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Abstract  18 

Screening for expression of the high affinity receptor for IgE by reverse transcriptase PCR, revealed 19 

that almost all canine mast cell tumors expressed FcεRIα mRNA, supporting the rationale for 20 

developing anti-neoplastic treatments based on molecules that could target this receptor. Use of 21 

cytotoxic cytokines to trigger an apoptotic signal is one strategy for inducing cell death in malignant 22 

mast cells. The coding sequences for canine IgE and tumor necrosis factor-related apoptosis-inducing 23 

ligand (TRAIL) were identified through genome analyses. Selected regions of the coding sequences 24 

for these genes were cloned and compared to the predicted genome sequences. The Fc region of 25 

canine IgE, death domain of canine TRAIL and an IgE Fc : TRAIL fusion construct were generated and 26 

epitope-tagged proteins expressed, using a eukaryotic expression system. Specific binding of 27 

recombinant canine IgE Fc-containing proteins to recombinant human FcεRI and to a canine mast 28 

cell tumor line expressing FcεRI (C2), but not one failing to express FcεRI (MCLA), was 29 

demonstrated. Specific binding of the IgE:TRAIL fusion protein was not abrogated by the TRAIL 30 

moiety. These results are proof of principle that canine IgE targeting to FcεRI can be used as a 31 

platform for selective delivery of therapies to FcεRI-expressing cells, potentially enhancing their 32 

therapeutic index and efficacy. 33 

 34 

  35 
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1. Introduction 36 

Canine mast cell tumors (cMCTs) are the most common skin malignancy in dogs (Brodey 37 

1970; Finnie and Bostock, 1979; Bostock 1986; Dobson et al., 2002), likely arising from neoplastic 38 

transformation of resident tissue mast cells or their progenitors. Breed, location, stage, gross 39 

appearance, size, presence of paraneoplastic syndromes and several proliferation markers have 40 

been variably associated with prognosis, however the most consistent predictor of cMCT recurrence, 41 

metastasis and survival is histopathological grade (Bostock, 1973; Patnaik et al., 1984; O' Keefe, 42 

1990; Gerritsen et al., 1998; Mullins et al., 2006). Although dogs with a localised cMCT are often 43 

cured by local therapy (surgery and/or radiation therapy), those with an inoperable primary mass or 44 

confirmed disseminated disease usually die of their disease (reviewed by Welle et al., 2008; 45 

Blackwood et al., 2012). The use of both local (e.g. surgery and radiation therapy) and systemic 46 

therapies (e.g. chemotherapy, receptor tyrosine kinase inhibitors) is limited by the potential for 47 

adverse effects, some of which can be idiosyncratic, cumulative and/or permanent in nature. Thus, 48 

there is a need to develop novel therapies for cMCTs with improved efficacy and higher therapeutic 49 

indices.  50 

Mast cells avidly and specifically bind to IgE via the high-affinity IgE receptor, FcεRI. Cross-51 

linkage of surface IgE by antigen leads to mast cell degranulation and inflammation, an important 52 

defence against parasite infestation. In addition to disease caused by malignant transformation, 53 

mast cells are also involved in type I hypersensitivity reactions in allergic disease. Additional 54 

beneficial and pathophysiological roles for mast cells are emerging, although many of these can be 55 

undertaken by other, more numerous cells (reviewed by Rao & Brown, 2008), and mast cells are not 56 

absolutely required for survival, as demonstrated by genetically-modified mouse strains lacking 57 

these cells (C57BL/6-KITWsh-/Wsh-, Grimbaldeston et al., 2005). However, other genetic mutations 58 

associated with mast cell deficiency can lead to significant developmental problems in cells of other 59 

lineages. WBB6F1-W/Wv mice have reduced erythrocyte, granulocyte, platelet and mast cell 60 
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numbers (Kitamura et al., 1978), and although such mice are more likely than wild type mice to die 61 

in a model of acute septic peritonitis involving cecal ligation and puncture, their survival can be 62 

enhanced solely by reconstitution with cultured wild type mast cells (Echtenacher et al., 1996).  63 

FcεRI is constitutively expressed by mast cells and basophils during early differentiation, but 64 

lower level, inducible expression has also been found on mammalian eosinophils, monocytes, 65 

platelets and dendritic cells (Thompson et al., 1990; Rottem et al; 1992; Joseph et al., 1997; Kinet 66 

1999; Kita et al., 1999; Seminario et al., 1999). The affinity and avidity of IgE for FcεRI exceeds that of 67 

other immunoglobulin/Fc receptor interactions by several orders of magnitude (Ravetch and Kinet, 68 

1991; Maenaka et al., 2001; McDonnell et al., 2001; Wan et al., 2002). Previous work, evaluating the 69 

role of each IgE domain in binding to its high affinity receptor, has shown that CH3 is critical for 70 

binding to FcRI, but CH2 and CH4 are also required for high affinity and avidity binding (Keown et 71 

al., 1997; Garman et al., 2000 & 2001; McDonnell et al., 2001; Wurzburg and Jardetzky, 2002; Hunter 72 

et al., 2008).  In a previous study, a partially dimerized CHε2-4 recombinant canine protein was used 73 

to raise an anti-canine IgE antibody which detected native canine IgE, suggesting that the quaternary 74 

structure of the recombinant CHε2-4 protein was similar to native canine IgE, despite the lack of a 75 

