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ABSTRACT  

PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) have non-redundant functions during skeletal 

mineralization. While TNAP deficiency (Alpl-/- mice) leads to hypophosphatasia, caused by accumulation of the 

mineralization inhibitor inorganic pyrophosphate (PPi), comparably elevated levels of PPi in Phospho1-/- mice do 

not explain their stunted growth, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis. We have 

previously shown that elevated PPi in Alpl-/- mice is accompanied by elevated osteopontin (OPN), another potent 

mineralization inhibitor, and that the amount of OPN correlates with the severity of hypophosphatasia in mice. 

Here we demonstrate that plasma OPN is elevated and OPN expression is upregulated in the skeleton, particularly 

in the vertebrae, of Phospho1-/- mice. Liquid chromatography/tandem mass spectrometry showed an increased 

proportion of phosphorylated OPN (p-OPN) peptides in Phospho1-/- mice, suggesting that accumulation of p-OPN 

causes the skeletal abnormalities in Phospho1-/- mice. We also show that ablation of the OPN gene, Spp1, leads to 

improvements in the skeletal phenotype in Phospho1-/- as they age. In particular, their scoliosis is ameliorated at 1 

month of age and is completely rescued at 3 months of age. There is also improvement in the long bone defects 

characteristic of Phospho1-/- mice at 3 months of age. Mineralization assays comparing [Phospho1-/-; Spp1-/-], 

Phospho1-/- and Spp1-/- chondrocytes display corrected mineralization by the double knockout cells. Expression of 

chondrocyte differentiation markers was also normalized in the [Phospho1-/-; Spp1-/-] mice. Thus, while Alpl and 

Phospho1 deficiencies lead to similar skeletal phenotypes and comparable changes in the expression levels of PPi 

and OPN, there is a clear dissociation in the hierarchical roles of these potent inhibitors of mineralization, with 

elevated PPi and elevated p-OPN levels causing the respective skeletal phenotypes in Alpl-/- and Phospho1-/- mice. 

 

Keywords: genetic animal models, matrix mineralization, non-collagenous proteins, growth plate, osteomalacia 

and rickets 
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INTRODUCTION 

PHOSPHO1 is active in the cytosol of osteoblasts and chondrocytes, as well as in their derived matrix vesicles 

(MVs), where it participates in MV-mediated calcification.1,2 Our recent studies have shown that PHOSPHO1 and 

tissue-nonspecific alkaline phosphatase (TNAP) play non-redundant functional roles in skeletal and dental 

mineralization.3-5 PHOSPHO1 participates in the initiation of hydroxyapatite (HA) deposition inside MVs by 

scavenging Pi from phosphoethanolamine and phosphocholine, the head groups of the major phospholipids that 

constitute the plasma membrane of MVs, while TNAP facilitates propagation of HA crystals outside the MVs by 

restricting the concentrations of inorganic pyrophosphate (PPi), a potent calcification inhibitor.3-5 Remarkably, the 

double ablation of the PHOSPHO1 and TNAP function in our mouse model, leads to the complete absence of 

skeletal and dental mineralization in mice.3,6  

 

Lack of murine PHOSPHO1 causes slow growth and skeletal deformities that include low bone mineral density, 

spontaneous greenstick fractures, osteomalacia, and prominent scoliosis.3, 4 Both levo- and dextro- scoliosis is 

observed in Phospho1-/- mice, but µCT ruled out the presence of any obvious morphological abnormalities, such as 

hemivertebrae or fused vertebrae.3 Biochemically, Phospho1-/- mice show elevated levels of plasma PPi, a change 

that is also observed in mice deficient in TNAP (Alpl-/-), which manifest the soft bones disease known as 

hypophosphatasia (HPP). Indeed, correcting PPi levels in Alpl-/- mice, either via cross-breeding Alpl-/- mice to a 

transgenic strain expressing human TNAP under control of the ApoE promoter, [Alpl-/-; ApoE-ALPL],7 or via 

enzyme-replacement therapy with a mineral-targeting recombinant form of TNAP,8 completely prevents the 

development of the skeletal and dental abnormalities characteristic of this mouse model of infantile HPP. However, 

reducing the PPi levels in Phospho1-/- mice by cross-breeding them to the same ApoE-ALPL transgenic mice, did 

not significantly improve the skeletal phenotype of Phospho1-/- mice.3  

 

Osteopontin (OPN, encoded by Spp1) is another potent inhibitor of mineralization that is highly expressed in 

osteoblasts, as well as in osteoclasts.9-12 OPN is an Arg-Gly-Asp motif-containing matricellular protein13 that 

contains several putative phosphorylation sites14 and that can inhibit hydroxyapayite deposition in vitro when 
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phosphorylated.9 Furthermore, phosphorylation-dependent inhibition of mineralization by OPN appears to be 

mediated by ASARM peptides released from OPN by phosphate regulating endopeptidase homolog, X-linked 

(PHEX) cleavage.15 Spp1-/- mice have a skeleton that is histologically similar to WT mice and that is normal, even 

slightly hypermineralized.16, 17 OPN expression is regulated by extracellular concentrations of PPi;18-20 indeed, 

there is a linear correlation between PPi and OPN concentrations in mutant mouse strains displaying dysregulation 

of PPi metabolism, such as Alpl-/-, Enpp1-/- and ank/ank mice.17 However, ablating Spp1 in an Alpl null background 

only partially rescued the HPP phenotype, confirming that the elevated PPi concentrations caused the HPP and that 

OPN only contributed partially to this phenotype.17  

 

Given the increased levels of plasma PPi observed in Phospho1-/- mice, we surmised that OPN levels would also be 

elevated in this mutant strain and that elevated OPN concentrations might contribute to the skeletal defects in this 

model of skeletal dysplasia. Remarkably, as shown in the present study, ablating Spp1 function prevents the 

development of the skeletal phenotype of Phospho1-/- mice, establishing a primary role for OPN, rather than PPi, in 

the pathophysiology of the Phospho1-/- skeletal defects. 
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MATERIALS AND METHODS 

