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Abstract 1 

Clutch size is a fundamental predictor of avian fitness, widely-studied from evolutionary 2 

and ecological perspectives, but surprisingly little is known about the physiological 3 

mechanisms regulating clutch size variation. The only formal mechanistic hypothesis for 4 

avian clutch-size determination predicts an anti-gonadal effect of circulating prolactin 5 

(PRL) via the inhibition of luteinizing hormone (LH), and has become widely-accepted 6 

despite little experimental support. Here we investigated the relationship between pre-7 

breeding and breeding plasma PRL and LH and clutch-size in captive-breeding female 8 

zebra finches (Taeniopygia guttata). Using a repeated-measures design, we followed 9 

individual females from pre-breeding, through multiple breeding attempts, and 10 

attempted to decrease PRL using the D2-receptor agonist, bromocriptine. Clutch size 11 

was independent of variation in pre-breeding PRL or LH, although pre-breeding LH was 12 

negatively correlated with the time between pairing and the onset of laying. Clutch size 13 

was independent of variation in plasma PRL on all days of egg-laying. Bromocriptine 14 

treatment had no effect on plasma PRL, but in this breeding attempt clutch size was 15 

also independent of plasma PRL. Finally, we found no evidence for an inverse 16 

relationship between plasma PRL and LH levels, as predicted if PRL had inhibitory 17 

effects via LH. Thus, our data fail to provide any support for the involvement of 18 

circulating PRL in clutch size determination. These findings suggest that alternative 19 

models for hormonal control of avian clutch size need to be considered, perhaps 20 

involving downstream regulation of plasma PRL at the level of the ovary, or other 21 

hormones that have not been considered to date. 22 

 23 

Keywords: prolactin; clutch size; luteinizing hormone; life history; avian reproduction; 24 

plasticity25 
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1. Introduction 1 

Clutch size is among the most important contributors to avian lifetime reproductive 2 

success, and sets the upper limit on the number of young that can be successfully 3 

fledged in any given reproductive event (Charmantier et al., 2006; McCleery et al., 4 

2004; Rockwell et al., 1987). Explaining the patterns and variability in clutch size has 5 

been a major goal for both evolutionary biologists and ecologists (Godfray et al., 1991; 6 

Klomp, 1970; Lack, 1947; Ricklefs, 2010; Williams, 1966). These studies have focused 7 

largely on how evolutionary forces constrain and shape optimal clutch size (Charnov 8 

and Krebs, 1974; e.g. Lack, 1947; Martin et al., 2006; Nager et al., 2000; Pettifor et al., 9 

1988; Ricklefs, 2010; Rowe et al., 1994; Williams, 1966), and the social and ecological 10 

cues involved in individually fine-tuning that investment under varying conditions (Bolton 11 

et al., 1993; Decker et al., 2012; e.g. Lack, 1947; Travers et al., 2010; Williams and 12 

Miller, 2003; Zanette et al., 2011). However, understanding the physiological 13 

mechanisms that coordinate life history traits like clutch size can elucidate ecological 14 

and evolutionary drivers and constraints (Ricklefs and Wikelski, 2002; Williams, 2012a). 15 

Nonetheless, the fundamental physiological and hormonal mechanisms that coordinate 16 

clutch size and many other important life history traits remain poorly understood 17 

(Haywood, 2013; Klomp, 1970; Sockman et al., 2006; Williams, 2012b). 18 

 The only physiological or mechanistic hypothesis to explain avian clutch size 19 

determination involves prolactin (PRL), an anterior pituitary peptide hormone that is 20 

associated with incubation behavior (Delehanty et al., 1997; Lea and Sharp, 1989; 21 

March et al., 1994) and chick rearing (Angelier and Chastel, 2009; Miller et al., 2009; 22 

. This mechanistic model was formulated based on several well-23 

supported observations, namely that: a) incubation behavior, tactile stimulation from the 24 

eggs, and plasma PRL levels reinforce each other in a positive feedback loop (El 25 

Halawani et al., 1984; Hall and Goldsmith, 1983); b) rapid increases in PRL are 26 

temporally correlated with the onset of peak incubation behavior and the cessation of 27 

egg laying (Haftorn, 1981; Lea et al., 1981), and; c) seasonal increases in the rate of 28 

incubation onset and plasma PRL are accompanied by seasonal declines in clutch size 29 

(Dawson and Goldsmith, 1985; Flint et al., 2006; Haftorn, 1981; Meijer et al., 1990; 30 
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Müller et al., 2004). Potential anti-gonadal effects of PRL via inhibition of gonadotropin 1 

releasing hormone (GnRH) and luteinizing hormone (LH) have also been demonstrated 2 

in in vitro assays (El Halawani et al., 1984; Rozenboim et al., 1993; You et al., 1995), 3 

and are supported by evidence for anti-gonadal effects of PRL in vivo in some species 4 

(Bailey, 1950; Meier, 1969; Reddy et al., 2007), but not others (Buntin et al., 1999; 5 

Meier and Dusseau, 1968; Small et al., 2007). Much of the data used to support the 6 