CH1 domain (Ledin et al., 2006). Hunter et al. (2008) reported an alternative cell-based binding 76 

assay using RBL-2H3 cells stably transfected with rcFcεRIα and elegantly evaluated the role of each 77 

IgE heavy chain domain in binding to the receptor. 78 

IgE has been used as a delivery platform for targeting murine and human mast cells, when 79 

linked to Pseudomonas toxin or pro-apoptotic Bcl-2 protein family members.  These fusion proteins 80 

were capable of binding to and inducing apoptosis in mast cells in vitro and in vivo. (Fishman and 81 

Lorberboum-Galski, 1997; Fishman et al., 2000; Belostotsky and Lorberboum-Galski, 2001) A 82 

rmIgE301-473-Pseudomonas exotoxin A chimeric protein was highly cytotoxic to both malignant murine 83 

mast cell lines and bone marrow-derived mast cells, while having no effect on other cell lines of 84 
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haematopoietic lineage (Fishman and Lorberboum-Galski, 1997), demonstrating its specificity for 85 

FcεRI-expressing cells. 86 

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, TNFSF10) is a type II 87 

membrane protein, an extracellular fragment of which can be cleaved to generate soluble TRAIL 88 

(sTRAIL; amino acids 37-281) (Wiley et al., 1995; Pitti et al., 1996; Mariani and Krammer, 1998).  In 89 

humans and rodents, healthy cells display a repertoire of death and decoy TRAIL receptors, whereas 90 

neoplastic/transformed cells preferentially express death receptors over decoy receptors (Sheridan 91 

et al., 1997; Simonet et al., 1997; Pan et al., 1998; LeBlanc and Ashkenazi, 2003). Therefore, 92 

neoplastic cells are generally more susceptible than healthy cells to TRAIL-mediated apoptosis, 93 

making this a tempting therapeutic strategy (LeBlanc and Ashkenazi, 2003). Although the canine 94 

TRAIL receptor repertoire is poorly characterized and there are no TRAIL receptor genes identifiable 95 

in the syntenic region of the canine genome, compared to human and mouse, we and others have 96 

demonstrated that canine neoplastic mast cells are susceptible to the apoptotic effects of TRAIL 97 

(Rong et al., 2008; Elders et al., 2009). 98 

The aim of the current study was to generate a recombinant canine IgE Fc protein that was 99 

capable of binding to the FcεRI receptor expressed on canine mast cells. The intention was that this 100 

recombinant canine IgE Fc molecule could then be modified to allow specific targeting approaches to 101 

be evaluated for treatment of canine mast cell tumors. Since we had previously shown that a canine 102 

MCT line (C2) was susceptible to TRAIL-mediated apoptosis, a canine IgE-TRAIL fusion protein was 103 

planned in the first instance to test the concept that this targeting strategy was feasible. 104 

 105 

2. Materials and methods 106 

2.1 Case recruitment and sample collection 107 
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Biopsy samples were obtained from dogs undergoing surgical resection of a mass, suspected 108 

or cytologically confirmed as cMCT. Tissue was stored in RNAlater® (Qiagen, Crawley, UK) at -20 °C 109 

prior to molecular analysis. All tumors had histopathology or cytology performed and, where 110 

available, representative slides were reviewed by a single pathologist (K.C.S.) using a published 111 

grading scheme (Patnaik et al., 1984). In one patient, tumor tissue was disaggregated and cultured 112 

to generate a novel cMCT line, designated MCLA, which demonstrated metachromatic granule 113 

staining with Toluidine blue and was positive for expression of chymase and tryptase (Elders, 2009). 114 

Residual canine EDTA blood, following completion of processing of a diagnostic sample, was used to 115 

provide canine genomic DNA for IgE cloning. Similarly, residual lymph node tissue, following 116 

diagnostic processing of a lymphoma sample, was used to provide cDNA for TRAIL cloning.  117 

 118 

2.2 Cells and cell culture 119 

Chinese Hamster ovary (CHO) cells (obtained from ECACC), C2 canine mastocytoma cells (a 120 

generous gift from Dr. Birgit Helm, University of Sheffield; permitted by the originator, Prof. W. Gold, 121 

University of California) (Lazarus et al., 1986) or MCLA cells were propagated at 37 °C, 5% CO2, in 75 122 

cm2 flasks in Eagle’s minimal essential medium, supplemented with 5% foetal bovine serum (FBS), 123 

1% non-essential amino acids, 50 μg/ml gentamicin (all Sigma) and 1% L-glutamine (Invitrogen, 124 

Paisley, UK) (culture medium). For experiments, cells were dissociated using Accutase™ (PAA 125 

Laboratories, Hampshire, UK) and cultured in phenol red-free minimal essential medium 126 

(Invitrogen), supplemented with 10% FBS, 1% non-essential amino acids, 1% L-glutamine and 50 127 