 

Mice 

Phospho1-R74X null mutant (Phospho1-/-) mice were generated by N-ethyl-N-nitrosourea mutagenesis in a 

C3HeB/FeJ (Stock No. 000658, Jackson Laboratories, Bar Harbor, ME, USA) background, then bred to C57BL/6 

mice to segregate other possible undesired mutations.3 Spp1-/- mice were generated in a C57BL/6 background.21 

Founder Spp1-/- mice were imported from Japan (kindly provided by Prof. Masaki Noda) and re-derived into 

C57BL/6 mice. The resulting progeny were bred to obtain Spp1+/− mice and the colony was maintained by 

heterozygote breeding. To generate mice lacking both PHOSPHO1 and OPN, Phospho1-/- mice were crossed to 

Spp1-/- mice and double heterozygote mice were used to generate [Phospho1-/-; Spp1-/-] mice. The Phospho1-/- 

genotypes were determined using genomic DNA, PCR and restriction digestion by BsrDI and Spp1-/- genotypes 

were determined using genomic DNA and PCR protocols.3, 18 The primer sequences for Phospho1 genotyping 

were: sense 5′ -TCCTCCTCACCTTCGACTTC-3′, antisense 5′-ATGCGGCGGAATAAACTGT-3′. Primer 

sequences for Spp1 genotyping were: sense 5′ -AGAGGTGAGGTCCTCATCTGTGGCA-3′ and antisense 5′-

ACTCCAATCGTCCCTACAGTCGATGTC-3′. All animal procedures were reviewed and approved by our 

Institutional Animal Review Committee (Animal Use Form #12-114, Approval Date: 10/19/12).  

 

Tissue and plasma collection, histological studies and biochemical assays 

Mice were euthanized by intraperitoneal injection of tribromoethanol and blood was collected by cardiac puncture. 

Whole-body, long bone and spine radiographic images were taken using an MX20 Specimen Radiograph System 

(Faxitron X-ray Corporation, Chicago, IL) at 1- and 3-months of age. The lumbar spines, tibias, and femurs of 1-

month- and 3-month-old mice were fixed in PBS containing 4% (w/v) paraformaldehyde. Plastic sections were 

stained with Von Kossa/van Gieson stain using published procedures7, 8, 22 and these sections were used to quantify 

osteoid volume using Bioquant Osteo Software (Bioquant Osteoanalysis Co., Nashville, TN).  

 

For OPN immunohistochemistry, bone tissues were decalcified with 0.125 M EDTA/10% formalin in H2O (pH 
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7.2) for five days after fixation, and processed for paraffin sectioning. Immunostaining for OPN was performed 

using a goat anti-mouse-OPN antibody, Cambridge, MA) and a standard avidin-biotin complex protocol, using the 

Vectastain ABC kit (Vector Laboratories, Burlingame, CA).  

 

Blood was collected by cardiac puncture and transferred into lithium heparin tubes. Plasma was separated by 

centrifugation at 5,000 rpm for 10 min. Alkaline phosphatase activity and PPi concentrations in plasma were 

measured using previously reported methods.8 For PPi assay, plasma was heated at 65 °C for 10 min, 10 µl of 

plasma was diluted 4 times and PPi was measured by differential adsorption on activated charcoal of UDP-D-[6- 

3H]glucose (Amersham Pharmacia, Piscataway, NJ), as previously described.18, 23 This method uses  a high specific 

activity  UDP-D-[6-3H] glucose, which is separated from the reaction product 6-phospho-[6- 3H] gluconate by 

selective adsorption on charcoal activated with phosphoric acid. Serial dilutions of sodium pyrophosphate (Sigma, 

St. Louis, MO) are used as standards. Briefly the diluted plasma samples and the standards are incubated at 37 °C 

for 30 min in a reaction mixture containing NADP (Roche, Indianapolis, IN), glucose-1,6-bisphosphate (Roche, 

Indianapolis, IN), uridine-5- Roche, Indianapolis, IN, glucose-6 phosphate dehydrogenase (Roche, Indianapolis, 

IN), phosphoglucomutase (Sigma, St. Louis, MO), uridine 5’-diphosphoglucose pyrophosphorylase (Sigma, St. 

Louis, MO) and 3H uridine dishposphoglucose (Amersham Pharmacia, Piscataway, NJ). The samples are then 

added to activated charcoal (Sigma, St. Louis, MO). Each sample is run in duplicate or triplicate. After adsorption 

of the reaction mixture on charcoal, the sample is centrifuged at 13,000 rpm for 10 min, and a 100 µl aliquot of the 

supernatant carefully removed and assayed for radioactivity in 5 ml of Ecolume (MP Biomedicals, LLC, Solon, 

OH). Mouse OPN was measured in plasma by ELISA (Enzo, Plymouth Meeting, PA), following the 

manufacturer’s protocol.  

