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Abstract 

Within the testis the spermatogonial stem cells reside in a unique microenvironment, or 

‘niche’, which includes the surrounding somatic cells. The regulation of the balance between 

self-renewal and differentiation of spermatogonial stem cells determines the lifelong supply 

of spermatozoa by maintaining a population of undifferentiated spermatogonial stem cells 

and ensuring that adequate numbers of spermatogonia undergo spermatogenesis.  Mouse 

models have been instrumental in determining a large number of factors involved in 

regulating the spermatogonial stem cell self-renewal and/or differentiation. However, the 

precise mechanisms controlling regulation of the germ cell niche remain to be elucidated. 

Recently the discovery of microRNAs, which regulate gene expression at the post-

transcriptional level, have provided new insight into testis biology, spermatogenesis and germ 

stem cell regulation. In this review we summarize the main factors involved in the regulation 

of the germ stem cell niche and describe the role of microRNA signaling in this regulation.  

 

1. Introduction 

Fertility in postpubertal males depends on the continued production of spermatozoa in the 

testis via the process of spermatogenesis. Spermatogenesis involves a delicate balance 

between self-renewal and differentiation of spermatogonial stem cells (SSC) to ensure an 

endless production of mature spermatozoa [1]. In keeping with other stem cell systems, the 

SSCs reside in a unique microenvironment or ‘niche’, which is composed of the stem cell and 

the surrounding somatic cells. The germ stem cell niche is composed of the growth factor 

environment that is provided by various somatic support cell populations in the testis [2, 3]. 

In the adult testis, it has been shown that Sertoli cells, peritubular myoid cells, Leydig cells 

and the surrounding vasculature are all important components of the germ stem cell niche [3-

5]. 
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During fetal/early postnatal life the germ cells undergo a crucial period of development from 

gonocyte to spermatogonium, and it is thought that establishment of a suitable germ cell 

niche is a prerequisite for this to occur. This is important to ensure the establishment of a 

supply of SSCs for future fertility, but also because failure of these cells to undergo 

differentiation in humans results in pre-neoplastic change into carcinoma in situ (CIS) cells 

which will ultimately lead to a testicular germ cell cancer (TGCC) in adulthood [6, 7]. In the 

postnatal period, active SSC self-renewal takes place to establish the male germline, whereas 

in adulthood SSC self-renewal only occurs at certain times during specific stages of the 

seminiferous epithelial cycle when subpopulations of spermatogonia undergo the transition 

into differentiating spermatogonia [3]. However, increase in SSC self-renewal has also been 

observed after testicular damage such as after chemotherapy [8]. 

 

Most data on the mammalian germ stem cell niche derives from mouse studies and there is 

still little known about the biology/regulation of the human germ stem cell niche, specifically 

regarding the maintenance and regulation of SSC self-renewal and differentiation. This 

ignorance is due partly to the absence of techniques for identifying and isolating pure 

populations of human SSCs for in vitro study [9]. However, transplantation of testis cells 

from humans into immunodeficient mice results in limited replication and maintenance of 

spermatogonia in the recipient seminiferous tubules [10, 11], suggesting a degree of 

conservation of the mechanisms for self-renewal and SSC survival between human and 

mouse. Furthermore, prepubertal human and mouse spermatogonia have remarkable 

conservation of their gene expression, especially in the genes involved in SSC self-renewal 

[9]. Despite these similarities there also exist a number of significant differences. In the 

human testis there are no mitoses of differentiating spermatogonia, which contrasts with the 6 
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rounds of mitotic divisions in the rodent testis [12]. In addition, transplantation studies have 

demonstrated that human SSCs are unable to differentiate following incorporation into the 

SSC niche in the mouse testis [10]. This suggests that the mechanisms regulating 

spermatogenic differentiation in the rodent and human are different. Recently, the importance 

of microRNA (miRNA) signaling for spermatogenesis and testicular function has been 

demonstrated using Sertoli- or germ cell-specific knockout of key enzymes in the miRNA 

biosynthesis pathway [13]. Hence, miRNA signaling in testicular somatic and germ cells may 

comprise another level of regulation of the germ stem cell niche.  