PRL-based mechanistic model for clutch size determination however, is based on broad 7 

temporal correlations rather than direct experimental evidence, and this model has 8 

rarely been investigated in species laying discrete clutches (i.e. retaining cyclic 9 

reproduction characteristic of wild birds). There remains little support for a direct 10 

association between clutch size and plasma PRL during the temporal window when 11 

follicular inhibition of clutch size determination is thought to occur (2-4 days after the 12 

first egg is laid in several species), or for an anti-gonadal effect of PRL sufficient to 13 

cause follicular inhibition and the cessation of laying. Indeed, the only experimental 14 

work to examine variation in circulating PRL and clutch size determination directly in a 15 

non-domesticated, cyclically-laying species was carried out by Sockman et al. (2000) in 16 

the American Kestrel, Falco sparverius. This study found weak support for a negative 17 

association between clutch size and PRL around the time when follicular inhibition 18 

putatively occurs. However, PRL manipulations using ovine-PRL osmotic minipumps 19 

were not associated with changes in clutch size (Sockman et al., 2000). Based on these 20 

a role for prolactin in 21 

regulating clutch size in any species is not firmly established22 

this area is necessary (Sockman et al., 2006). Despite the prudent conclusions of 23 

Sockman and colleagues, the PRL-based mechanistic model for clutch size 24 

determination has since received little attention (Williams, 2012a).  25 

 The PRL-based model of clutch size determination generally focuses on variation 26 

in circulating PRL levels 2-4 days after the first egg is laid (Haywood, 1993; Meijer et al., 27 

1990). However, several recent studies have suggested that pre-breeding hormone 28 

levels might also influence, or potentially predict, subsequent reproductive performance 29 

(Chastel et al., 2003; Crossin et al., 2012; Greives et al., 2012). For example, in a study 30 
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of free-living house sparrows (Passer domesticus), pre-laying PRL levels were 1 

correlated with fledging success, although this effect was largely dependent on the 2 

effect of lay date (Ouyang et al., 2011). Alternatively, Schaper et al. (2012) suggested 3 

that pre-  4 

(Perfito, 2010) rather than an accurate proxy for breeding investment in the form of 5 

clutch size. Whether or not pre-breeding PRL levels are predictive of subsequent 6 

reproductive performance (in particular, clutch size) after controlling for environmental 7 

and photoperiodic cues has, to our knowledge, not been examined.  8 

 Here we investigate individual variability in plasma PRL and LH in pre-breeding 9 

and breeding females in relation to individual variation in clutch size in the Zebra Finch, 10 

Taeniopygia guttata, to test predictions from the PRL-based mechanism of clutch size 11 

determination (Haftorn, 1981; Haywood, 1993; Meijer et al., 1990). We used a repeated-12 

measures design to follow individuals of known age and reproductive history through 13 

pre-breeding, and multiple breeding attempts under controlled environmental and 14 

photoperiodic conditions. Our specific objectives were to determine: 1) the relationships 15 

between measures of condition (e.g. mass, hematocrit),  plasma PRL and LH in pre-16 

breeding and breeding states in individual females; 2) the relationship between pre-17 

breeding PRL and LH and subsequent clutch size, and; 3) the relationship between 18 

plasma PRL, LH and clutch size during egg-laying, in birds sampled at the putative time 19 

of clutch size determination for zebra finches (six hours after dawn on the day the third 20 

egg is laid; Haywood, 1993; Haywood, 2013) as well as on days 2 and 4 of egg-laying. 21 

We also attempted to experimentally decrease plasma PRL levels using the dopamine 22 

receptor agonist bromocriptine (Angelier et al., 2006; Badyaev and Duckworth, 2005; 23 

Reddy et al., 2007), thereby disrupting the putative endogenous relationship between 24 

PRL and clutch size. Based on the PRL-based model of clutch size determination 25 

described above, we predicted: a) a negative correlation between circulating PRL and 26 

LH; b) a negative association between breeding plasma PRL levels and clutch size, 27 

and; c) an increase in clutch size associated with a decrease in PRL in bromocriptine-28 

treated females. 29 
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2. Material and Methods 1 

2.1. Animal care and breeding protocol 2 

Zebra finches were maintained in controlled environmental conditions (temperature 193 

23°C; humidity 35 55%; constant light schedule, 14 L: 10 D, lights on at 07.00). All birds 4 

were provided with a mixed seed diet (Panicum and white millet, 1:3, 11.7% protein, 5 

0.6% lipid and 84.3% carbohydrate by dry mass), water, grit and cuttlefish bone 6 

(calcium) ad libitum, and received a multi-vitamin supplement in the drinking water once 7 

per week. Breeding pairs were also provided with 6 g/pair/day of egg food supplement 8 

(20.3% protein, 6.6% lipid) between pairing and clutch completion. 9 

 Before the experiment, all birds were housed in same-sex cages (61cm x 46cm x 10 

41cm) but were not visually or acoustically isolated from the opposite sex. Individual 11 

females used in experiments were 4-8 months of age (12-16 months of age for the 12 

follow-up study), had been successfully bred at least once, and were always paired with 13 

the same male to minimize variation in investment based on perceived mate quality. 14 

Breeding pairs were housed individually in single cages (61cm x 46 cm x 41 cm), each 15 

with an external nest-box (11.5cm x 11.5cm x 11.5cm). Females were weighed (± 0.1 g, 16 

initial mass) at the time of pairing, just prior to blood sampling, and at clutch completion. 17 