 

Micro–computed tomography (µCT) 

Mice were euthanized at 1- and 3-months of age, as above, and the tibiae and femur were dissected and stored in 

water at −20°C. μCT analysis of the trabecular bone was performed on a 2-mm section of the right tibial and 

femoral metaphyses, 250 μm distal to the growth plate, using a Skyscan 1172 instrument (Kontlich, Belgium) set 
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at 60 kV, 150 μA and a resolution of 5 μm. Cortical analysis was conducted on a 250-μm section located 2.25 

mm distal to the reference growth plate. The spines were dissected from the cervical to the second lumbar 

vertebrae and the thoracic vertebrae were scanned at a resolution of 20 μm. The images were reconstructed using 

the Skyscan NRecon program, analyzed using Skyscan CTAn and the 3D models were visualized in Skyscan 

CTvol software.3 

 

Mineralization assay and gene expression analysis 

Primary chondrocytes were isolated from the knee joint growth plates of five-day-old pups by collagenase 

digestion, as described previously.3 Mineralization assays were performed by growing the cells in the presence of 

2.5 mM β-glycerolphosphate and 50 mM ascorbic acid for 21 days and then staining with Alizarin red using a 

standard method (Johnson et al., 2003). RNA was extracted using an RNAeasy Plus Kit (Qiagen, Valencia, CA, 

USA). Specific RNA transcripts (mRNA) for Alpl, Enpp1, Col2a1, Col10a1, Nr4a2, Mmp13, Phospho1 and Acan 

were quantified by real-time PCR using dual-labeled hydrolysis probes (FAM-TAMRA), as described previously.3 

Briefly, to carry out quantitative real time PCR, 2 µL of the (1:10) diluted cDNA was used for assaying the amount 

of 18S endogenous ribosomal RNA, and all the other genes of interest in duplicates. The reaction utilized 12.5 µL 

of platinum qPCR UDG Supermix (Invitrogen, Carlsbad, CA), yielding 0.75 U Taq DNA polymerase, 20 mM 

Tris-HCl, 50 mM KCl, 3 mM MgCl2, and 200 µM of deoxynucleoside triphosphate. The reaction mixture was 

brought to a final concentration of 5 mM MgCl2. Real time reaction was performed in 96- well plate on a 

Stratagene MX3000p real time machine (Stratagene, La Jolla, CA). Each assay was optimized by titrating a range 

of primer and probe concentrations and determining their cycle threshold (Ct) values. The primer and probe 

combinations that gave the lowest Ct and best amplification plots were used for the final analysis. Ct values were 

determined by the software according to the optimization of the baseline. For computing the relative amounts of all 

the genes, the average Ct of the primary signal for 18S was subtracted from that of gene of interest to give changes 

in Cts (dCt). A baseline dCt of 30 was subtracted and the results multiplied by -1. In this manner, the degree of 

change in gene expression was determined. Relative units (a log2 scale dCt) were calculated and used here as a 

measure gene expression. The normalization of all the genes with 18S controls for variation in the efficiency of 
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RNA isolation, possible differences in amounts of starting RNA and RT efficiency. 

 

Western blot and mass spectrometry analysis 

After removal of skin, tendons and muscle, leg and spine bones were snap frozen with dry ice and frozen bones 

were crushed into powder. The crushed bones, and chondrocytes cultured for 21 days in mineralization media as 

described above, were suspended in lysis solution (4 M guanidine HCl, 50 mM Tris HCl, 0.5 M EDTA, 2 mM 

phenylmethysulphonylfluoride, 5 mg/l pepstatin and 1 mg/l soybean trypsin inhibitor; pH 7.5).24 After rotation at 

4°C for 48 hours, the samples were dialyzed against Tris-buffered saline solution containing 5 mM EDTA and 2 

mM phenylmethysulphonylfluoride (pH 7.5) at 4°C to remove guanidine salt. Protein concentration was 

determined using a bicinchoninic acid assay kit according to manufacturer’s instructions (Thermo Fisher Scientific 

Inc., Rockford, IL, USA). SDS-PAGE was performed as before.25 OPN was detected using a goat anti-mouse-OPN 

antibody (Abcam, Cambridge, MA) and the ECL Plus kit (GE Healthcare, Pittsburgh, PA). 

 

For proteomic analysis, samples were prepared as previously described.25 Briefly, guanidine/EDTA extracts of 

mineralized chondrocyte culture were incubated with a combination of mouse and goat anti-mouse OPN antibodies, 

and precipitated with Protein G agarose beads (Thermo Scientific, Carlsbad, CA). Samples eluted from the Protein 

G beads were subjected to a TiO2-based enrichment procedure. OPN phoshopeptides were analyzed by liquid 

chromatography and tandem mass spectrometry (LC-MS/MS) on a Michrom MS2 HPLC-captive spray-LTQ 

Orbitrap Velos with ETD instrument (Thermo Scientific, Carlsbad, CA) by the Proteomics core facility of the 

Sanford-Burnham Medical Research Institute, La Jolla, CA. 

 

OPN dephosphorylation by TNAP and PHOSPHO1, and phosphate release assay 

This assay was performed using a passive adsorption method on latex beads (Life Technologies, Carlsbad, CA) 

according to the manufacturer’s instructions. Briefly, latex beads were incubated with goat polyclonal antibody 

against mouse OPN (Abcam, Cambridge, MA) overnight at 4°C. The beads were then washed and blocked with 

1% (w/v) bovine serum albumin and incubated with plasma from WT mice, as a source of OPN. After washing, the 

beads were incubated with buffer as a negative control, recombinant TNAP (0.225 µM and 0.112 µM) and 
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PHOSPHO1 (6.666 µM and 3.333 µM) and TNAP and PHOSPHO1 combined (0.112 µM TNAP and 3.333 µM 

PHOSPHO1) in separate reactions. The phosphate released into the supernatant was measured using the Pi 

ColorLock Gold phosphate detection system (Innova Biosciences, Cambridge, UK) according to the 

manufacturer’s protocol and absorbance was read at 630 nm. A phosphate (Pi) standard curve was generated and 

readings taken at 5, 15 and 30 minutes of incubation showed a plateau in Pi concentration generated by TNAP at 30 

minutes. Therefore, the reaction was monitored in the linear phase between 5 and 15 min and the calibration line at 

15 minutes was corrected for the baseline and used to convert ΔA630 nm over 10 minutes in Pi concentrations. 

Calibrations were then done taking the concentration of TNAP and PHOSPHO1 into account and the apparent rate 

constants, expressed per s, were calculated. 