 

In this review we describe the main factors involved in regulation of the germ stem cell niche 

based on studies performed in rodents. We also summarize how conditional deletions of 

components of the miRNA biogenesis pathway in either Sertoli or germ cells affect the germ 

stem cell niche and the consequences for adult spermatogenesis. More importantly, we 

discuss recent findings of miRNA involvement in the regulation and/or modulation of the 

germ stem cell niche, suggesting that miRNA may be a new mechanism regulating the 

correct timing of spermatogonial differentiation and perhaps thus of spermatogenic output in 

adult life. Because miRNAs work as translational repressors, their expression in the germ 

stem cell niche could be viewed as part of a ‘restraint mechanism’, whereby the SSCs are 

prevented from differentiating into spermatogonia/meiotic germ cells too early. Especially in 

humans, where there is a long childhood period this is important as germ cells entering 

meiosis before the pubertal period will undergo apoptosis as there is no sustainable support 

[14]. Therefore, maintaining SSC and early spermatogonia in a quiescent, non-differentiating 

state is a crucial necessity and, because of the way that they work, miRNAs could play a big 

part in controlling differentiation mechanisms, including the niche, to ensure this process 

occurs correctly. 
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2. The germ stem cell niche  

Sertoli cells are the “nurse” cells in the testis, supporting germ cell survival and 

spermatogenesis [1]. Sertoli cells control the germ stem cell niche either by direct contact 

with SCCs through membrane intercellular communications or indirectly by the production 

of paracrine signals such as growth factors and cytokines [15] (Figure 1). An important factor 

that Sertoli cells produce is Glial cell line-derived neurotropic factor (GDNF), which signals 

through the GDNF-family receptor α1 (GFRα1) and the Ret receptor tyrosine-kinase [16-20]. 

Deletion of GDNF in mice interferes with SSC self-renewal and causes premature 

differentiation of SCC leading to testes devoid of germ cells, resembling a Sertoli-cell only 

phenotype [17]. Conversely, overexpression of GDNF in mouse testes results in a block of 

spermatogonial differentiation as a result of over-stimulated self-renewal of SSCs [17, 20]. 

GDNF signaling is essential for the maintenance of NANOS2 (an RNA-binding factor) 

expression in SSCs, which is important for preventing the differentiation of SSCs in the 

postnatal testis [21]. Conversely, fibroblast growth factor 9 (FGF9) up-regulates NANOS2 

and thereby acts as an inhibitor of meiotic differentiation of postnatal germ cells [22], 

perhaps indicating co-ordination of this with SSC differentiation control. Interestingly, the 

transcription factor Foxo1 is also required for SSC maintenance, as Foxo1 deficiency results 

in severe impairment of SSC self-renewal and a complete block of spermatogonial 

differentiation [23]. One of the identified Foxo1 gene targets in SSC is Ret which, as 

mentioned above, is part of the GDNF receptor complex, and Foxo1 signaling promotes high 

levels of Ret protein on the cell surface of SSCs [23].  

 

FSH produced by the pituitary gland acts on the Sertoli cells in the pubertal testis to initiate 

spermatogenesis [24], and FSH and its second messenger cyclic AMP (cAMP) are able to 
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induce GDNF expression in Sertoli cells [25, 26], whereas retinoic acid (RA), which is 

involved in spermatogonial differentiation (see below), down-regulates GDNF in Sertoli cells 

[25] (Figure 1). Thus, GDNF is essential for SSC proliferation and self-renewal and the 

control of SSC differentiation, under the control of the hypothalamic-pituitary axis. Whilst 

GDNF is essential for SSC self-renewal, expression of its receptor GFRα1 is not exclusive to 

undifferentiated spermatogonia, but is also present in A
paired

 and A
aligned

 spermatogonial 

subtypes [27-30].  