During breeding, nest-boxes were checked daily between 09.30 and 11.30 and all new 18 

eggs were weighed (to 0.001 g) and numbered, to obtain data on egg size, clutch size 19 

and laying interval (the time between pairing and laying of the first egg). A clutch was 20 

considered complete when no additional eggs were produced over two consecutive 21 

days. At clutch completion, eggs were removed and individuals were returned to same-22 

sex holding cages for a resting period of at least three weeks. Experiments and animal 23 

husbandry were carried out under a Simon Fraser University Animal Care Committee 24 

permit (no. 901B 94), in accordance with guidelines from the Canadian Committee on 25 

Animal Care (CCAC). 26 

 27 

2.2. Blood sampling and hormone analysis 28 

Females were blood sampled (  , max. 1% body weight, from the brachial vein) 29 

prior to breeding while in same- -30 



 

 

7 

pairing (females paired 13-17 days later), in the first experiment, on the day the third 1 

2 

work which links the physiological mechanism for clutch size determination in zebra 3 

finches with the timing of the third laid egg (Haywood, 1993). Blood samples for the 4 

bromocriptine experiment (n = 38) were also taken on the day the third egg was laid. In 5 

addition, in a follow-up study (~8 months following the bromocriptine experiment), 6 

females were bred and blood sampled for PRL measurement (but not LH) either on the 7 

day the second (n = 28) or fourth eggs (n = 27) were laid (days 2 and 4). Blood 8 

sampling was always carried out between 11:30 and 13:30 to minimize daily fluctuations 9 

in hormone levels. Birds were generally sampled within 1.5 - 5 minutes from the time of 10 

capture, and PRL and LH were not associated with estimated handling times. Blood 11 

samples were centrifuged at 5,000 g for five minutes, and plasma was stored at 20°C 12 

until required for hormone assays. 13 

 Plasma immunoreactive prolactin (PRL) was determined using a radio-14 

immunoassay for recombinant-derived European Starling (Sturnus vulgaris) PRL 15 

described by Bentley et al. (1997). Other than two blood samples for which there was 16 

insufficient plasma, all samples were measured in duplicate. Day 3 samples were 17 

measured in a single assay, diluted 1 in 3, and subsequently day 2 and 4 samples were 18 

measured in a single assay, undiluted. The sensitivity of the assay, determined to be 19 

the estimated concentration two standard deviations above the mean counts per minute 20 

of the lowest standard, was 7.8 ng·mL-1. The intra-assay coefficient of variation of this 21 

assay was 6.5%, and serial dilution of individual samples ran parallel along the standard 22 

curve within the dilution range assayed. Luteinizing hormone (LH) was measured using 23 

a micro-modified version of a previously described radioimmunoassay (Sharp et al., 24 

1987). Samples (day 3 only) were run in a single assay, in duplicate when sample 25 

volume permitted (>90% of all samples), diluted 1 in 2.3 in radioimmunoassay (RIA) 26 

buffer. Assay sensitivity was determined as described above, with a lower limit of 27 

0.087ng·mL-1. Samples that fell below the detection limit of the assays were given the 28 

median between the cut-off and the lowest measured value, and analyses using these 29 

data yielded qualitatively similar results as when they were excluded. The intra-assay 30 
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coefficient of variation for the LH assay was 6.4% for a high value pool and 8.1% for a 1 

low value pool, and a curve generated by serial dilution of zebra finch plasma ran 2 

parallel to the standard curve within the dilution range assayed. 3 

 4 

2.3. Bromocriptine treatment 5 

Manipulating PRL in birds for a sustained length of time through active or passive 6 

immunization, or through exogenous PRL administration, has proven challenging, 7 

(Sockman et al., 2000; A. Dawson and P. Sharp, unpublished data). Similarly, injection 8 

of vasointestinal peptide (VIP) provides only short-term changes in circulating PRL 9 

levels, and only in non-breeding birds (Christensen and Vleck, 2008). Therefore, we 10 

used the dopamine (D2 and D3) receptor agonist, bromocriptine (2-bromo- -ergocriptine 11 

mesylate; Enzo, PA, USA) to manipulate plasma PRL levels. Bromocriptine binds to the 12 

inhibitory D2 receptor on secretory lactotroph cells in the pituitary, and has been widely 13 

used to lower PRL in mammals, but less commonly in birds (see references below). 14 

Females were randomly assigned to either one of two doses of bromocriptine (low, n = 15 

13, 333µg/kg body weight or high, n = 14, 3333µg/kg body weight w/v in DMSO 16 

(dimethylsulfoxide; Sigma-Aldrich, MO, USA), or vehicle only control (n = 11, 35-45 µL 17 

DMSO based on mass, as for bromocriptine). Doses were based on previous work in 18 

mammals (Bales et al., 2002; Bridges and Ronsheim, 1990; Roberts et al., 2001) and 19 

birds (Angelier et al., 2006; Jouventin and Mauget, 1996). Bromocriptine was 20 

administered by intra-muscular injection into the pectoral muscle, daily between 1100 21 

and 1300 hours beginning the day the first egg was laid and terminating at clutch 22 

completion (see section 2.1). The timing of the first bromocriptine injection was chosen 23 

to limit undue stress from injections and to prevent premature decreases in PRL, both of 24 

which could have prevented gonadal development and the initiation of laying (Angelier 25 

and Chastel, 2009; Maney et al. 1999; Small et al. 2007). On egg day three of the 26 

bromocriptine experiment, injections were carried out immediately after blood sampling 27 