 

Statistical analysis 

All measurements were performed at least in triplicate. Results are expressed as mean ± Standard Error of the 

Mean (SEM). The data were analyzed using Student’s t test and p values less than 0.050 were considered 

significant.
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RESULTS 

 

Elevated osteopontin in the spine and plasma of Phospho1−/− mice  

Immunohistochemistry demonstrated higher expression of OPN in the spine of 1-month-old Phospho1−/− mice than 

in the spine of WT littermate control mice (Fig. 1A), while no change in OPN expression was observed in their 

femurs (Fig. 1B). Significantly higher levels of OPN were also observed in the plasma of both 1- and 3-month-old 

Phospho1−/− mice than in WT mice (1-month-old, WT = 165.1 ± 11.21 ng/ml, Phospho1-/- = 203.9 ± 12.65 ng/ml, 

p=0.03, n=11; 3-months-old, WT = 94.90 ± 13.33 ng/ml, Phospho1-/- = 138.7 ± 13.55 ng/ml, p=0.03 n=7) (Fig. 1C). 

Similar results were found at the mRNA level, where quantitative real time PCR showed that Spp1 expression was 

2.3-fold higher in the spine of Phospho1-/- mice than in WT mice [WT = 0.9240 ± 0.1314 (N=5); Phospho1-/- = 

2.130 ± 0.4519 (N=4), p=0.025], while no differences were observed in the femur [WT = 1.635 ± 0.3323 (N=6); 

Phospho1-/- = 1.480 ± 0.2504 (N=5), p=0.73)] (Fig. 1D). Since PPi is known to affect Spp1 expression,18-20 we 

quantified the expression of Enpp1 in the spine and legs and found higher Enpp1 mRNA levels in the spine in all 

genotypes (Supplemental Fig. 1). Western blot analysis confirmed the higher expression of OPN in the spine of 

Phospho1-/- mice (Fig. 1E). Phospho-peptide sequences obtained from TiO2-LC-MS/MS analysis of protein 

extracts of cultured chondrocytes from WT and Phospho1-/- mice immunoprecipitated with anti-OPN antibody (Fig. 

1F) showed a higher proportion of phosphorylated OPN (p-OPN) sequences in Phospho1-/- than in WT mice.  

 

The aforementioned accumulation of p-OPN peptides could be due to lack of phosphatase activity of PHOSPHO1 

or could be caused by the reduction in TNAP activity previously documented in Phospho1-/- mice.3 To clarify this 

issue, we used passive adsorption of OPN onto latex beads and tested dephosphorylation by recombinant 

PHOSPHO1 and TNAP and then measured phosphate release by a colorimetric assay. The concentration of 

released Pi in the supernatants, using 0.22 µM TNAP and 6.66 µM PHOSPHO1, was 5.16 µM and 0.77 µM, 

respectively. The Pi release using both TNAP and PHOSPHO1 at half of the concentration of enzymes (0.112 µM 

and 3.33 µM for TNAP and PHOSPHO1, respectively) was only 0.97 µM. This shows that there is no synergy 

between both enzymes; the amount of phosphate release with both TNAP and PHOSPHO1 together essentially 
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corresponds to the activity expected for TNAP alone. The mean apparent rate constants for antibody-bound OPN 

hydrolysis by TNAP and PHOSPHO1 were 3.4 × 10−2 /s and 8 × 10−5 /s, respectively. The ratio between the rate 

constants for both enzymes was 424, which shows that TNAP is about 400 times more active in OPN 

dephosphorylation than PHOSPHO1. 

 

Rescue of the scoliosis phenotype and improvement at other skeletal sites in the Phospho1−/− mice by the 

deletion of Spp1 

Ablation of OPN function in the Phospho1-/- background improved the spinal deformity characteristic of this 

skeletal dysplasia model. X-ray imaging showed that the scoliosis phenotype was considerably less pronounced in 

the [Phospho1-/-; Spp1-/-] mice than in Phospho1-/- mice at 1 month of age, and it was completely absent at 3 

months of age. Phospho1-/- mice show severe long bone deformities such as bowed or deformed tibiae and 

spontaneous fractures both in the femora and tibiae both at 1 and 3 months of age. Improvement in the long bone 

deformities was observed in [Phospho1-/-; Spp1-/-] mice at 3 months of age (Figs. 2A and 2B). 

 

Histomorphometric analyses using Von Kossa/van Gieson staining confirmed that the osteomalacia previously 

reported in 10-day-old Phospho1-/- mice3 persisted at 1 month (Supplemental Fig. 2) and 3 months of age (Fig. 3, 

arrows). The vertebral sections also showed the presence of widespread hyperosteoidosis in the Phospho1-/- mice 

(Supplemental Fig. 2 and Fig. 3, arrows). The osteomalacia in the vertebrae and the long bones of [Phospho1-/-; 

Spp1-/-] mice was somewhat reduced at 1 month of age and significantly at 3 months of age compared to Phospho1-

/-
 mice (Fig. 3 and Supplemental Fig. 2). The significance of the comparison of percentage osteoid volume to bone 

volume (OV/BV %) measured in the tibiae at 1 month of age were: WT versus Phospho1-/-, p= 0.035, (N=4) and 

Phospho1-/- versus [Phospho1-/-; Spp1-/-], p=0.043, (N=4) and for vertebral OV/BV%: WT versus Phospho1-/-, 

p=0.004, (N=4) and Phospho1-/- versus [Phospho1-/-; Spp1-/-], p=0.003, (N=4). Similarly at 3 months of age the 

significance for tibial OV/BV % differences were: WT versus Phospho1-/-, p=0.009, (N=4) and Phospho1-/- versus 

[Phospho1-/-; Spp1-/-], p=0.02, (N=4) and for vertebral OV/BV%: WT versus Phospho1-/-, p=0.0007, (N=4) and 

Phospho1-/- versus [Phospho1-/-; Spp1-/-], p=0.0008, (N=4). Scoliosis was observed at 1 month, as shown before3, 

and 3 months (Fig. 4A) of age in the Phospho1-/- mice by µCT where the top thoracic vertebrae (T2 to T4) appear 
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rotated in their axis. Scoliosis was observed in the [Phospho1-/-; Spp1-/-] mice at 1 month of age, but not at 3 

months of age (Fig. 4A).  