 

Another factor that is required for SSC self-renewal is the transcription factor Ets-related 

molecule (ERM or ETV5) which, like GDNF, is expressed solely in Sertoli cells and its 

deletion results in compromised Sertoli cell function, leading to premature loss of SSCs [31-

34]. Interestingly, ERM/ETV5 has been shown to be one of the downstream GDNF targets in 

the kidney [35].  

 

FGF2 and EGF in combination with GDNF can promote SSC self-renewal in vitro, although 

FGF2 and EGF on their own are not essential for SSC self-renewal as over time the number 

of SSCs declined in SSC enriched germ cell cultures cultured in the presence of FGF2 or 

EGF without GDNF, indicating that self-renewal was compromised and spermatogonial 

differentiation was promoted [36, 37].  

Another important system for regulation of the germ stem cell niche is the KIT signaling 

system (Figure 1). C-kit is a receptor present on the cell surface of differentiating 

spermatogonia that distinguishes them from SSC. C-kit has been shown to mediate 

proliferation, survival and differentiation of type A spermatogonia in response to stimulation 

by kit ligand, which is produced by Sertoli cells [25, 38-41]. This stimulates spermatogonia 

to undergo a number of mitotic divisions, forming the A2-A4, intermediate, and B 
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spermatogonia in rodents before they enter meiosis [42]. In Sertoli cells, cAMP and retinoic 

acid (RA) signaling [25, 43] induce the production of a paracrine factor called BMP4, which 

can induce expression of c-kit in spermatogonia [43-45]. In prepubertal human 

spermatogonia, higher levels of C-KIT mRNA are found than in the prepubertal mouse, 

which may reflect the signal for some SSCs to differentiate into type B spermatogonia as this 

is a process known to happen during the prepubertal period in humans [9, 46].  

 

Sertoli cells produce RA, which is another paracrine factor that has been demonstrated to be 

essential for spermatogonial differentiation [47] (Figure 1). RA promotes differentiation of 

SSCs to differentiated spermatogonia through several mechanisms. One such mechanism is 

the down-regulation of Promyelocytic Leukemia Zinc Finger (PLZF) [48], which is 

specifically expressed in SSCs and upon deletion in mice impairs spermatogonial 

differentiation by affecting the expression of genes involved in SSC self-renewal and 

differentiation [49-52]. One function of PLZF is to repress the expression of c-kit in 

spermatogonia [53] and as RA down-regulates PLZF in SSC this could be one mechanism 

that controls the up-regulation of c-kit in spermatogonia to steer them down the 

differentiation path. 

 

Treatment of postnatal spermatogonia with RA results in up-regulation of the b-Helix-Loop-

Helix transcription factors, Spermatogenesis and Oogenesis HLH1 (Sohlh1) and Sohlh2 [54]. 

Both Sohlh1 and Sohlh2 are essential for spermatogonial differentiation as deletion of either 

leads to disappearance of c-kit-expressing spermatogonia in the prepubertal testis [55-59]. A 

strong correlation between expression of c-kit and both Sohlh1 and Sohlh2 in postnatal 

spermatogonia has been shown [54], and a direct interaction between c-kit and Sohlh1 was 

found in vivo in chromatin isolated from spermatogonia [54, 58]. Therefore, up-regulation of 
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Sohlh1 in spermatogonia by RA could be another mechanism by which RA increases 

expression of c-kit to promote spermatogonial differentiation. Involvement of Doublesex-

related transcription factor (Dmrt1) is also likely in this process as c-kit expression is 

significantly reduced in Dmrt1 conditional knockout mice [60]. Furthermore, when Dmrt1 is 

deleted from spermatogonia, loss of SSCs was observed as they entered meiosis precociously 

[60]. Dmrt1 is important for repressing the RA-responsive, meiosis-inducing genes Stra8 and 

Sohlh1, thereby preventing meiotic entry of differentiated spermatogonia [60]. Indeed, 

DMRT1 expression in germ cells is considered as a likely master switch for controlling the 

mitosis-meiosis transition [60], failure of which appears to be associated with the 

development of TGCC in humans [61]. 