(see section 2.2). 28 
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 1 

2.4. Data analysis 2 

Data were first examined for normality, outliers, collinearity and interactions between 3 

explanatory variables. Both hormones showed deviations from normality, which was 4 

improved with log transformation. Log transformed data are described using median 5 

and interquartile range; otherwise data are stated as mean ± standard error. 6 

Repeatability was calculated using previously described methods (Lessells and Boag, 7 

1987). Since there were no statistical differences in the results found using mass alone 8 

or the residuals of a regression of mass by tarsus, mass alone was used as the 9 

measure of condition in all relevant analyses. For hormone analyses, only clutches 10 

equal or greater to the day the blood sample was taken were included ( 3 eggs day 3 11 

and experimental breeding, 2 eggs for day 2, 4 eggs for day 4). Several females laid 12 

clutches larger than those normally observed in the wild (2-7 eggs; Zann, 1996). Since 13 

breeding conditions, analyses were 14 

run including and excluding these data. Results from both datasets are presented when 15 

the model outcomes differed, otherwise results include larger than normal clutch sizes. 16 

For the bromocriptine experiment we predicted individual increases in clutch size in 17 

response to the treatment, specifically those greater than the range observed in free-18 

living birds. 19 

 Pre-breeding and simple breeding comparisons (excluding clutch size; see 20 

below) were conducted using ANOVA or ordinary least squares regression. To examine 21 

females through treatment and time (i.e. between pre-breeding and breeding; between 22 

control breeding and bromocriptine breeding), we used linear mixed effects models for 23 

repeated measures with individual female as a random factor, carried out in the 24 

(Pinheiro et al., 2011; R Core Development Team, 25 

2011). This experimental and statistical design allowed us to make intra-individual 26 

comparisons of the effects of treatment, so that treated females were compared to 27 

themselves under the untreated breeding conditions (in addition to retaining a vehicle 28 

only control group for bromocriptine, see section 2.3). For each stage, a small subset of 29 

females did not provide sufficient plasma for both hormone assays, failed to breed, or 30 
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laid less than 3 eggs (i.e. no hormone values for egg day three). As a result, model 1 

degrees of freedom vary, based on the maximum number of available data points. 2 

 Since clutch size is a discrete count variable, all analyses of this trait were 3 

conducted using generalized linear or generalized linear mixed effects models, with 4 

quasipoisson family to account for underdispersion 5 

Weisberg, 2011). Analyses of egg mass was conducted on mean egg mass within a 6 

clutch, and yielded similar results to models incorporating all eggs, laying order and 7 

individual female as a random factor. All analyses were followed with standard model 8 

validation procedures to test the assumptions of the test employed. Data points with 9 

> 4/n) were considered influential, and outputs are 10 

presented for models including and excluding these points for transparency. Where 11 

multiple explanatory variables were found to affect a dependent variable, p-values are 12 

given for the full model including all significant variables (ANCOVA). 13 

 14 

3. Results 15 

3.1. Relationship between pre-breeding LH, PRL and measures of body condition 16 

There were no significant relationships between pre-breeding mass or 17 

hematocrit, i.e. measures of body condition, and pre-breeding LH (F1,66 = 0.288, P = 18 

0.594 and F1,66 = 0.128, P = 0.722, respectively), or pre-breeding PRL (F1,75 = 0.427, P 19 

= 0.516; F1,75 = 3.729, P = 0.057, respectively; Table 1). However, pre-breeding PRL 20 

was weakly, but significantly and positively correlated with pre-breeding LH (F1,65 = 21 

4.272, r2 = 0.05; P = 0.043), including after removing values at the detection limits of the 22 

assay (F1,55 = 3.46, r2 = 0.091; P = 0.013; Fig. 1). 23 

 24 

3.2. Relationships between pre-breeding LH and PRL, and breeding hormone levels 25 

and reproductive traits 26 

 Compared to pre-breeding levels, LH was significantly higher during the 3-egg 27 

stage in breeding females (estimate for effect of breeding stage on LH  S.E.: 0.098  28 

0.051 ng/mL, df = 31, t = 2.38, P = 0.024; Intercept: 0.265  0.039, df = 40, t = -9.77, P 29 

< 0.001; Table 1). Furthermore, individual variation in LH was repeatable between pre-30 
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breeding and breeding stages (R = 0.51; 95% CI = 0.25, 0.77; P < 0.002). Pre-breeding 1 

LH was negatively correlated with laying interval after controlling for the time elapsed 2 

between pre-breeding blood sampling and subsequent pairing - females with higher pre-3 

breeding LH had shorter intervals between pairing and laying of the first egg (F2,31 = 4 

15.52, P < 0.001; Fig. 2). However, pre-breeding LH was not significantly correlated with 5 

either mean egg mass (F2,30 = 1.66, P = 0.207) or clutch size (Likelihood-ratio test: 2 = 6 