μg/ml gentamicin. 128 

 129 

2.3 Nucleic acid extraction and polymerase chain reaction 130 

Tumor tissue or cultured cells were homogenized in Lysis Solution for total RNA (Sigma, Poole, 131 

UK) and RNA extracted using the GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma). On-column 132 

(RNase-free DNase set, Qiagen) and in-solution (Turbo DNaseTM, Ambion, Austin, USA) digestion 133 
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steps were performed to remove contaminant genomic DNA. Reverse transcription of mRNA into 134 

complementary DNA (cDNA) was performed using oligo(dT)15 primer and ImProm-II reverse 135 

transcriptase (Promega, Southampton, UK). 136 

Polymerase chain reaction was used to amplify genes of interest using specific primers (Table 137 

1). Each 25 µl reaction contained 1 µl both sense and anti-sense primers (final concentration 10 138 

pmol/µl) and cDNA or gDNA (1 µl) as template. Reactions also contained 1× Hi-Spec Additive, 1× NH4 139 

buffer, MgCl2 (final concentration 2.0-3.0 mM), dNTP (final concentration 10 mM) and 0.5 IU 140 

Immolase™ DNA polymerase per reaction (all from Bioline, London, UK), made up to 25 µl with 141 

water. Reactions were heated to 95 °C for 10 mins, followed by 20 - 35 cycles at 94 °C for 40 s, 55 – 142 

62.5 °C for 30 s, and 72 °C for 1 min; with a final extension step at 72 °C for 7 mins using a G Storm 143 

thermocycler (Gene Technologies Ltd, Essex, UK). For PCR products that were to be cloned, a proof-144 

reading DNA polymerase (Easy-A® High-Fidelity PCR Cloning Kit, Stratagene, Amsterdam, The 145 

Netherlands) was used in place of Immolase. 146 

Horizontal gel electrophoresis was used to separate PCR products, using 1-2% agarose 147 

(Bioline) gels containing 1× SafeView Nucleic acid stainTM (NBS Biologicals Huntingdon, UK).  148 

Amplicons were visualized under 590 nm ultra-violet light, using the ImageMaster® VDS Gel 149 

Documentation System (Pharmacia Biotech, Uppsala, Sweden). 150 

 151 

2.4 Cloning of inserts into plasmid DNA vectors 152 

PCR amplicons were extracted (GenEluteTM gel extraction kit; Sigma), cloned into the pSC-A® 153 

vector (Stratagene) and transformed into E. coli (SolopackTM, Stratagene). Plasmid DNA was then 154 

isolated using the GenElute™ Plasmid Miniprep Kit (Sigma) and sequencing to confirm the integrity 155 

of the inserts (Geneservice, Cambridge UK). Donor (recombinant pSC-A) and recipient (pSecTagA®; 156 

Invitrogen) plasmid DNA were digested using the indicated restriction enzymes to allow directional 157 

subcloning. Following purification, insert DNA was ligated into digested recipient vector (Quick-158 

StickTM DNA Ligase, Bioline) and E. coli. transformed. Endotoxin-free plasmid DNA was prepared from 159 
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E. coli cultures using GenElute™ Endotoxin-free Plasmid Midiprep Kit (Sigma), according to the 160 

manufacturer’s instructions. 161 

 162 

2.5 Transfection of Chinese hamster ovary cells 163 

Cells for transfection were seeded at 1×105 cells per well into 24-well plates in a 500 μl 164 

volume of culture medium containing 5% FBS. When 90-95% confluent, the medium was replaced 165 

with FBS and antibiotic-free medium. Cells were transfected with 800 ng endotoxin-free 166 

recombinant plasmid DNA using LipofectamineTM 2000 (Invitrogen) according to the manufacturer’s 167 

instructions. Plates were incubated for 6 h then the plasmid-containing medium was replaced with 168 

medium containing 10% FBS but lacking antibiotics, and after a further 18 h this medium was 169 

replaced with culture medium. After 72 h incubation, the supernatant, containing recombinant 170 

protein, was recovered, centrifuged (13.8 ×g, 5 mins), filtered (0.22 μm filters, Millex®GV syringe 171 

filter unit, Sigma), and used for experiments. 172 

 173 

2.6 Detection of recombinant proteins 174 

Pre-blocked, nickel coated ELISA strips (Ni-NTA HiSorb®, Qiagen) were used to capture 175 

polyhistidine-tagged recombinant proteins from transfected CHO supernatants (100 μl/well). After 2 176 

h incubation, wells were washed with PBS supplemented with 0.1% Tween 20 (Sigma). A caprine 177 

anti-c-myc:HRP conjugate (A190-104P; Universal Biologicals, Cambridge, UK), diluted 1:5,000 in 178 

phenol red-free MEM/10% FBS was added for 2 h, followed by six washes. One hundred microliters 179 

of substrate (Supersensitive TMB Liquid Substrate for ELISA; Sigma) was added per well and 180 

incubated for 20 min. Twenty five microliters of 0.5 M sulphuric acid (SLS, Nottingham, UK) was 181 

added to stop the reaction, and the optical density (O.D.) at 540 nm subtracted from that at 450 nm 182 

to generate absorbance values per well. The ELISA was modified by substituting the anti-c-myc 183 

antibody with either a polyclonal caprine anti-canine IgE:HRP conjugate (1:10,000 dilution of 184 