 

3. Biogenesis of miRNAs and conditional Dicer knockout mouse models 

Conceptually, it is generally thought that in the male germ cells are pre-programmed to go 

through their sequential development into spermatozoa, provided that there is a supportive 

environment (the niche), determined by the surrounding somatic cells. However, in situations 

when the niche is non-supportive, it might be expected that other mechanisms may operate to 

literally hold the germ cells under restraint. For example, during childhood in boys, it is 

essential for germ cells not to enter meiosis before puberty starts as there is no support system 

in place for sustaining germ cells that enter the spermatogenic pathway. Small non-coding 

RNAs, such as miRNAs have begun to attract attention as important regulators of cell 

function, as they provide another level of translational control of gene expression. Since 

miRNAs work as translational repressors, a logical role for them might be to act as part of a 

‘restraint mechanism’ that stops germ cells from entering meiosis too early and ensuring that 

the right number of germ cells are ready to enter meiosis when the time is right. 
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MiRNAs are short single-stranded RNA molecules of 19-23 nucleotides that bind specifically 

to several mRNA molecules to control their translation [62-65]. In animals, miRNA genes are 

usually transcribed from the genome by RNA Polymerase II, forming primary miRNA 

transcripts (pri-miRNA) (Figure 2). The pri-miRNA molecules then fold into stem-loop 

structures within the nucleus that undergo cleavage by the Microprocessor complex, which 

contains the RNaseIII endonuclease enzyme Drosha and DGCR8 (DiGeorge syndrome 

critical region gene 8), to form shorter isolated hairpin loops called precursor miRNA (pre-

miRNA). These are transported to the cytoplasm by the nuclear export factor exportin 5 

where the stem-loop is cleaved by the endoribonuclease Dicer, thereby forming a double-

stranded mature miRNA complex called the miRNA:miRNA* duplex. This duplex is then 

unwound by a helicase and the miRNA* strand gets degraded whereas the miRNA strand, or 

the mature strand, gets loaded into the effector miRNA-induced silencer complex (miRISC), 

which contains members of the Argonaute (AGO) protein family. The miRISC with the AGO 

proteins mediates the translational repression or degradation of the mRNA targets. Therefore, 

miRNAs typically have a negative effect on protein expression [62-65]. 

 

Several studies have documented the preferential or exclusive expression of specific miRNAs 

in the immature and adult testis [66-79]. The overall importance of miRNA signaling for 

regulation of spermatogenesis has been demonstrated using cell type-specific conditional 

knockout studies of Dicer and other miRNA biogenesis genes (Figure 2), which show that 

miRNA-mediated post-transcriptional control is an important regulator of spermatogenesis 

[69, 80]. For example, conditional deletion of Dicer1 from Sertoli cells in mice results in 

infertility due to complete absence of spermatogenesis and progressive degeneration of the 

testis [81, 82]. Both studies demonstrated defects in early postnatal testis development and 
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Sertoli cell proliferation, resulting in massive Sertoli cell and germ cell apoptosis in the 

prepubertal testis [81, 82].  