0.011, df = 1, P = 0.915) of the subsequent breeding attempt.  7 

 Breeding PRL levels at the 3-egg stage were markedly and significantly higher 8 

than pre-breeding levels (Estimate for effect of breeding stage on PRL  S.E.: 180  9 

24ng/mL, df = 38, t = 19.17, P < 0.001; Intercept: 23.07  2.03, df = 41, t = 37.21, P < 10 

0.001; Table 1). However, in contrast to LH, individual PRL levels were not repeatable 11 

between pre-breeding and breeding stages (P > 0.90). Log laying interval, egg mass, 12 

and clutch size were all independent of pre-breeding PRL levels (P > 0.10 in all cases).  13 

 14 

3.3. Relationships between breeding LH, PRL and reproductive traits 15 

 Mean egg mass was significantly and positively correlated with body mass at 16 

pairing (F1,39 = 5.72, P = 0.022), but not laying interval (F1,39 = 1.29, P = 0.264). In 17 

contrast, clutch size was independent of mass at pairing (Likelihood-ratio test: 2 = 18 

0.873, df = 1, P = 0.350), but negatively correlated with laying interval (Likelihood-ratio 19 

test: 2 = 9.234, df = 1, P = 0.002). Neither egg mass or clutch size was significantly 20 

correlated with individual variation in breeding plasma LH (P > 0.15 for both). Breeding 21 

plasma PRL on egg day 3 was significantly correlated with variation in mean egg mass 22 

(F1,37 = 5.38, P = 0.026) and clutch size ( 2 = 9.17, df = 1, P = 0.002; Fig. 3A), but these 23 

effects were inconsistent and skewed by several influential data points (i.e. high 24 

leverage points from clutch sizes outside the range normally observed in the wild [>7 25 

eggs; Zann 1996]). Within the normal range of clutch sizes, both mean egg mass and 26 

clutch size were independent of variation in breeding PRL at day 3 of egg-laying (F1,34 = 27 

0.004, P = 0.950 and 2 = 0.227, df = 1, P = 0.634, respectively; Fig. 3A). Similarly, in 28 

the follow-up study, variation in clutch size was independent of variation in breeding 29 
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PRL on day 2 ( 2 = 0.115, df = 1, P = 0.735) and day 4 ( 2 = 2.69, df = 1, P = 0.101) of 1 

egg-laying.  2 

 3 

3.4. LH, PRL, and reproductive traits for bromocriptine treatment breeding 4 

 Luteinizing hormone levels decreased significantly between the control and 5 

bromocriptine breeding attempts (estimate for effect of breeding attempt on LH  S.E.: -6 

0.133  0.029 ng/mL, df = 31, t = -3.20, P = 0.003; Intercept: 0.32  0.045, df = 34, t = 7 

7.46, P < 0.001; Table 1), but this effect was not different for the control group or either 8 

treatment (Breeding attempt *Treatment; Likelihood-ratio test: 2 = 1.56, df = 2, P = 9 

0.460). Similarly, hematocrit dropped significantly for the bromocriptine breeding 10 

attempt (estimate for effect of Breeding attempt on hematocrit  S.E.: -0.03  0.01, df = 11 

31, t = -5.30, P < 0.001; Intercept: 0.481  0.001, df = 34, t = 75.86, P < 0.001; Table 1), 12 

a change that also did not differ between control or treatment groups (Breeding attempt 13 

*Treatment; Likelihood-ratio test: 2 = 0.51, df = 2, P = 0.776).  14 

 Prolactin levels were not  significantly different between the control and 15 

bromocriptine breeding attempts (estimate for effect of breeding attempt on PRL  S.E.: 16 

-1.64  3.65 ng/mL, df = 31, t = -0.22, P = 0.824; Intercept: 197.26  7.31, df = 34, t = 17 

139.82, P < 0.001; Table 1). There were no differences in PRL by treatment group 18 

(Treatment; Likelihood-ratio test: 2 = 2.93, df = 2, P = 0.230), nor any interaction 19 

between breeding attempt and treatment (Breeding attempt *Treatment; Likelihood-ratio 20 

test: 2 = 1.12, df = 2, P = 0.571). In fact, individual PRL levels between the control and 21 

bromocriptine treatment breeding attempts were repeatable (R = 0.54; 95% CI = 0.28-22 

0.79; P < 0.001).  23 

 Clutch size also was not significantly different between the control and 24 

bromocriptine breeding attempts (estimate for effect of breeding attempt on clutch size  25 

S.E.: -0.32  0.90 eggs, df = 32, t = -1.90, P = 0.07; Intercept: 5.69  0.20, df = 35, t = 26 

48.27, P < 0.001; Table 1), and there were no interactions between breeding attempt 27 

and treatment (Breeding attempt *Treatment; Likelihood-ratio test: 2 = 5.27, df = 2, P = 28 
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0.072). Like PRL, clutch size showed individual repeatability between the control and 1 

bromocriptine breeding attempts (R = 0.66; 95% CI = 0.46-0.86; P < 0.001).  2 

 3 

3.5. Changes in PRL, LH, and clutch size between control and experimental breeding 4 

attempts 5 

 Since there was no effect of treatment on PRL or clutch size between the control 6 

and bromocriptine breeding attempts, we pooled treatment groups from the 7 

experimental breeding for further analyses. As in the control breeding attempt, clutch 8 

size was independent of plasma PRL for the experimental breeding ( 2 = 0.519, df = 1, 9 