AHP946P, Abd Serotec Ltd., Oxford, UK), or a polyclonal caprine anti-human TRAIL antibody (1:100 185 
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dilution of AF375, AbD Serotec) which was in turn detected using a polyclonal anti-caprine IgG:HRP 186 

conjugate (1:10,000 dilution of OBT1500P, Abd Serotec). Samples of transfected CHO supernatants, 187 

containing recombinant protein, were also submitted to HESKA (Fribourg, Switzerland) for analysis 188 

using their validated Allercept® canine IgE ELISA (Foster et al., 2003). 189 

 190 

2.7 Western blotting 191 

Polyhistidine-tagged proteins were purified from CHO supernatants using the MagneHisTM 192 

Protein Purification System (Promega). Purified recombinant proteins (32.5 μl) were added to 5 μl of 193 

500 mM dithiothreitol (DTT) reducing agent and 12.5 μl NuPAGE® LDS sample buffer (both 194 

Invitrogen) and incubated at 70 °C for 10 mins.  Proteins were separated by PAGE using 4 - 20% gels 195 

and sodium dodecyl sulphate (SDS) running buffer (both PAGEgel.com, California, USA), in the X-cell 196 

SureLockTM Mini-cell (Invitrogen) at 200 V constant for 35 mins.  Proteins were then transferred to 197 

nitrocellulose membranes under reducing conditions in the X-Cell IITM Blot Module (Invitrogen) and 198 

transfer buffer (PAGEgel.com) at 30 V constant for 1 h.  Membranes were rinsed, blocked overnight 199 

at 4 °C in 50 ml PBS/5% Marvel, then incubated with murine anti-His:HRP conjugate (MCA1396P, 200 

Abd Serotec, diluted 1:2500 in 25 ml PBS/5% Marvel™/0.1% Tween 20) at room temperature for 1 h.  201 

After washing, immunoreactivity was detected by chemiluminescence using the ECLTM Western 202 

blotting analysis system (GE Healthcare, Chalfont St Giles, UK) and film (Kodak X-Omat ARTM, Kodak, 203 

Harrow, UK). 204 

 205 

2.8 Assessment of FcRIα receptor-binding activity of recombinant proteins by flow cytometry 206 

C2 (FcRIα positive mastocytoma line) and MCLA (FcRIα negative mastocytoma line) cells 207 

(2×105 cells in a 100 μl volume of culture medium) were incubated at 4 °C for 30 mins. Cells were 208 

then centrifuged at 1200 ×g for 10 mins, resuspended and incubated at 4 °C for 2 h in 200 μl of each 209 

sterile-filtered CHO cell supernatant (transfected with either IgE100-427, TRAIL114-282, or IgE100-210 

427:TRAIL114-282 fusion construct). Cells resuspended in supernatant from mock transfected CHO cells 211 
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acted as negative controls. Cells resuspended in PBS/0.5% canine IgE heterohybridoma supernatant 212 

(Bethyl Laboratories) were used as positive controls for IgE binding. 213 

Cells were centrifuged and supernatants aspirated. Cell pellets were resuspended in 200 l 214 

PBS alone or containing caprine anti-canine IgE:FITC (1:200 of AHP946F, AbD Serotec) or murine 215 

anti-c-myc:FITC (1:200 of MCA2200F, Abd Serotec) and incubated for 20 mins.  Following repeat 216 

centrifugation, cell pellets were resuspended in 200 μl PBS for flow cytometric analysis, (FACSAria, 217 

BD Biosciences, Erembodegem, Belgium) counting up to 20,000 events. Data were analysed using 218 

FlowJo (Tree Star Inc., Oregon, USA) 219 

 220 

3. Results 221 

3.1 Analysis of FcεRIα mRNA expression in canine mast cell tumors and selected mastocytoma cell 222 

lines 223 

The canine FcεRIα coding sequence (762 bp), consisting of 5 exons, is located on 224 

chromosome 38 (GenBank Accession# NM_00110766.1, Goitsuka et al., 1999). Screening primers, 225 

designed to amplify a 273bp fragment, were used to demonstrate that 23 of the 25 canine MCT 226 

biopsy samples were positive for FcεRIα mRNA expression (Fig. 1A), suggesting that this represents a 227 

suitable target for potential immunotherapeutic strategies. The C2 mastocytoma cell line but not the 228 

newly established MCLA mast cell tumor line, expressed FcεRIα mRNA (Fig. 1B). 229 

 230 

3.2 Generation of recombinant canine IgE Fc and IgE Fc-TRAIL fusion constructs 231 

The canine IgE heavy chain gene, encoding VHε and CHε1-4, is located on chromosome 8 and 232 

consists of 5 exons (GenBank Accession# XM_548007.1). Using genomic DNA as template, primers 233 

were designed at the start of exon 3 (encoding CHε2) and the end of exon 5 (encoding CHε4), to 234 

generate a PCR amplicon spanning the CHε2-4 coding region, but which contained additional intronic 235 

sequence. This was cloned into the pSecTagA vector and following sequence verification, plasmid 236 
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DNA was transfected into Chinese hamster ovary (CHO) cells. Isolation of cDNA from the transfected 237 

cells and further PCR analysis revealed three amplicons (Fig. 2), the smallest of which was consistent 238 

with splicing out of both introns. This was confirmed by sequencing, and this canine CHε2-4 coding 239 

region was subsequently cloned into the pSecTagA vector between the HindIII and EcoRI sites 240 