 

At one month of age, trabecular analysis of the tibia and femur of Spp1-/- mice showed parameters comparable to 

WT mice (Supplemental Tables 1 and 2). However, at three months of age, Spp1-/- mice showed significantly 

higher trabecular bone volume per selected area of tissue volume (% BV/TV) than WT mice in both femora (WT = 

11.58 ± 1.607, Spp1-/- = 25.23 ± 3.009, p=0.0035) and tibiae (WT = 9.697 ± 1.852, Spp1-/- = 19.32 ± 2.796, 

p=0.016), which reflects the larger trabecular number and lower trabecular space measured (Fig. 4B, and 

Supplemental Table 1 and 2). BV/TV was significantly higher in the tibia of [Phospho1-/-; Spp1-/-] mice, compared 

to Phospho1-/- mice, at 1 month of age ([Phospho1-/-; Spp1-/-] = 8.84 ± 0.62%, Phospho1-/- 6.75 ± 0.39%, p=0.02) 

(Fig. 4B, and Supplemental Table 1). Trabeculae in the tibia were significantly thicker at 1 month of age in the 

[Phospho1-/-; Spp1-/-] compared to Phospho1-/- mice ([Phospho1-/-; Spp1-/-] = 38.74 ± 0.67 µm, Phospho1-/- = 35.23 

± 1.09 µm, p=0.02) (Fig 4C and Supplemental Table 1), and larger trabecular number and lower trabecular space 

were also observed at 3 months of age in these mice (Supplemental Table 1). Cortical measurements of the tibia 

(Fig. 4D and Supplemental Table 3) showed higher cortical porosity in Phospho1-/- mice both at 1 and 3 months of 

age as compared to WT mice (WT mice = 3.548 ± 0.364, versus Phospho1-/- mice = 9.543 ± 1.29, p=0.006 at 1 

month of age; WT mice = 1.343 ± 0.272 versus Phospho1-/- mice =2.413 ± 0.399, p=0.032 at 3 months of age). At 

this age, the [Phospho1-/-; Spp1-/-] double knockout tibia had a mean % cortical porosity value that was not 

statistically significant compared to that of the Phospho1-/- or WT tibia ([Phospho1-/-; Spp1-/-] mice= 6.957 ± 1.209 

versus WT mice = 3.548 ± 0.364, p=0.10; [Phospho1-/-; Spp1-/-] 6.957 ± 1.209 versus Phospho1-/- 9.543 ± 1.29, 

p=0.09). Cortical thickness of the tibia was also significantly higher in [Phospho1-/-; Spp1-/-] mice than in 

Phospho1-/- mice at 1 month of age (WT = 168.7 ± 11.39 µm, Phospho1-/- = 142.2 ± 2.25 µm, WT versus 

Phospho1-/-, p=0.02, Spp1-/- = 172.0 ± 3.72 µm, [Phospho1-/-; Spp1-/-] = 157.2 ± 4.32 µm, Phospho1-/- versus  

[Phospho1-/-; Spp1-/-], p=0.01) (Figs. 4D and 4E). Cortical bone mineral densities (BMD) (Fig. 5A, B) of both 

femora and tibiae of 1-month-old mice were lower in Phospho1-/- mice than in WT mice, but were significantly 

higher in [Phospho1-/-; Spp1-/-] than in Phospho1-/- mice (WT= 1.21 ± 0.02 g/cm3, Phospho1-/- = 1.09 ± 0.017 g/cm3, 
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WT versus Phospho1-/-, p=0.003, Spp1-/- = 1.23 ± 0.013 g/cm3, [Phospho1-/-; Spp1-/-]  =1.17 ± 0.01 g/cm3, 

Phospho1-/- versus [Phospho1-/-; Spp1-/-], p=0.006) (Figs. 5A and 5B). No significant difference was observed 

between Spp1-/- and WT mice. The BMD of the tibia and femur at 3 months of age did not show any significant 

differences between WT, Phospho1-/- and [Phospho1-/-; Spp1-/-] mice (Figs.5A and 5B). 

 

In vitro chondrocyte mineralization and plasma analysis  

In order to check the mineralization ability of primary chondrocytes, cells from WT, Phospho1-/-, Spp1-/- and 

[Phospho1-/-; Spp1-/-] mice were grown in culture for 14 and 21 days in the presence of mineralization medium 

containing ascorbic acid and β-glycerolphosphate. Similar results were obtained both at day 14 (data not shown) 

and day 21 of culture (Fig. 6). Phospho1-/- and Spp1-/- cells showed lower mineralization than WT cells while 

[Phospho1-/-; Spp1-/-] chondrocytes had significantly higher mineralization than Phospho1- /- cells (WT= 25.22 ± 

5.46, Phospho1-/- = 14.29 ± 3.83, Spp1-/- = 7.22 ± 2.23, [Phospho1-/-; Spp1-/-] = 29.49 ± 1.82 mmols of bound 

alizarin red, Phospho1-/- versus [Phospho1-/-; Spp1-/-], p= 0.023) (Fig. 6A). Interestingly, Phospho1 gene expression 

was significantly lower in the spine and leg, as well as primary chondrocytes, of Spp1-/- mice (spine, WT= 1.57 ± 

0.38, Spp1-/- = 0.38 ± 0.06, p=0.03; legs, WT = 1.07 ± 0.28, Spp1-/- = 0.08 ± 0.004, p=0.02; 21 day cultured 

chondrocytes, WT= 2.68 ± 0.93, Spp1-/- = 0.73 ± 0.21, p=0.02) (Fig. 6B). In addition, Alpl expression in 

chondrocytes from Phospho1-/- and Spp1-/- mice was approximately two-fold lower than in chondrocytes from WT 

mice (Fig. 6C), whereas Alpl expression in chondrocytes from [Phospho1-/-; Spp1-/-] mice was comparable to WT. 