 

Besides conditionally ablating Dicer from Sertoli cells, various groups have reported studies 

in which they deleted Dicer from germ cells [83-86]. This resulted in adult infertility or 

subfertility due to spermatogenic arrest. The study by Hayashi et al. showed that deletion of 

Dicer1 in germ cells caused a defect in the proliferation of male germ cells [83], whereas 

Maatouk et al. reported defects in both sperm motility and the transition from round to 

elongated spermatids [85]. Both of these studies used the TNAP-Cre (Tissue Non-Specific 

Alkaline Phosphatase) mouse line to generate the ablation of Dicer in germ cells, but since 

the TNAP-Cre transgenic mouse expresses Cre in only ~50% of the germ cells, and is not 

totally specific to germ cells [86], the effects are difficult to interpret. Furthermore, TNAP-

Cre expression begins as early as embryonic day (E) 10 [87], making it very difficult to 

pinpoint the exact mechanism via which the spermatogenic defects arise in these Dicer1 

mutant mice, since Dicer ablation already takes place in (a proportion of) the early primordial 

germ cell population in the early mouse embryo, thereby interfering with the development of 

embryonic germ cells. The studies by Romero et al. and Liu et al. used a more specific germ 

cell expressing Cre mouse line, namely Ddx4-Cre, which deleted Dicer just before birth at the 

stage when spermatogonia are just beginning to appear. Using this transgenic line they 

concluded that Dicer1 expression in mouse germ cells is not needed for SSC renewal and 

mitotic proliferation, but is necessary for the differentiation of germ cells through meiotic and 

haploid phases of spermatogenesis [84, 86].  

 

Several groups reported studies in which Dicer1 was deleted from spermatogonia after birth 

using transgenic mouse lines expressing the Cre recombinase under the control of a 



11 

 

Neurogenin3 (Ngn3) [88] or Stra8 [89, 90] promoter, which resulted in less severe 

phenotypes when compared to the Romero [86] and Liu [84] studies. Ngn3 is expressed 

endogenously in male germ cells starting from postnatal day 5, and its expression has been 

shown in type A
single

, A
paired

 and A
aligned

 spermatogonia that gives rise to all differentiating 

germ cells [91]. This Ngn3Cre-Dicer1 transgenic mouse line did not show an effect on 

meiotic progression, but a reduction in the number of haploid germ cells and an increase in 

the number of apoptotic spermatocytes [88], whilst postnatal germ cell-specific deletion of 

Dicer was demonstrated to be critical for the normal organization of chromatin and nuclear 

shaping of elongated spermatids [88]. Interestingly, in the Ddx4Cre-Dicer1 mouse model, 

upregulation of transposon expression was observed [86], whereas transposon expression was 

unaffected in the Ngn3Cre-Dicer1 knockout testis [88]. This indicates that, as well as miRNA 

biogenesis, Dicer is also involved in transposon control in germ cells in the perinatal phase of 

testis development, which takes place before Ngn3 expression. Deleting Dicer1 from early 

spermatogonia using the Stra8-Cre transgenic mouse lines resulted in similar phenotypes to 

the Nrg3Cre-Dicer1 model [89, 90]. Another study using the protamine 1 (Prm1)-Cre 

transgene to delete Dicer1 specifically in post-meiotic haploid male germ cells [92], 

demonstrated a less severe phenotype compared with those in which Dicer1 was deleted from 

pre-meiotic spermatogonia [88-90]. However, Chang et al. did observe abnormal morphology 

in the elongated spermatids indicating that post-meiotic differentiation was disrupted in the 

Prm1Cre-Dicer1 mice [92]. Taken together, these studies show a clear requirement for 

expression of Dicer1, and therefore the small non-coding RNA machinery, in both Sertoli 

and germ cells for the onset of spermatogenesis and for male fertility. The earlier the deletion 

of Dicer takes place, the more severe effects on spermatogenesis are found, perhaps due to an 

accumulation of defects.  
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4. MiRNAs and the germ stem cell niche 