(pSecTagA/rcIgE100-427). 241 

The canine TRAIL gene, consisting of 5 exons is located on chromosome 34 (GenBank 242 

Accession# NM_001130836.1). Using cDNA prepared from a canine lymphoma biopsy as template, 243 

canine TRAIL-specific primers were used to generate an amplicon encoding the predicted C-terminal 244 

TNF-like death domain (amino acids 114-282), which was cloned into pSecTagA 245 

(pSecTagA/rcTRAIL114-282). In addition, a fusion construct was generated by subcloning the TRAIL 246 

sequence, between EcoRI and XhoI sites, downstream of and in-frame with the IgE Fc fragment to 247 

generate a fusion construct (pSecTagA/rcIgE100-427 : rcTRAIL114-282). 248 

 249 

3.3 Expression of recombinant canine IgE Fc and IgE Fc-TRAIL fusion proteins 250 

Chinese hamster ovary cells were transfected with pSecTagA containing, rcIgE100-427, 251 

rcTRAIL114-282, or rcIgE100-427 : rcTRAIL114-282 fusion constructs. Polyhistidine and c-myc epitope-tagged 252 

recombinant proteins were detected by ELISA in the supernatants of CHO cells transfected with the 253 

three constructs (Fig. 3A), while none was found in cell lysates (data not shown). This ELISA was 254 

modified by substitution of the anti-c-myc detection antibody with either an anti-canine IgE 255 

conjugate (Figure 3B), or an anti-human TRAIL antibody (Figure 3C). This confirmed expression of the 256 

relevant epitope-tagged recombinant proteins containing canine IgE Fc and/or TRAIL protein 257 

domains. 258 

Western blotting of recombinant proteins, purified from supernatant, revealed 259 

polyhistidine-tagged proteins, somewhat heavier than the predicted weights of the translated 260 
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sequences (rcIgE100-427: 42.3kDa; rcIgE100-427:TRAIL114-282: 61.6kDa; rcTRAIL114-282: 26kDa), possibly 261 

consistent with glycosylation and/or inefficient cleavage of the signal peptide (Fig. 4). 262 

 263 

3.4 Binding of recombinant canine IgE Fc and IgE Fc-TRAIL fusion proteins to FcεRIα 264 

Using the Allercept system, it was demonstrated that rcIgE100-427 and rcIgE100-427:TRAIL114-282 265 

were able bind to recombinant FcεRIα, whereas rcTRAIL114-282 was unable to do so (Fig. 5). By flow 266 

cytometric analysis, C2 cells (FcεRIα positive) bound monoclonal canine IgE as well as rcIgE100-427 267 

(Figure 6A), whereas MCLA cells (FcεRIα negative) failed to demonstrate any binding to monoclonal 268 

IgE or rcIgE100-427 (Figure 6B). Competitive inhibition of binding of rcIgE100-427 to C2 cells (detected 269 

with anti-myc antibody) was demonstrated by co-incubation with monoclonal IgE, with MFI values 270 

falling from 64.4 in the absence of the monoclonal antibody to 27.5 in the presence of the 271 

monoclonal antibody. In addition to binding to rcIgE100-427, C2 cells were able to bind to the rcIgE100-272 

427:TRAIL114-282 fusion protein but not rcTRAIL114-282 (Figure 6C).  273 

 274 

4. Discussion 275 

The features of the canine patients and cMCT recruited for this study are similar to previous 276 

reports (Sfiligoi et al., 2005; Mullins et al., 2006; Newman et al., 2007; Thamm and Vail, 2007). 277 

Although a retrospective study of archived tumor tissue would have produced a much larger cohort, 278 

we have found RNA extracted from formalin-fixed material to be of relatively poor quality, 279 

compared to tissue specifically preserved for molecular analysis (Stell, 2008). FcεRIα mRNA 280 

expression was consistent throughout the biopsy samples assessed in the study, which contained 281 

both well-differentiated and poorly-differentiated tumors. Although mRNA expression does not 282 

necessarily indicate expression of functional protein, consistent FcεRIα mRNA expression suggests 283 

that development of IgE-based therapies might be worthwhile. The logical next step would be to 284 
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analyse a sample cohort composed primarily of high grade, poorly-differentiated or metastatic MCTs 285 

where IgE-based immunotherapeutics could be particularly valuable, given that the majority of high 286 

grade and disseminated tumors are refractory to current anti-cancer treatments. 287 

