t. the result of neither child is in k(Z)k[[Y]].

Essential depth, e(Φ): maximum number of essential vertices on any path from the root to a
leaf.

Essential additive gap, g(Φ): maximum number of additive vertices between any two consec-
utive essential vertices in any path from the root to a leaf.

Lower separated additive depth, aL(Φ): maximum number of additive vertices in the sepa-
rated section of the lower essential-free part of any path from the root to a leaf.

Essential-free formula: a formula with no essential vertices.

|Φ|a, for an essential free formula: the total number of additive vertices in the separated sec-
tions of all paths from the root to a leaf counting each vertex only once (this is not the same
as the total number of additive vertices in Φ).

|Φ|L, for an arbitrary formula: the last vertex of every non-empty essential section of Φ has
two essential-free formulae attached to it. Let Φ1, . . . ,Φr be all the essential-free formulae
thus obtained. Define |Φ|L = max1≤i≤r |Φi|a; if Φ has no essential vertices then |Φ|L = 0.

Essential formula: a formula whose root is an essential vertex.

Essential size, |Φ|e: if Φ is essential then the number of essential vertices of Φ. Otherwise
max |Ψ|e where Ψ ranges over all essential subformulae of Φ.

|Φ|U , for an arbitrary formula: let Φ1, . . . ,Φr be all the maximal essential subformulae of Φ.
Replace each Φi with a leaf labeled by r(Φi) to yield an essential-free formula Ψ (which could
consist of just a leaf). |Φ|U is defined to be |Ψ|a; if Φ is essential-free then |Φ|U = |Φ|a.

Figure 2: Summary of definitions for a formula Φ (see also Figure 1).

Lemma 4.1 Let Φ be a formula that has an essential vertex.

1. Suppose that Φ = Φ1±Φ2 and one of Φ1, Φ2 is essential-free. Let Ψ be the subformula from
Φ1, Φ2 that has an essential vertex. Then α(Φ) = 1 + α(Ψ).

2. Suppose that Φ = Φ1 × Φ2 and the operation is not essential. Let Ψ be the subformula from
Φ1, Φ2 whose result is not in k(Z)k[[Y]]. Then α(Φ) = α(Ψ).

proof. The first part is immediate from the definition of α and the fact that its value is at least 1.
For the second let Ψ′ be the subformula from Φ1, Φ2 whose result is in k(Z)k[[Y]]. It follows from
the assumptions at the start of this section that Ψ′ is essential-free and so α(Ψ′) = 1. �

As a consequence of this lemma, when evaluating α on a formula we either obtain 1 straight away
because the formula is non-essential or follow some path to an essential operation (since at additive
vertices we add one to the maximum value of α on the left and right subformuale).

The key part of the next lemma is the bound for essential formulae. However we need to
introduce an auxiliary definition, g∗(Φ), for the induction proof since a subformula of an essential
formula need not itself be essential even if it has an essential vertex (i.e., its root need not be an
essential vertex). However, if Φ does have an essential vertex at all then Φ × Φ is an essential
formula.

7

Lemma 4.2 Let Φ be a formula and define g∗(Φ) = g(Φ× Φ). Then α(Φ) ≤ g∗(Φ)(|Φ|e − 1)/2 +
|Φ|e + 1. If Φ is essential then α(Φ) ≤ g(Φ)(|Φ|e − 1)/2 + |Φ|e + 1

proof. We use induction on d(Φ), the depth of Φ, to prove the first part. If Φ is essential-free
the result is trivial since α(Φ) = 1 and g∗(Φ) = 0; this also covers the base case d(Φ) = 0. Assume
now that d(Φ) > 0 and Φ has an essential vertex. There are three cases to consider.

Case 1: Φ = Φ1 ± Φ2. Then α(Φ) = 1 + max(α(Φ1), α(Φ2)). As observed above, the value
of α is obtained by following some path P to an essential vertex. Suppose there are c additive
vertices on the path P to an essential vertex that is the root of a subformula Ψ1 ×Ψ2. Note that
r(Φ) 6∈ k(Z)k[[Y]] since Φ has an essential vertex and so Φ×Φ is essential, hence g∗(Φ) ≥ c. Now

α(Φ) = c+ α(Ψ1 ×Ψ2)

≤ c+ g∗(Ψ1)(|Ψ1|e − 1)/2 + |Ψ1|e + 1 + g∗(Ψ2)(|Ψ2|e − 1)/2 + |Ψ2|e + 1

≤ c+ g∗(Φ)(|Ψ1|e + |Ψ2|e − 2)/2 + |Ψ1|e + |Ψ2|e + 2

≤ g∗(Φ)(|Φ|e − 1)/2 + |Φ|e + 1− g∗(Φ) + c

≤ g∗(Φ)(|Φ|e − 1)/2 + |Φ|e + 1.