Enpp1 expression was approximately three-fold higher in chondrocytes from [Phospho1-/-; Spp1-/-] mice than in 

WT, Phospho1-/-, and Spp1-/- cells (WT= 194,949 ± 33,283, Phospho1-/- = 104,565 ± 10,658, WT versus Phospho1-

/-, p=0.01, Spp1-/- = 89,762 ± 21,227, [Phospho1-/-; Spp1-/-] = 219266 ± 46728, Phospho1-/- versus [Phospho1-/-; 

Spp1-/-], p= 0.03; WT versus [Phospho1-/-; Spp1-/-], p=0.71) (Fig. 6D). Consistent with the gene expression data, 

Phospho1-/- mice had lower plasma TNAP activity than WT littermate control mice, while plasma TNAP activity 

was significantly higher in the [Phospho1-/-; Spp1-/-] compared to Phospho1-/- mice (Phospho1-/- = 272.2 ± 18.16 

mmol/µl/min, [Phospho1-/-; Spp1-/-] = 400.1 ± 32.95 mmol/µl/min, p=0.007) (Fig. 6E). As TNAP hydrolyzes the 

mineralization inhibitor PPi, we determined plasma PPi levels in 3-month-old mice. Consistent with the measured 

TNAP levels and our previous reports,3, 17 we observed high PPi levels in Phospho1-/- and Spp1-/- animals, while the 
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[Phospho1-/-; Spp1-/-] mice showed normal PPi levels (WT= 42.27 ± 2.005 µM, Phospho1-/- = 46.99 ± 0.9110 µM, 

Spp1-/- = 46.98 ± 1.73 µM [Phospho1-/-; Spp1-/-] = 40.92 ± 2.434 µM,  WT versus Phospho1-/- , p=0.03; Phospho1-/- 

versus [Phospho1-/-; Spp1-/-] p=0.0093; WT versus [Phospho1-/-; Spp1-/-], p=0.69) (Fig. 6F). As we had previously 

reported changes in chondrocyte gene expression in Phospho1−/− chondrocytes,3 we next examined whether any 

genes might show a normal pattern of expression in the [Phospho1−/−; Spp1−/−] cells. Expression of the 

chondrocyte differentiation markers Nr4a2, Col2a1, Acan, Col10a1, and Runx2 was lower in cells from Phospho1-

/- mice than in [Phospho1−/−; Spp1−/−] cells. Mmp13 expression was higher in chondrocytes from [Phospho1−/−; 

Spp1−/−] compared to WT, Phospho1-/- and Spp1-/- cells (Supplemental Fig. 3). 
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DISCUSSION 

We have previously shown that PHOSPHO1 has a non-redundant function in the initiation of calcification, as 

Phospho1-/- mice have spontaneous fractures, bowed long bones, osteomalacia, and scoliosis,3 with approximately 

30–40% of Phospho1-/- mice showing thoracic scoliosis on postnatal day 10, and 100% of them having the top 

thoracic vertebrae (T2 to T4) rotated in their own axis at 1 month of age. However, the skeletal abnormalities in 

Phospho1-/- mice could not be explained by increased levels of the mineralization inhibitor PPi, because 

normalizing PPi concentrations did not prevent their skeletal phenotype.3 Interestingly, Moreau and collaborators 

showed that high circulating levels of OPN were associated with idiopathic scoliosis onset and spinal deformity 

progression.26  

 

OPN is another potent inhibitor of mineralization.16, 27, 28, 29, 30 It is a matricellular protein that modulates cell-

matrix interactions and cell function,11 without having a structural role itself,31 and is highly associated with 

mineralized tissue.24 Although Spp1-/- mice are both histologically and radiographically normal,32 there are reports 

that suggest that OPN has an inhibitory function in mineralization.16, 27, 28, 29, 30 Recently, we reported that OPN is a 

physiological substrate of TNAP, and identified at least two preferred sites of dephosphorylation by TNAP.25 We 

also documented that the levels of plasma OPN correlated with the severity of the HPP phenotype in Alpl-/- mice.25  

 

Given that PPi induces OPN expression17, 19, 20 and the strict positive correlation that we had found between PPi and 

OPN plasma levels in various knockout mouse strains,17 we tested the hypothesis that ablating OPN function 

would prevent the skeletal phenotype, particularly the scoliosis, in Phospho1−/− mice. Indeed, deletion of OPN on 

the Phospho1−/− background, [Phospho1-/-; Spp1-/-], prevented the scoliosis phenotype and, to some extent, the 

HPP-like osteomalacia phenotype of Phospho1-/- mice. The differential effect of this improvement is likely due to 

the much higher levels of Spp1 expressed in the axial versus the appendicular skeleton. In turn, our findings that 

Enpp1 expression is also much higher in the axial compared to the appendicular skeleton suggests that local 

differences in the levels of PPi may be responsible for the site-specific regulation of OPN expression. As we 

recently demonstrated that TNAP physiologically dephosphorylates OPN and affects the ability of OPN to inhibit 
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mineralization, we further hypothesized that PHOSPHO1 can also act as a phosphatase and dephosphorylate OPN 

and this explains the improvement observed in the [Phospho1-/-; Spp1-/-] mice. This would also explain the greater 

proportion of phosphorylated OPN peptides observed in Phospho1-/- mice than in WT mice. However, we found 

that PHOSPHO1 dephosphorylates OPN inefficiently, suggesting that the reduction in TNAP activity previously 

documented in Phospho1-/- mice3 causes the accumulation of p-OPN in this animal model. OPN triggers Alpl gene 

expression through αvβ3 integrin-mediated FAK activation33 so Alpl gene expression is reduced in the absence of 