P = 0.471; Fig. 3B), including with clutch sizes larger than the range typically observed 10 

in the wild ( 2 = 0.135, df = 1, P = 0.713). However, individual changes in PRL levels 11 

al breeding attempts were significantly, 12 

negatively correlated with individual changes in clutch size. This relationship remained 13 

significant including ( 2 = 4.116, df = 1, P = 0.043) or excluding ( 2 = 4.425, df = 1, P = 14 

0.035) two influential data points for which we had only a single observation for a given 15 

change in clutch size. No such relationship was found for changes in PRL and changes 16 

in egg mass (F1,34 = 2.051, P = 0.163), changes in PRL and changes in LH (F1,30 = 17 

0.215, P = 0.647), or changes in LH and clutch size ( 2 < 0.001, df = 1, P = 0.979) or 18 

egg mass (F1,30 = 0.345, P = 0.561) between the control and experimental breeding 19 

attempts.  20 

 21 

4. Discussion 22 

In this study we investigated individual variation in pre-breeding and breeding hormone 23 

(PRL and LH) levels in relation to variation in reproductive traits (timing of laying, egg 24 

mass, clutch size), specifically to test the hypothesis that variation in circulating PRL 25 

levels mediates clutch size variation via the inhibition of LH (Haywood, 1993; Lea et al., 26 

1981; Meijer et al., 1990; Sockman et al., 2006). Clutch size was independent of 27 

variation in pre-breeding PRL or LH, although pre-breeding LH was negatively 28 

correlated with the time between pairing and the onset of egg-laying. We also found no 29 

evidence for any inverse relationships between plasma PRL and plasma LH levels 30 
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which would have been consistent with an inhibitory effect of PRL on LH. In contrast to 1 

previous studies (Badyaev and Duckworth, 2005; Reddy et al., 2007) we observed no 2 

effect of bromocriptine on circulating PRL. Nonetheless, and most importantly, we found 3 

no evidence to support a causal relationship between individual variation in breeding 4 

plasma PRL levels and variation in clutch size in multiple different breeding attempts 5 

and for PRL measured on either days 2, 3 or 4 of egg-laying, i.e. during the temporal 6 

window when follicular inhibition and clutch size determination is thought to occur. The 7 

only evidence we found to support a link between PRL and clutch size was a negative 8 

relationship between individual change in PRL between the control and experimental 9 

breeding and individual change in clutch size. While we think this result is interesting we 10 

acknowledge this may not be reflective of a causal relationship. Thus our data, from 11 

multiple different breeding attempts, fail to provide any support for the involvement of 12 

circulating PRL early in egg-laying on clutch size determination. 13 

 We first examined variation in pre-breeding PRL and LH and condition-related 14 

traits (e.g. body mass, hematocrit) to test the hypothesis that individual variability in 15 

these characteristics could be predictive of subsequent reproductive performance 16 

(Chastel et al., 2003; Crossin et al., 2012; Ouyang et al., 2011). We observed no 17 

relationship between pre-breeding hematocrit or body mass and pre-breeding PRL or 18 

LH. We also found no effect of pre-breeding mass, hematocrit, PRL or LH on 19 

subsequent clutch size. These results do not support the hypothesis that plasma PRL or 20 

LH prior to breeding provide an ea21 

performance, at least for In 22 

addition, plasma PRL and LH were significantly, positively correlated in pre-breeding 23 

female zebra finches which contrasts with results from other studies, mostly in breeding 24 

poultry, which have demonstrated an inhibitory effect of PRL on LH hormone titres or 25 

LH mRNA expression (Rozenboim et al., 1993; You et al., 1995). Although the 26 

correlation between these two traits in our study was not particularly strong, our results 27 

are consistent with growing evidence that PRL can have both inhibitory and stimulatory 28 

effects on gonadal function, depending on reproductive state and PRL concentration 29 

(Hrabia et al., 2004; Li et al., 2011; Maney et al., 1999; Small et al., 2007). The origin of 30 
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the positive correlation between PRL and LH is not obvious; LH activates the 1 

reproductive axis and steroidogenesis, and steroid hormones can stimulate PRL 2 

secretion (El Halawani et al., 1983; Mauro et al., 1992). However, since non-3 

photoperiodic cues (e.g. social stimuli) likely contribute to variation in pre-breeding LH 4 

levels in opportunistically breeding species like the zebra finch (e.g. Maney et al., 1999; 5 

Perfito et al., 2007; Small et al., 2007), pre-breeding LH and PRL may reflect individual 6 

differences in the relative activation of the reproductive axis prior to actual onset of egg-7 

 8 

 Individual differences in reproductive readiness are supported in our study by the 9 

positive correlation between pre-breeding LH levels and the interval between pairing 10 

and laying - females with relatively high pre-breeding LH were the quickest to initiate 11 

laying. Presumably, variability in pre-breeding LH is indicative of the differences in the 12 

developmental state of the ovary and nascent follicles, a suggestion supported by other 13 

work in captive pre-breeding zebra finches (see Fig. 4 in Perfito, 2010). The finding that 14 

not all females are in a homogeneous pre-breeding state is of critical importance to 15 

laboratory studies of reproductive behaviour, particularly those involving the timing of 16 

breeding or response to mating stimuli (Perfito, 2010). In contrast to LH, pre-breeding 17 