The inequality g∗(Ψ1) ≤ g∗(Φ) is justified the fact that Ψ1 × Ψ2 is essential so that g∗(Ψ1) ≤
g(Ψ1 ×Ψ2) ≤ g∗(Φ). Similarly for g∗(Ψ2) ≤ g∗(Φ).

Case 2: Φ = Φ1 × Φ2 where the operation is not essential. We may assume w.l.o.g. that Φ2 is
essential-free. Thus

α(Φ) = α(Φ1) ≤ g∗(Φ1)(|Φ1|e − 1)/2 + |Φ1|e + 1 ≤ g∗(Φ)(|Φ|e − 1)/2 + |Φ|e + 1.

Case 3: Φ = Φ1 × Φ2 and the operation is essential. Then

α(Φ) = α(Φ1) + α(Φ2)

≤ g∗(Φ1)(|Φ1|e − 1)/2 + |Φ1|e + 1 + g∗(Φ2)(|Φ2|e − 1)/2 + |Φ2|e + 1

≤ g∗(Φ)(|Φ1|e + |Φ2|e − 2)/2 + |Φ|e + 1

≤ g∗(Φ)(|Φ|e − 3)/2 + |Φ|e + 1

≤ g∗(Φ)(|Φ|e − 1)/2 + |Φ|e + 1.

Finally, if Φ is an essential formula then g∗(Φ) = g(Φ). �

Lemma 4.3 Let Φ be an essential-free formula whose leaves are labeled by f1, . . . , fr ∈ k(Z)[[Y]]−
(k(Z)∪k[[Y]]) and h1, . . . hs ∈ k(Z)∪k[[Y]]. Let δ = max1≤i≤rD(fi, Y). If s = 0 then D(Φ, Y) ≤
rδ(|Φ|a + 1) else D(Φ, Y) ≤ (rδ + 2)(|Φ|a + 1)

proof. We proceed by induction on |Φ|. If Φ has no separated vertices then it consists only of
additive and scalar vertices, hence r(Φ) =

∑r
i=1 aifi +

∑s
j=1 bjhj where ai, bj ∈ k, for 1 ≤ i ≤ r

and 1 ≤ j ≤ s. If s = 0 then D(f, Y) ≤
∑r
i=1D(fi, Y) ≤ rδ, by the first part of Lemma 3.1.

Otherwise
∑s
j=1 bjhj = g1 + g2 where g1 ∈ k(Z) and g2 ∈ k[[Y]] and so D(

∑s
j=1 bjhj , Y) ≤

D(g1, Y) +D(g2, Y) ≤ 2 by the first part of Lemmas 3.1 and 3.2. Thus D(Φ, Y) ≤ rδ+ 2. For the
rest of the proof we define γ to be rδ if s = 0 otherwise rδ + 2. Assume now that Φ has at least
one separated vertex. We have two cases.

Case 1: Φ = Φ1 × Φ2 and the operation must be non essential. If r(Φ2) ∈ k(Z)k[[Y]] then
D(Φ, Y) ≤ D(Φ1, Y) ≤ γ(|Φ1|a + 1) ≤ γ(|Φ|a + 1). Similarly if r(Φ1) ∈ k(Z)k[[Y]].

Case 2: Φ = Φ1 ± Φ2 so that D(Φ, Y) ≤ D(Φ1, Y) + D(Φ2, Y) ≤ γ(|Φ1|a + 1) + γ(|Φ2|a + 1) =
γ(|Φ|a+1). Here we have used the fact that Φ has a separated vertex so that |Φ|a = |Φ1|a+|Φ2|a+1.
�

Lemma 4.4 Let Φ be an essential formula with leaves labeled by members of k(Z) ∪ k[[Y]]. Then
D(Φ, Y) ≤ 2α(Φ)(|Φ|L + 1)|Φ|e+1.