OPN. Our findings that Spp1-/- vertebrae, long bones and cultured chondrocytes also show low expression of 

Phospho1-/- adds Phospho1 to the list of genes that are regulated by OPN, which already includes including Alpl, 

Enpp1, and Ank.17  

 

Figure 7 summarizes our current understanding of the complex counter-regulatory influence of the Pi/PPi ratio, 

OPN and now also PHOSPHO1 on mineralizing cells. While PPi has a major role in controlling deposition in the 

ECM, changes in the extracellular Pi/PPi ratio, likely sensed by sodium-dependent phosphate transporters (PiT1 

and/or 2),34 affect expression of the genes that control the levels of extracellular PPi (Enpp1, Ank, Alpl), as well as 

OPN. In turn, OPN, especially as p-OPN, 16, 27, 28, 29, 30 participates in controlling hydroxyapatite deposition in the 

ECM while also influencing the expression of Enpp1, Ank and Alpl,17 as well as Phospho1. PHOSPHO1 appears to 

control the expression of OPN, as well as the output of PPi, thus acting as upstream regulator to both of these 

important counter-regulated inhibitory pathways.  

 

Given the reduction in Phospho1 expression shown here in Spp1-/- cells, we can interpret the reduction of TNAP 

activity in Spp1-/- mice as a combination of direct downregulation of the Alpl gene in the absence of OPN, as well 

as a downstream effect caused by the reduction in PHOSPHO1 expression caused by OPN deficiency. As indicated 

in our mass spectrometry data, the increased level of p-OPN peptides in Phospho1-/- mice is consistent with the 

expected hyper-phosphorylation status of OPN caused by the very low levels of TNAP activity in these Phospho1-/- 

animals. Thus, it seems clear that the prominent scoliosis phenotype of Phospho1-/- mice may be caused by the 

increased levels of OPN in the spine caused by the higher levels of Enpp1 expression in the spine and 

accumulation of p-OPN, due to the sharp reduction in TNAP activity resulting from PHOSPHO1 deficiency. Thus, 
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in the Phospho1-/- model it is the accumulation of the mineralization inhibitor p-OPN that appears to cause the 

disease phenotype, rather than a build-up of PPi. Indeed, we previously showed that Phospho1-/- mice 

overexpressing TNAP under control of the ApoE promoter had high levels of plasma TNAP and normal plasma PPi 

but no significant correction of their skeletal phenotype.3 In contrast, correcting plasma PPi levels in Alpl-/- HPP 

mice prevented all the skeletal and dental manifestations of this model of osteomalacia.8 Thus, we have two 

skeletal dysplasias that display similar biochemical changes - elevation of both PPi and p-OPN concentrations - in 

which the hierarchical roles of these potent mineralization inhibitors appear to be different, with elevations in PPi 

largely explaining the HPP phenotype and elevations of p-OPN largely explaining the Phospho1-/- phenotype. Why 

did the transgenic overexpression of TNAP in the liver not lead to improvement of the Phospho1-/- phenotype? We 

think that this has to do with the fact that soluble circulating TNAP does not reach cartilage very well, possibly 

because of vascularity issues. Previous attempts to enzyme replacement therapy with plasma TNAP in the early 

80’s failed to yield life-saving treatment to children affected by severe HPP.35-36 The interpretation of those data 

has been that TNAP is needed locally at sites of initiation of matrix-vesicle mediated mineralization in the growth 

plate and in bone. The efficacy demonstrated by the use of mineral-targeting TNAP in the treatment of mice8 and 

humans37 with life-threatening HPP is consistent with that premise. In addition, our recent data examining Alpl-/- 

mice bred to ApoE-Tnap or to Col1a1-Tnap transgenic mice expressing soluble TNAP, showed that while PPi was 

corrected in the plasma and the skeletal defect was improved, the animals still developed growth plate and joint 

abnormalities with age.25 Those cartilage defects are not seen in mice treated with mineral-targeting TNAP.8 We 

think that mineral-targeting TNAP is able to reach sites of impending mineralization in cartilage, while soluble 

TNAP is not. Thus, while the elevated levels of plasma TNAP achieved by the transgenic over-expression of 

TNAP in the liver is able to normalize plasma PPi concentrations, we think that the enzyme does not reach sites of 

impending mineralization in the growth plate where accumulated p-OPN is exerting its inhibitory influence in 

Phospho1-/- mice. 

 

We observed improved BV/TV, improved trabecular and cortical thickness and reduced trabecular spaces and 

cortical porosity at 1 month of age in [Phospho1-/-; Spp1-/-] mice as is observed in the Spp1-/- mice.  These data 

show that the bone phenotype of the [Phospho1-/-; Spp1-/-] mice displays intermediate severity compared to those of 
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the individual Spp1-/- and Phospho1-/- phenotypes. Cortical BMD of both tibia and femur was also improved in the 

[Phospho1-/-; Spp1-/-] mice at 1 month of age. At 3 months of age the Phospho1-/- mice did not show any significant 

difference in BMD from the WT mice. This could be because of increased bone at the sites of callus formation 

during fracture healing. The improved phenotype of the [Phospho1-/-; Spp1-/-] mice can be explained by the 

significant changes in gene expression that result in pro-mineralizing conditions in [Phospho1-/-; Spp1-/-] cells, such 

as:  the normalization of the calcifying ability of [Phospho1-/-; Spp1-/-] chondrocytes, the increase in Alpl 

expression in these cells and the increase in plasma TNAP activity in the double knockout mice, which results in 

normalized plasma PPi concentrations. Figure 7 helps visualize how removing the regulatory influences exerted by 

PHOSPHO1 and OPN would only leave a functional Pi/PPi pathway to control mineralization in [Phospho1-/-; 

Spp1-/-] cells and mice.  
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FIGURE LEGENDS 

 

Fig. 1: Expression of OPN in the spine and plasma of Phospho1-/- mice is higher than in WT mice. 