PRL was not predictive of the interval between pairing and laying, contrary to previous 18 

work in free-living House Sparrows (Passer domesticus), in which females with high 19 

PRL prior to breeding, prior to controlling for lay date, laid their first egg sooner (Ouyang 20 

et al., 2011). However, as in our study, Schaper et al. (2012) also failed to detect any 21 

relationship between pre-breeding PRL and readiness to lay under controlled laboratory 22 

conditions in Parus major, suggesting an independent role for photoperiod on PRL and 23 

activation of the reproductive-axis, possibly via independent control of PRL and LH 24 

secretion.  25 

 A key component of the PRL-based model for clutch size determination is that 26 

PRL exerts anti-gonadal effects indirectly via the inhibition of LH expression at the level 27 

of the pituitary (Lea et al., 1981; Sockman et al., 2006). This component of the model 28 

predicts an inverse relationship between these hormones, at least at the time of clutch 29 

size determination. We were able to examine the relationship between these two 30 
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hormones, and how they changed over time, by tracking individual hormonal profiles 1 

through the transition between pre-breeding and breeding states. Breeding LH levels 2 

were moderately though significantly higher than pre-breeding levels, and were 3 

repeatable between pre-breeding and breeding states. In contrast, plasma PRL levels 4 

increased dramatically (as high as 27 fold) between pre-breeding and egg day 3, and 5 

PRL levels on egg day 3 were independent of pre-breeding PRL. Although LH levels on 6 

day three were probably beginning to decline (based on rapid decreases in estradiol 7 

around this time; Williams et al., 2005), our data still suggest an uncoupling of the 8 

positive correlation between PRL and LH that we observed in pre-breeding females. An 9 

uncoupling of these two hormones over time does not support the idea of a systemic 10 

inhibitory effect of PRL on LH, since in our study both hormones increase with breeding, 11 

yet vary independently between pre-breeding and breeding states. Accordingly, we also 12 

found no significant relationship between breeding levels of PRL and LH. Furthermore, 13 

while experimental bromocriptine treatment had no effect on circulating PRL (discussed 14 

below), we again found no evidence for an inhibitory effect of PRL on LH in our 15 

experimental breeding. Though correlational, the lack of empirical support for an 16 

inhibitory effect of PRL on LH in this study, as well as in other passerines (Buntin et al., 17 

1999; Meier and Dusseau, 1968; Small et al., 2007), raises questions about the 18 

universality of the PRL-dependent control of LH in the current mechanistic hypothesis, 19 

and its applicability in this taxon.  20 

In contrast to previous studies on mammals (Bridges and Ronsheim, 1990; 21 

Palestine et al., 1987) and some avian species (Angelier et al., 2006; Jouventin and 22 

Mauget, 1996; Reddy et al., 2007) we found that bromocriptine treatment had no effect 23 

on circulating PRL levels in zebra finches for either the low or high dose groups, nor did 24 

we observe a treatment effect on clutch size between the control and experimental 25 

breeding. While a range of bromocriptine doses have been employed in birds, from as 26 

low as 14 g·kg-1·day-1 (Reddy et al., 2007) to as high as 10,000 g·kg-1·day-1 (Badyaev 27 

and Duckworth, 2005), our doses (low: 333 g·kg-1·day-1; high: 3,333 g·kg-1·day-1) are 28 

comparable to those successfully employed in other avian species (Angelier et al., 29 

-1·day- -1·day-1) and 30 
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-1·day-1; 1 

Palestine et al., 1987: 1,800 -1·day-1). In addition, several studies using injections 2 

of bromocriptine reported significant decreases in PRL within 3 days (Roberts et al. 3 

(2001; Angelier et al. 2006) approximately the targeted time-frame in our study. Thus, 4 

the reason for the failure of bromocriptine to effect PRL levels in our study is not clear, 5 

though this is not restricted to T. guttata (e.g. bromocriptine had no effect on PRL in 6 

Rissa tridactyla; F. Angelier, pers. comm.). In contrast, the decrease in both LH and 7 

hematocrit we did observe is best explained by injection treatments that all birds, 8 

including controls, received, since this effect did not differ by treatment group. 9 

 The PRL-based mechanism for clutch size determination predicts a clear 10 

negative relationship between plasma PRL and clutch size, i.e. females with higher 11 

circulating PRL early during laying should lay smaller clutches, due to the earlier and/or 12 

greater inhibitory effect of elevated plasma PRL (Sockman et al., 2000). We found that 13 

variation in PRL levels during what is believed to be the critical period for clutch size 14 

determination in the zebra finch (day 3 of egg-laying) were not associated with 15 

differences in clutch size (cf Sockman et al., 2000). Furthermore, in our follow-up study 16 

variation in plasma PRL on day 2 and day 4 of egg-laying, bracketing the putative time 17 

window for clutch size determination, was also unrelated to clutch size. Thus, although 18 

the current model for clutch size determination has focused on an inhibitory role for 19 

circulating plasma PRL early in laying (Haywood, 1993; Sockman et al., 2000), our 20 

results suggest that individual variation in absolute plasma PRL is not involved in clutch 21 