Established from a cross-breed dog with tumor recurrence, C2 mastocytoma cells are highly 288 

differentiated, expressing surface FcεRI capable of binding canine IgE (Lazarus et al., 1986, Brazis et 289 

al., 2002; Hunter et al., 2009). The MCLA mastocytoma cell line was established from a Labrador 290 

retriever with a cytologically diagnosed, metastatic MCT. Cells demonstrated typical morphology, 291 

although they failed to express FcεRIα. Expression of FcRI might have been absent at the time of 292 

biopsy, consistent with a neoplasm derived from an early mast cell precursor cell (Thompson et al., 293 

1990; Rottem et al., 1992), de-differentiation and loss of FcRI expression in a tumor arising from a 294 

later precursor or a mature mast cell, or might have been downregulated during establishment of 295 

the cell line, in the absence of IgE which stimulates expression of the receptor (Furuichi et al., 1985; 296 

Hsu and MacGlashan, 1996; Yamaguchi et al., 1997; Kubo et al., 2001). There were no detectable KIT 297 

exon 11 mutations in this cell line, which also lacked KIT mRNA expression (data not shown).  This 298 

might also be evidence of an early mast cell precursor lineage, although canine mast cell lines lacking 299 

KIT expression and KIT mutation have been reported which are also independent of stem cell factor 300 

for their propagation (Ohmori et al., 2008). However, it is difficult to reconcile the lack of FcRI and 301 

KIT mRNA expression with the characteristic morphological appearance of this cell line and the 302 

expression of chymase and tryptase mRNA (data not shown), which would suggest more advanced 303 

differentiation. 304 

Native IgE (with dimerized heavy chains) binds to the FcεRIα chain on the cell surface with a 305 

prolonged half-life, compared to other types of Fc receptor, whereas IgE heavy chain monomers are 306 

rapidly internalized (Menon et al., 1986).  In the current study, constructs were designed to allow 307 

dimerisation of the heavy chain fragments of rcIgE100-427 as this might facilitate long-term cell surface 308 

binding for detection and in the case of rcIgE100-427:TRAIL114-282 would also increase the local 309 
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concentration of TRAIL death domain moieties on the cell surface for signalling through relevant 310 

TRAIL receptors. However, formation of inappropriate intra-molecular disulphide bonds or 311 

intermolecular disulphide bonds between rcIgE100-427 proteins, might have resulted in an altered 312 

tertiary and/or quaternary structure. There are two unpaired cysteine residues within the fusion 313 

protein (IgE100CYS and TRAIL230CYS) that could potentially lead to misfolding.  Cysteine230 in human 314 

TRAIL is important for trimerisation, with mutation of this amino acid abrogating its apoptosis-315 

inducing effect (Seol and Billiar, 2000; Trabzuni et al., 2000; Kelley et al., 2001). An IgE construct 316 

lacking the N-terminal cysteine was generated (pSecTagA/IgE99-427) although this failed to express 317 

recombinant protein when transfected into CHO cells (data not shown). 318 

An ELISA exploiting the polyhistidine epitope tag for capture and c-myc tag for detection 319 

consistently demonstrated recombinant proteins secreted into the supernatant of transfected CHO 320 

cells, although the relative immunoreactivity varied between experiments, likely reflecting 321 

differences in transfection efficiencies in different wells.  Substituting the c-myc antibody with anti-322 

canine IgE or anti-TRAIL antibodies revealed the presence of IgE and/or TRAIL epitopes in the 323 

recombinant proteins, suggesting adequate levels of protein folding. Furthermore, a modified 324 

Allercept system demonstrated binding of epitope-tagged rcIgE100-427 to a recombinant FcRI 325 

conjugate, usually employed to detect serum IgE in dogs suffering from allergic disease. Similar 326 

binding of the rcIgE100-427:TRAIL114-282 fusion protein was also demonstrated using this assay, 327 

confirming that addition of the TRAIL component did not interfere with the ability of the IgE Fc to 328 

bind to its cognate receptor. 329 

Binding of recombinant IgE Fc constructs to canine FcRI was further investigated by flow 330 

cytometry, taking advantage of the availability of the novel FcRI negative MCLA mast cell line as a 331 

control for the FcRI positive C2 mastocytoma line. Specific binding of recombinant IgE100-427 to C2 332 

cells was demonstrated, which could be inhibited by monoclonal canine IgE. These results provide 333 

strong supportive evidence for specific binding of rcIgE100-427 to canine FcεRI.  The C2 cellular binding 334 
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experiments were conducted at 4 °C and it might be the case that at 37 °C rcIgE100-427 proteins could 335 

possibly be endocytosed and internalized.  This could have been detected through incubating cells 336 

for varying periods at 4 °C or 37 °C and comparing the binding of recombinant proteins on the cell 337 

surface by anti-c-myc/anti-cIgE staining.  Alternatives could have included assessing binding at 37 °C 338 

in the presence or absence of a metabolic inhibitor (e.g. sodium azide) to prevent internalisation, or 339 

the use of confocal microscopy. 340 

The authors have previously demonstrated the preferential efficacy of rhTRAIL114-281 in 341 

inducing apoptosis in C2 cells compared to non-neoplastic MDCK cells (Elders et al., 2009).  Herein, 342 

rcTRAIL114-282 was selected as a prototype cytotoxic agent that was added to the IgE delivery system, 343 

as this would potentially combine selective targeting and selective killing of malignant cells of this 344 

lineage. This particular TRAIL fragment is similar to the one shown to induce apoptosis in several 345 

canine neoplastic cell lines (Rong et al., 2008), although the rcTRAIL protein used by Rong et al., 346 