8

proof. We use an auxiliary definition which is necessary because a subformula of an essential
formula is not necessarily essential. Let Ψ be any formula and let Ψ1, . . . ,Ψr be all of its maximal
essential-free subformulae. We define |Ψ|l = max1≤i≤r |Ψi|a. Note that for an essential formula
Φ we have |Φ|L = |Φ|l and so it suffices to establish the result for |Φ|l in place of |Φ|L where Φ
is any formula. We proceed by induction on the maximum number of vertices on a path from
the root to an essential vertex. If this number is 0 then Φ is essential-free and, by Lemma 4.3,
D(Φ, Y) ≤ 2(|Φ|a + 1) = 2α(Φ)(|Φ|l + 1)|Φ|e+1. There are three cases to consider for the induction
step.

Case 1: Φ = Φ1 ± Φ2. We have

D(Φ, Y) ≤ D(Φ1, Y) +D(Φ2, Y)

≤ 2α(Φ1)(|Φ1|l + 1)|Φ1|e+1 + 2α(Φ2)(|Φ2|l + 1)|Φ2|e+1

≤ 2 · 2max(α(Φ1),α(Φ2))(|Φ|l + 1)|Φ|e+1

= 2α(Φ)(|Φ|l + 1)|Φ|e+1.

Case 2: Φ = Φ1×Φ2 where this operation is not essential. If r(Φ2) ∈ k(Z)k[[Y]] then D(Φ, Y) ≤
D(Φ1, Y) ≤ 2α(Φ1)(|Φ1|l + 1)|Φ1|e+1 ≤ 2α(Φ)(|Φ|l + 1)|Φ|e+1. Similarly if r(Φ1) ∈ k(Z)k[[Y]].

Case 3: Φ = Φ1 × Φ2 and this operation is essential. We have

D(Φ, Y) ≤ D(Φ1, Y)D(Φ2, Y)

≤ 2α(Φ1)(|Φ1|l + 1)|Φ1|e+1 · 2α(Φ2)(|Φ2|l + 1)|Φ2|e+1

≤ 2α(Φ1)+α(Φ2)(|Φ|l + 1)|Φ1|e+|Φ2|e+2

≤ 2α(Φ)(|Φ|l + 1)|Φ|e+1.

This completes the proof. �

We end this section with a remark. One reason for allowing non-extended formulae to have
leaves labeled by members of k(Z) ∪ k[[Y]] without charge is because D(f, Y) ≤ 1 for all f ∈
k(Z) ∪ k[[Y]]. On this basis we could allow leaves to be labeled by members of k(Z)k[[Y]].
However we would lose the other main important property, exploited in Lemma 4.3, that if Φ has
only additive vertices and has leaves labeled by members of k(Z) ∪ k[[Y]] then D(Φ, Y) ≤ 2. If
we allow leaves to be labeled by members of k(Z)k[[Y]] then the bound in Lemma 4.3 must be
replaced by (rδ + s)(|Φ|a + 1) and consequently the factor 2α(Φ) in Lemma 4.4 must be replaced
with one that is too large for subsequent bounds.

5 Lower bounds

From now on, unless otherwise stated, ‘formula’ means a tree with leaves labeled by elements of
k(Z)∪ k[[Y]], i.e., we exclude extended formulae. For a formula Φ let α∗(Φ) denote the maximum
value of α over all maximal essential subformulae of Φ.

Lemma 5.1 Let Φ be a formula that computes f ∈ k(Z)[[Y]]. Then

1. D(f, Y) ≤ 2(|Φ|U + 1), if Φ has no essential operations;

2. D(f, Y) ≤ |Φ|2α∗(Φ)(|Φ|L + 1)|Φ|e+1(|Φ|U + 1), otherwise.

proof. If Φ has no essential operations then it is an essential-free formula with inputs from
k(Z) ∪ k[[Y]] and the result follows from Lemma 4.3.

Suppose now that Φ has an essential operation. Let Φ1, . . . ,Φr be all the maximal essential
subformulae of Φ and set fi = r(Φi), for 1 ≤ i ≤ r. By Lemma 4.4 we have

D(fi, Y) ≤ 2α(Φi)(|Φi|a + 1)|Φi|e+1 ≤ 2α
∗(Φ)(|Φ|L + 1)|Φ|e+1.