Immunohistochemistry using anti-OPN antibody on the vertebral body (A) and femur (B) from WT and Phospho1-

/- mice shows higher expression of OPN in the spine of Phospho1-/- mice than in WT mice. No changes in OPN 

expression were observed between the femur of Phospho1-/- and WT mice. Negative control with normal goat IgG 

in WT mice (A and B) shows no OPN expression. Images are representative of three individual mice. (C) OPN 

ELISA also shows higher OPN levels in the plasma of both 1- and 3-month-old Phospho1-/- mice than in WT mice 

(n ≥ 7 mice per group). (D) RNA expression data shows higher Spp1 gene expression in the spine of Phospho1-/- 

mice than in WT, while no changes are observed in the femur  (n = 3). (E) Western blot using anti-OPN antibody 

showing OPN levels in femur, spine and day 14 and day 21 cultured chondrocytes from WT and Phospho1-/- mice. 

The 56 kDa band represents mouse recombinant OPN. (F) Mass spectrometry analysis of protein extracts from 

cultured chondrocytes from WT and Phospho1−/− mice immunoprecipitated with anti-OPN antibody. Residue 

numbers are based on the OPN isoform NP_001191131. The spectral counts of individual phosphopeptides show 

greater numbers of phosphorylated OPN sequences in Phospho1-/- mice than in WT mice.  

 

Fig. 2. Improvement of the scoliosis and other skeletal abnormalities in [Phospho1-/-; Spp1-/-] mice. (A, B) 

Radiographic images of Phospho1-/- and [Phospho1-/-; Spp1-/-] mice at 1 and 3 months of age. (A) [Phospho1-/-; 

Spp1-/-] mice showed slightly less scoliosis than Phospho1-/- mice at 1 month of age (arrows), but no change in the 

long bone abnormalities. (B) No scoliosis was observed at 3 months of age in [Phospho1-/-; Spp1-/-] mice (arrows). 

Less bowing of long bones is and no fractures (in the tibiae) observed in [Phospho1-/-; Spp1-/-] mice than in 

Phospho1-/- mice. Images are representative of at least three individual mice for each genotype. Arrows show 

bowed long bones and fractures in the tibiae in Phospho1-/- mice.  

  

Fig. 3. Histomorphometric analyses of tibiae and spines of WT, Phospho1-/-, Spp1-/- and [Phospho1-/-; Spp1-/-] mice 

at 3 months of age. Von Kossa/van Gieson staining of the tibial section at the knee joint reveals trabecular bone 



24 
 

surrounded by widespread, extended osteoid in 3-month-old Phospho1−/− mice (arrows/inserts show higher 

magnification of the areas where the osteoid is present), which is less apparent in [Phospho1-/-; Spp1-/-] mice.  

 

Fig. 4. µCT analysis of spine and tibia in WT, Phospho1-/-, Spp1-/- and [Phospho1-/-; Spp1-/-] mice. (A) 3D 

reconstructions of the thoracic vertebrae at 3 months of age from μCT scans at a resolution of 10 μm. (B) The 

ratio of bone volume to the selected area of trabecular bone (BV/TV), expressed as a percentage, and trabecular 

thickness in 1-month-old mice. (C) Representative 3D models of trabecular bone showing greater trabecular 

thickness and smaller trabecular spaces in the [Phospho1-/-; Spp1-/-] mice. (D) Total cortical porosity and thickness 

in 1-month-old mice. (E) Representative 3D models of cortical bone showing greater cortical thickness in the 

[Phospho1-/-; Spp1-/-] mice. The bone has been made transparent to be able to see the porosity/vascularity. *p<0.05, 

**p<0.01. 

 

Fig. 5. Bone mineral density analysis by µCT in WT, Phospho1-/-, Spp1-/- and [Phospho1-/-; Spp1-/- ] mice. Cortical 

bone mineral density analysis of femur (A) and tibia (B) of 1-month- and 3-month-old mice shows no difference in 

the BMD of WT and Spp1-/- mice both at either age. At 1 month of age, Phospho1-/- mice show lower BMD which 

was not observed in Phospho1-/-; Spp1-/- mice. n ≥ 3, *p<0.05, **p<0.01. 

 

Fig. 6. Chondrocyte mineralization and plasma analysis in WT, Phospho1-/-, Spp1-/- and [Phospho1-/-; Spp1-/-] mice. 

(A) Chondrocyte mineralization assay using Alizarin red staining at day 14 and 21 of culture also showed 

improved mineralization in the [Phospho1-/-; Spp1-/-] mice compared to Phospho1-/- mice alone. (B) Phospho1 gene 

expression was reduced in spine, leg and 21 day cultured chondrocytes of Spp1-/- mice (n ≥ 3). Data are represented 

as mean ± SEM, experiments done in triplicates. (C) Alpl expression in 21-day chondrocyte cultures. Phospho1-/- 

mice show reduced Alpl gene expression, which was significantly increased in [Phospho1-/-; Spp1-/-] mice. (D) 

Enpp1 in 21-day chondrocyte cultures. Enpp1 expression was slightly increased in Phospho1−/− mice and 

significantly increased in the [Phospho1-/-; Spp1-/-] mice. n ≥ 3, experiments performed in duplicate. TNAP activity 

(E) and PPi concentration (F) in plasma of 3-month-old mice. TNAP levels were higher and PPi levels were lower 

in the plasma of [Phospho1-/-; Spp1-/-] mice than in Phospho1-/- mice. Data are represented as mean ± SEM, n ≥ 6 
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mice per group, experiments performed in duplicate. 

 

Fig. 7. Schematic model showing the counter-regulatory influences exerted by the Pi/PPi ratio, OPN and PHOSPHO1 on 

mineralizing cells.  
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