Interestingly, a series of publications implicate miRNA involvement in regulation of the germ 

stem cell niche. Two particular miRNAs, miR-221 and miR-222 negatively regulate 

expression of c-kit at the post-transcriptional level [93]. Over-expression of miR221/222 

renders RA ineffective at inducing the transition of undifferentiated spermatogonia into c-kit-

positive differentiated spermatogonia [93]. Furthermore, GDNF can up-regulate expression 

of miR-221/222, whereas RA has the opposite effect [93]. Moreover, miR-146 interferes with 

the expression of c-kit, Stra8 and Sohlh2 in RA-treated spermatogonia, suggesting that it 

modulates the effects of RA on spermatogonial differentiation [94]. RA significantly induced 

expression of the Mirlet7 family miRNAs in spermatogonia, through suppression of Lin28, 

suggesting a role in RA-induced spermatogonial differentiation [95]. The same group showed 

that RA down-regulates expression of members of the Mir-17-92 (Mirc1) and Mir-106b-25 

(Mirc3) clusters in undifferentiated spermatogonia, both in vitro and in vivo, suggesting that 

the Mirlet7/Mir-17-92 (Mirc1)/Mir-106b-25 (Mirc3) clusters could play a role in SSC self-

renewal and the proliferation of undifferentiated spermatogonia [96]. Another study showed 

expression of miRNA-20 and miRNA-106a in mouse SSCs and their involvement in SSC self-

renewal by targeting Stat3 and Cyclin D1, both involved in spermatogonial differentiation, at 

the post-transcriptional level [97]. Moreover, miR-21 is regulated by ERM/ETV5 in SSC-

enriched germ cell cultures, and miR-21 was shown to be important in maintaining the SSC 

population in vitro, demonstrating for the first time the involvement of a specific miRNA in 

SSC self-renewal [98]. In neuronal cells miR-21 is induced by GDNF [99], raising the 

possibility of a similar role in Sertoli cells within the germ stem cell niche. 

 

5. Hormonal regulation of miRNA expression 

Androgen regulation of spermatogenesis is fundamentally important, but how it does so is 
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still unclear. Modulation of miRNAs, and perhaps thus of the niche, is a potentially novel 

mechanism that has only been superficially addressed. Interestingly, androgens are major 

regulators of miRNA expression in the prostate [100-103], muscle [101, 104] and liver [105]. 

Moreover, prenatal testosterone exposure alters fetal ovarian miRNA expression in the sheep, 

and may lead to adult ovarian pathologies [106]; similar studies for the testis have not been 

reported. Using primary Sertoli cell cultures and an in vivo rat model, upregulation of a 

subset of miRNAs in Sertoli cells was reported after FSH or androgen suppression [107]. 

This included miR-23b, miR-30c, miR-30d and miR-690, whose predicted targets include 

genes important for focal adhesion and regulation of the actin cytoskeleton, such as Pten and 

Eps15. Another study looked at adult Sertoli cells in mice and identified a group of 

testosterone-dependent miRNAs playing a crucial role in androgen-mediated events during 

spermatogenesis [108]. Some of the miR-471 targets found in this study included Foxd1, 

important in Sertoli cell metabolism, and desmocollin-1 (Dsc1), that plays a crucial role in 

cell-cell adhesion in epithelial cells [108].  Even though the miRNAs identified in this study 

differed from those identified in the Nicholls et al. study, both proposed that testosterone-

mediated inhibition of miRNAs in Sertoli cells could facilitate essential gene expression 

necessary for progression of spermatogenesis [107, 108].  

  

6. MiRNA expression in human TGCC 

MiRNA expression has also been implicated in TGCC. In humans these tumors present in 

young adulthood following transformation of pre-malignant carcinoma in situ (CIS) cells, 

which are believed to result from failure of differentiation of fetal germ cells. Currently, CIS 

cells are considered to result from immaturity of the somatic cell component of the germ stem 

cell niche [109]. In a genetic screen for miRNAs that work together with oncogenes in 

cellular transformation, miR-372 and miR-373 were identified as potential oncogenes 
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involved in the development of human TGCC [110], whilst several miRNAs are specifically 

expressed in TGCC [111, 112] and carcinoma in situ (CIS) cells [112]. Similarly, a subset of 

miRNAs was shown to be differentially expressed in TGCC compared to normal testicular 

tissue [113]. In human TGCC cell lines, repression of the candidate tumor suppressor protein-

tyrosine phosphatase non-receptor type 23 (PTPN23) by miR-142-3p plays an important role 

in the pathogenesis of TGCCs by repressing expression of PTPN23 [114]. TGCC is 

hypothesized to be part of a group of male reproductive health disorders, that include 

cryptorchidism and hypospadias, and comprises a testicular dysgenesis syndrome with a 

common origin in fetal life [115]. In the cryptorchid rat testis it was shown that the miRNA 

miR-135a was expressed at lower levels in the undescended testis and a decreased number of 