9

Now replace each Φi with a leaf labeled by fi. This yields an essential-free extended formula Ψ
whose result is that of Φ. As pointed out in §4, p.5, every essential vertex in Φ is the root of a
subtree with at least four leaves; it follows that |Φ| ≥ 4r − 1 ≥ r + 2 as r ≥ 1. By Lemma 4.3,

D(f, Y) ≤ (r2α
∗(Φ)(|Φ|L + 1)|Φ|e+1 + 2)(|Ψ|a + 1)

≤ (r + 2)2α
∗(Φ)(|Φ|L + 1)|Φ|e+1(|Ψ|a + 1)

≤ |Φ| 2α
∗(Φ)(|Φ|L + 1)|Φ|e+1(|Φ|U + 1).

This completes the proof. �

Theorem 5.1 Let Φ be a formula that computes f ∈ k(Z)[[Y]]. Then

1. D(f, Y) ≤ 2(|Φ|+ 1), if Φ has no essential operations;

2. D(f, Y) ≤ |Φ|22α
∗(Φ)(|Φ|L + 1)|Φ|e+1 ≤ |Φ|22(g(Φ)/2+aL(Φ)+1)2e(Φ)−g(Φ), otherwise.

proof. The result follows from Lemma 5.1. For the first part we simply note that |Φ|U ≤ |Φ|
and for the second part |Φ|U ≤ |Φ| − 1. The rest follows from Lemma 4.2 and by noting that
|Φ|L ≤ 2aL(Φ) − 1, |Φ|e ≤ 2e(Φ) − 1 �

Theorem 5.2 Let Y = {yij | 1 ≤ i, j ≤ n} and Z = {zij | 1 ≤ i, j ≤ n} be disjoint sets
of n2 distinct indeterminates over k. Let M be the n × n matrix with (i, j)th entry zijyij, for
1 ≤ i, j ≤ n. Suppose that Φ is a formula for detM and that Φ either has no essential operations
or that e(Φ) ≤ lg c1n, g(Φ) ≤ c2 lg n+o(lg n) and aL(Φ) ≤ c3 lg n+o(lg n) where (c2/2+c3)c1 < 1.
Then |Φ| ≥ nΩ(n).

proof. Since
detM =

∑
π∈Sn

(−1)sgn(π)z1π(1) · · · znπ(n)y1π(1) · · · ynπ(n)

it follows that D(detM,Y) = n! ≥ (n/e)n = 2n lgn−n lg e. We may assume that the formula Φ for
detM satisfies the assumptions at the start of §4. If Φ has no essential operations then it follows
from the first part of Theorem 5.1 that |Φ| ≥ 2n lgn−n lg e−1 − 1 irrespective of depth.

Suppose now that |Φ| has an essential operation. Let ε = (c2/2 + c3)c1. By the second part of
Theorem 5.1, |Φ| ≥ 2((1−ε)n lgn−o(n lgn))/2. �

Note that in the preceding result, det(zij) and det(yij) are given to us for free as are any other
members of k(Z) ∪ k[[Y]]. Thus the non-scalar depth of a formula for detM can be less than
lg deg(detM) = 2 lg n.

Before proving Theorem 2.1 we need a technical lemma.

Lemma 5.2 Let X = {x1, . . . , xn }, Y = { y1, . . . , yn }, Z = { z1, . . . , zn } and { ξ1, . . . , ξn } be
disjoint sets of distinct indeterminates over k and f ∈ k[X] with f 6∈ k. Set kξ = k(ξ1, . . . , ξn).
Then there do not exist g ∈ kξ[[Y]] and h ∈ kξ(Z) such that

f(ξ1 + y1z1, . . . , ξn + ynzn) = g(y1, . . . , yn)h(z1, . . . , zn).

proof. Suppose there are g and h such that the equation holds so that g(y1, . . . , yn) = f(ξ1 +
y1z1, . . . , ξn + ynzn)/h(z1, . . . , zn) in kξ(Z)[[Y]]. Since f(ξ1 + y1z1, . . . , ξn + ynzn) is a polynomial
in Y and h(z1, . . . , zn) is free of Y it follows that g(y1, . . . , yn) is also a polynomial in Y . Setting
yi 7→ 0, for 1 ≤ i ≤ n we obtain f(ξ1, . . . , ξn) = g(0, . . . , 0)h(z1, . . . , zn). Note that g(0, . . . , 0) 6= 0
since f(x1, . . . , xn) 6= 0 and ξ1, . . . , ξn are indeterminates over k so that f(ξ1, . . . , ξn) 6= 0. Thus

f(ξ1 + y1z1, . . . , ξn + ynzn) = g(y1, . . . , yn)f(ξ1, . . . , ξn)/g(0, . . . , 0).