(2008) is slightly bigger than the current protein (by 3 amino acids at the N-terminus) and the 347 

current construct expressed C-terminal c-myc and polyhistidine tags. 348 

Although receptor-binding studies demonstrated that rcIgE100-427:TRAIL114-282 fusion protein 349 

was able to bind to C2 cells, subsequent cell viability assays failed to demonstrate any increased 350 

levels of apoptosis when C2 cells were cultured in the presence of the recombinant fusion protein 351 

(data not shown). Reasons for the lack of biological activity of the fusion protein include inadequate 352 

concentration, interference from other components in the cell supernatant or mis-folding of the 353 

recombinant protein. Furthermore, whereas IgE monomers form dimers, TRAIL functions exclusively 354 

as a trimer (Trabzuni et al., 2000). Thus, the fusion protein as designed would not have an intrinsic 355 

apoptosis-inducing effect. Further experiments combining IgE Fc-TRAIL fusion protein with TRAIL 356 

monomers, attempting to enhance C-terminal trimerisation also failed to demonstrate any biological 357 

effect (data not shown). 358 

 359 
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5. Conclusions 360 

The specific binding of recombinant canine IgE Fc and a TRAIL fusion protein to canine mast 361 

cells expressing FcεRI is proof-of-principle that an IgE-targeted approach is a feasible strategy for 362 

mast cell-directed immunotherapeutics in dogs. TRAIL targeted to mast cells via IgE offered the 363 

possibility of induction of apoptosis specifically in neoplastic mast cells; however, this proved 364 

inefficacious in vitro.  Future work aims to generate alternative IgE-Fc fusion proteins that can be 365 

utilized for antibody-directed enzyme prodrug therapy (ADEPT). As other cells seem capable of 366 

performing the majority of the beneficial functions of mast cells in vivo, the therapeutic index for 367 

such IgE-based immunotherapeutics is likely to be high for cMCT-bearing patients, provided that 368 

adequate endo-and ecto-parasite control is implemented during therapy, with likely repopulation of 369 

the tissues with mast cells from bone-marrow derived precursors after treatment is complete. 370 
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Fig. 1. Screening of canine MCT biopsies and mastocytoma cell lines for expression of FcεRIα mRNA.  544 

PCR was used to assess FcεRIα mRNA expression (273 bp amplicon) in (A) cMCT biopsies (B-Z) and 545 

(B) mastocytoma cell lines C2 and MCLA (MC).  PCR products were separated by agarose gel 546 

electrophoresis and visualized under UV illumination.  La: 100 bp molecular weight ladder.  H2O: 547 

water negative control. 548 

 549 

Fig. 2. PCR screening for canine IgE mRNA in control and transfected CHO cells. PCR was used to 550 

amplify the CHε2-4 region of canine IgE from cDNA prepared from CHO cells transfected with the 551 

pSecTagA vector containing this region of the genomic sequence.  PCR products were separated by 552 

agarose gel electrophoresis and visualized under UV illumination.  L = 100 bp molecular weight 553 

ladder. H = water negative control; G = genomic DNA positive control; UC = untransfected CHO 554 

cDNA; UN = untransfected CHO NRT; TN = transfected CHO NRT; TC = transfected CHO cDNA, which 555 

produced amplicons with neither (largest fragment), one or both (smallest fragment) introns 556 

excised. 557 

 558 

Fig. 3. Detection of recombinant proteins in transfected CHO supernatant.  Untransfected (Mock) 559 

and pSecTagA/rcIgE100-427 (IgE), pSecTagA/rcIgE100-427 : rcTRAIL114-282 (IgE/TRAIL), pSecTagA/rcTRAIL114-560 

282 (TRAIL) transfected CHO supernatants were harvested 90 h post transfection.  Supernatants were 561 

applied to wells of Ni-NTA HisSorb plates and recombinant epitope-tagged proteins detected using 562 

by ELISA using anti-c-myc (A) anti-canine IgE (B) or anti-TRAIL (C) antibody conjugates. A 563 

polyhistidine-tagged recombinant human TRAIL protein was used as a positive control in (C). Results 564 

are show as the mean of triplicate wells ± SEM, corrected by subtracting the mean value from wells 565 
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where medium only were applied. Experiments were repeated, with demonstration of recombinant 566 

protein expressed from each construct, although the relative levels of recombinant protein 567 

immunoreactivity varied between transfections.  O.D. = optical density. 568 

 569 

 570 

Fig. 4. Detection of recombinant proteins in transfected CHO supernatants by Western blotting.  571 

Recombinant protein, purified from CHO supernatant using MagneHis beads, were separated under 572 

reducing conditions by SDS PAGE and immunoblotted. Recombinant protein was detected using anti-573 

polyhistidine:HRP conjugate and enhanced chemiluminescence with 5 and 30 min exposure of 574 

autoradiography film.  The arrow indicates histidine-tagged recombinant canine TRAIL after 5 575 

minutes exposure, which is more apparent after 30 min exposure. Lad = Histidine-tagged molecular 576 

weight ladder; U = unpurified, untransfected CHO supernatant; I = purified IgE100-427; F = purified 577 