size determination. Furthermore, we found no evidence for an inhibitory effect of PRL 22 

on LH. Given our sample sizes and the range of clutch sizes, as well as the tightly 23 

controlled diet, photoperiod, age and reproductive history of the individuals included in 24 

the study, we believe our study provides a robust test of the PRL-based model for clutch 25 

size determination, which posits a regulatory role for circulating PRL during early egg-26 

laying (Meijer et al., 1990). Nevertheless, alternative mechanisms, still involving PRL, 27 

are worth considering, e.g. differential PRL receptor expression, polymorphisms in gene 28 

and receptor, or tissue specific-receptor expression among individuals, could all affect 29 
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the biological activity and effects of a given plasma concentration of PRL (Zadworny et 1 

al., 2002).  2 

 While any PRL-based mechanism for clutch size determination does not appear 3 

to involve an absolute inhibitory threshold at the scale of the population, individual 4 

differences in either the rate of increase or in the inhibitory threshold (relative PRL level 5 

for inhibition for a given breeding attempt) remain plausible alternatives to, or 6 

modifications of, the mechanistic model in its current form (Meijer et al., 1990; Williams, 7 

2012b, p. 186). The only evidence we found to support a link between PRL and clutch 8 

size was a negative relationship between individual changes in PRL between the control 9 

and experimental breeding and individual changes in clutch size. If this finding is robust, 10 

the fact that changes in PRL between breeding attempts were not associated with 11 

changes in LH, nor were changes in LH associated changes in clutch size, may imply 12 

downstream regulatory effects of PRL (e.g. at the level of the ovary). Although 13 

speculative, this hypothesis is supported by work demonstrating the presence of PRL 14 

receptors in ovarian follicles (Ohkubo et al., 1998), which can directly inhibit the effects 15 

of follicle-stimulating hormone (FSH) and LH on, as well as estrogen and progesterone 16 

secretion from, the avian ovary (Hrabia et al., 2004; Li and Yang, 1995).  17 

 Studying avian clutch size determination by looking at individual co-variation in 18 

PRL and egg number may suggest more biologically-relevant alternatives to the 19 

mechanistic hypothesis in its current form (Haftorn, 1981; Haywood, 1993; Meijer et al., 20 

1990), a hypothesis we found no support for in this study. Further experimental work 21 

successfully uncoupling PRL from clutch size is necessary to reinforce this conclusion. 22 

If the hormonal regulatory control of clutch size is superimposed upon individual 23 

variation in downstream effectors (e.g. receptor expression in the ovary), repeated 24 

measurements of individuals through time, as conducted in this study, have the benefit 25 

of eliminating at least a portion of these potentially confounding effects, which might 26 

bring questions about the endocrine control of this key life history trait into greater focus. 27 

At present though, it seems most parsimonious to assume that the putative relationship 28 

between circulating PRL early in egg-laying and clutch size simply reflects a temporal 29 

coincidence, and that the increase in PRL at this time is functionally associated with 30 



 

 

19 

onset or maintenance of incubation - a link that is better supported by experimental data 1 

(Lea and Sharp, 1989; Williams 2012 and references therein). 2 
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Table 1. Reproductive and condition-related parameters for pre-breeding and breeding female zebra finches. 
!! !! !! !! !! !! !!

!!
Massa (g) Hematocrita 

(%) LHb (ng mL-1) PRLb (ng mL-1) Mean Egg 
Massa (g) Clutch Sizea 

Pre-Breeding 15.0 ± 0.2 53.2 ± 0.4 0.24 (0.14-0.40) 21.0 (13.9-33.5) na na 

Control Breedingc 15.5 ± 0.2 48.6 ± 0.6 0.43 (0.22-0.66) 201.6 (184.6-221.2) 1.08 ± 0.01 5.98 ± 0.25 

Bromocriptine Breedingc       

 DMSO 15.8 ± 0.4 45.3 ± 1.3 0.19 (0.10-0.35) 193.5 (162.5-201.8) 1.02 ± 0.02 5.82 ± 0.54 

 High 15.8 ± 0.2 44.8 ± 1.0 0.21 (0.14-0.39) 211.0 (169.2-225.9) 1.04 ± 0.03 5.27 ± 0.33 

 Low 15.7 ± 0.3 43.6 ± 1.2 0.19 (0.06-0.40) 207.6 (201.1-232.0) 1.07 ± 0.03 5.33 ± 0.19 

Follow-up Breedingc       

 Day 2 16.3 ± 0.2 48.0 ± 0.6 na 104.7 (95.73-159.4) 1.12 ± 0.02 5.63 ± 0.26 

 Day 4 15.8  ± 0.2 46.5 ± 1.0 na 131.6 (104.4-153.9) 1.08 ± 0.02 5.61 ± 0.21 
!! !! !! !! !! !! !!

aMass, hematocrit, mean egg mass and clutch size values are mean ± standard error 
bLuteinizing hormone (LH) and prolactin (PRL) given as median and interquartile range 
cControl breeding and Bromocriptine breeding blood samples were taken on the day the 3rd egg was laid (Day 3); Follow-up breeding blood 
samples were taken on the days the 2nd (Day 2) or 4th (Day 4) eggs were laid; see text for additional information 
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