SSCs with Foxo1 activation was observed, suggesting a contribution of miR-135a to SSC 

maintenance by modulating Foxo1 activity [116]. Since miRNAs are quick and easy to 

measure in blood or tissues, and as their levels can be altered by human diseases, they also 

have unexplored potential as diagnostic tools and therapeutic targets for these diseases, as 

demonstrated in the case of (alcoholic) liver disease [117-119]. It will be interesting to 

determine if there are miRNAs measurable in the blood of testis cancer patients which could 

provide either a diagnosis and/or prognosis on their disease state.  

 

7. Future directions 

Specific miRNAs are expressed in the testis and appear to play a role in SSC self-renewal and 

spermatogonial differentiation, although detailed understanding of the roles and importance 

of miRNAs in this context are lacking. For example, it is unclear if Sertoli cell expressed 

miRNAs act as secreted paracrine factors in the germ stem cell niche, or whether they 

indirectly modulate the secretion of other Sertoli cell factors that then affect germ cells. 

Similarly, miRNAs produced in the germ cells themselves could act directly upon target 
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mRNAs within those germ cells or may act on mRNA targets in neighboring somatic cells. 

Another important area to explore is to determine the role of other somatic cell components 

(and their associated miRNAs) e.g. the peritubular myoid cells, the vasculature and Leydig 

cells in regulation of the germ stem cell niche. Conceptually, it seems clear already that 

regulation of the miRNA networks in the germ stem cell niche and in the germ cells 

themselves is likely to be critical for SSC/spermatogonial development and output. 
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Figure legends 

Figure 1 

Schematic diagram of the germ stem cell niche in the mammalian testis. The spermatogonial 

stem cell (SSC) is supported by the Sertoli cell within the seminiferous tubule. Sertoli cell 

produced factors such as GDNF in combination with FGF2 and EGF promote SSC self-

renewal, whereas retinoic acid (RA) induces spermatogonial differentiation. Upon 

differentiation, spermatogonia start expressing c-kit, which is the receptor for Sertoli cell 

derived Kit ligand. RA also induces BMP4 production which is also implicated in 

spermatogonial differentiation. It has been suggested that peritubular myoid cells, Leydig 

cells and the vasculature all somehow regulate the germ stem cell niche, but the exact 

mechanisms are still unknown. Follicle stimulating hormone (FSH) enters the testis through 

the bloodstream and induces Sertoli cell expressed GDNF, which may be one mechanism via 

which pubertal onset of spermatogenesis can be regulated centrally. For more detailed 

reviews on the germ stem cell see [2, 3]. 

 

Figure 2 

MiRNA biogenesis pathway. The primary miRNA (Pri-miRNA) is transcribed from DNA by 

RNA polymerase II and gets processed into pre-miRNA structures of roughly 70 nucleotides 

by the nuclear microprocessor complex, which is comprised of the endonucleases Drosha and 

DGRC8 (DiGeorge syndrome critical region 8). The pre-miRNA gets transported into the 

cytoplasm by exportin 5 where the RNase III endonuclease Dicer cleaves the stem loop 

structure to form 19-23 nucleotide small RNAs. The miRNA strand of the small RNAs gets 

loaded into the miRNA-induced silencing complex (miRISC), which includes the Argonaute 

(AGO) proteins and this complex mediates degradation of target mRNAs.  

 