IgE100-427:TRAIL114-282; T = purified TRAIL114-282. 578 

 579 

Fig. 5. Binding of rcIgE100-427 and rcIgE100-427:TRAIL114-282 in the Allercept assay.  Recombinant proteins 580 

within transfected CHO supernatants were captured using HisSorb strips (A) or Maxisorb ELISA 581 

plates coated with anti-canine IgE antibody (B) and their ability to bind to the FcεRIα chain was 582 

assessed using the Allercept system.  IgE = pSecTagA/IgE100-427-transfected CHO supernatant; 583 

IgE:TRAIL = pSecTagA/IgE100-427 : TRAIL114-282-transfected CHO supernatant; TRAIL = pSecTagA/ 584 

TRAIL114-282-transfected CHO supernatant. 585 

 586 

Fig. 6. Binding of recombinant proteins to C2 and MCLA mastocytoma cells.  C2 (A and C) or MCLA 587 

cells (B) were incubated with mock-transfected CHO supernatant (medium) or supernatant 588 

containing rcIgE100-427 (rcIgE), rcIgE100-427:TRAIL114-282 (rcIgE/TRAIL) or rcTRAIL114-282 (rcTRAIL), followed 589 

by labelling with polyclonal anti-canine IgE:FITC (panel B) or polyclonal anti-c-myc:FITC (panel C) or in 590 

the absence of a secondary antibody (panel A) and analysed by flow cytometry. The graphs show 591 

histogram overlays of cells incubated with the various recombinant proteins. The tables show mean 592 

fluorescence intensity (MFI) data for each incubation condition. 593 

 594 

  595 
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Figure 1A 596 
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Figure 1B 599 
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Figure 3C 614 
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Figure 6A 627 
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Figure 6B 632 
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Figure 6C 637 

C2 cells 638 

 639 

 640 

Table 1. Primers used in study 641 

Target gene Primer sequence (5’-3’) Size (bp) Genbank # 

FCERIA F:  AGTGGGGAGTACAGGTGTCG 
R:  GCCTGAGCAGGAATAGTTGC 

273 NM_00110766.1 

IGHE F:  AAGCTTATGTGCCTTAAACTTCATTCCG 
R:  TTTACCGGGGGTTTTGGACAC 

988(cDNA) 
1152(gDNA) 

XM_548007.1 

TRAIL F:  CGAGGTTCTCAGAGAGTAGCT 
R:  CTCGAGGCAGCGTATTTTGCCGATTA 

522 NM_001130836.1 

F = forward/sense primer; R = reverse/antisense primer. Restriction enzyme sites (HindIII: AAGCTT 642 

and XhoI: CTCGAG) are shown underlined. 643 

  644 
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Table 2. Details of MCT-bearing patients. 645 

Identifier Age Breed Sex Tumor site Differentiation 
review 

Location 
review 

B 10y11m Crossbred (Lurcher) FN Tail Intermediate  Skin/SQ 

C 7y6m German shepherd dog FN Visceral  Poor Skin 

D 9y5m Crossbred FN Thigh Intermediate  SQ 

E 8y9m Staffordshire bull terrier ME Scrotum Intermediate  Skin 

F 9y1m Rhodesian ridgeback ME Stifle Well Skin 

G 8y11m Labrador retriever FN Interdigital Well  Skin 

H 9y1m Staffordshire bull terrier MN Muzzle (Cytology only) 

I 11y Crossbred (collie-type) FN Ventral abdomen Poor Skin 

J 8y11m Staffordshire bull terrier MN Thigh Intermediate  SQ 

K 6y4m Labrador retriever MN Thigh Intermediate  Skin 

L 11y3m Crossbred FN Ventral abdomen (Cytology only) 

M 7y Golden retriever FE Flank Intermediate  Skin 

N 8y1m Labrador retriever FN Thigh Intermediate  Skin/SQ 

O 11y10m Shih Tzu MN Prepuce Intermediate  SQ 

P 8y2m Labrador retriever FE Thigh Intermediate  Skin 

Q 11y1m Labrador retriever MN Scrotum (Cytology only) 

R 9y1m Staffordshire bull terrier ME Thigh Intermediate  SQ 

S 12y7m Labrador retriever ME Ventral abdomen (Cytology only) 

T 11y Labrador retriever MN Prepuce Intermediate  SQ 

U 9y10m Staffordshire bull terrier FN Thorax Intermediate  SQ 

V 9y5m Labrador retriever MN Pinna Intermediate  Skin 

W 10y  Labrador retriever FN Flank Intermediate  SQ 

X 6y Jack Russell terrier MN Thigh Intermediate  Skin 

Y 5y Boxer FN Antebrachium Intermediate  SQ 

Z 8y4m Staffordshire bull terrier FN Calf Poor Connective Tissue 
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FE: female entire; FN: female neutered; LTF: histopathology slides lost to follow-up; ME: 647 

male entire; MN: male neutered; SQ: subcutaneous. 648 
  649 
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