Hence degZ f(ξ1+y1z1, . . . , ξn+ynzn) = 0. However degZ f(ξ1+y1z1, . . . , ξn+ynzn) = degX f(x1, . . . , xn) >
0 which is a contradiction. �

10

Proof of Theorem 2.1. Let Y = {yij | 1 ≤ i, j ≤ n}, Z = {zij | 1 ≤ i, j ≤ n} and {ξij | 1 ≤ i, j ≤ n}
be disjoint sets each of n2 distinct inderminates over k. We may assume that the formula Φ for
detM satisfies the assumptions at the start of §4. Replace each leaf of Φ labeled with xij by the
formula ξij + zij × yij . Let Ψ be the formula thus obtained, which is viewed as a formula with
scalars from the field k({ξij | 1 ≤ i, j ≤ n}). Clearly |Ψ| ≤ 3|Φ|+ 2 and r(Ψ) = det(ξij + zijyij).
The highest degree terms of det(ξij + zijyij) are det(zijyij) so that D(Ψ, Y) ≥ n!. By Lemma 5.2,
all of the non-scalar vertices of Φ become essential in Ψ and Ψ satisfies the assumptions at the start
of §4. The only active vertices are those of the subtrees ξij +zij×yij . It follows that e(Ψ) = µ(Φ),
g(Ψ) ≤ γ(Φ) and aL(Ψ) ≤ γ(Φ) + 1. The result now follows as in Theorem 5.2. �

Acknowledgment. The author is grateful to an anonymous referee for very helpful comments.

References

[1] M. Agrawal and V. Vinay, Arithmetic Circuits: A Chasm at Depth Four, 49th Annual IEEE
Symposium on Foundations of Computer Science, (2008), pp. 67–72

[2] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations,
Inform. and Control, Vol. 52, No. 3 (1982), pp. 241–256.

[3] R.P. Brent, The parallel evaluation of general arithmetic expressions, JACM, Vol. 21, No. 2
(1974), pp. 201–206.

[4] N.H. Bshouty, R. Cleve and W. Eberley, Size-Depth Tradeoffs for Algebraic Formulas, SIAM
J. Comput., Vol. 24, No. 4 (1995), pp. 682–705.

[5] L. Csanky, Fast parallel inversion algorithms, SIAM J. Comput., Vol. 5, No. 4 (1976), pp. 618–
623.

[6] K. Kalorkoti, A lower bound for the formula size of rational functions, SIAM J. Comput., Vol.
14, No. 3 (1985), pp. 678–687.

[7] R. Raz, Multi-linear formulas for permanent and determinant are of super-polynomial size,
Proceedings of the 36th Annual STOC, pp. 633–641, 2004.

[8] A. Shpilka and A. Wigderson, Depth-3 arithmetic circuits over fields of characteristic zero,
Computational Complexity, Vol. 10, No. 1 (2001), pp. 1–27.

[9] A. Shpilka and A. Yehudayoff, Arithmetic Circuits: a survey of recent results and open ques-
tions, Foundations and Trends in Theoretical Computer Science, Vol. 5, No. 3/4 (2009) pp. 207–
388.

[10] V. Strassen , Vermeidung von divisionen, Journal für die Reine un Angewandte Mathematik,
264 (1973), pp. 182–202.

[11] L.G. Valiant Why is Boolean Complexity Theory Difficult?, in ‘Boolean Function Complexity’,
edited by M.S. Paterson, LMS Lecture Note Series, 169 (1992), pp. 84–90.

[12] O. Zariski and P. Samuel, Commutative Algebra, Vols I, II, (Van Nostrand, Princeton, NJ,
1958).

11

