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Abstract. 

Drug induced liver injury (DILI) is a major challenge in clinical medicine and drug 

development. New models are needed for predicting which potential therapeutic 

compounds will cause DILI in humans, and new markers and mediators of DILI still need 

to be identified. This review will highlight the strengths and weaknesses of using 

zebrafish as a high throughput in vivo model for studying DILI. Although the zebrafish 

liver architecture is different to the mammalian liver, the main physiological processes 

remain similar. Zebrafish metabolize drugs using similar pathways as humans; they 

possess a wide range of cytochrome P450 enzymes enabling metabolic reactions 

including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. 

Following exposure to a range of liver toxic drugs, the zebrafish liver develops 

histological patterns of injury comparable to mammals and liver injury biomarkers can 

be quantified in the zebrafish circulation. The zebrafish immune system is similar to 

mammals, but the zebrafish inflammatory response to DILI is not yet defined. To 

quantify DILI in zebrafish a wide variety of methods can be used including: visual 

assessment, quantification of serum enzymes and experimental serum biomarkers and 

scoring histopathology. With further development, the zebrafish may be a model that 

complements rodents and may have value for the discovery of new disease pathways 

and translational biomarkers. 
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Introduction 

Drug induced liver injury (DILI) is a major problem in clinical medicine and drug 

development. The most common drug causing DILI in the United Kingdom (UK) and the 

United States (USA) is paracetamol (acetaminophen), a commonly used analgesic and 

antipyretic that is safe when used at therapeutic doses. However, when an accidental or 

deliberate overdose occurs, a metabolite of the drug is produced in excess and this can 

lead to potentially fatal hepatocellular necrosis and acute liver failure. Each year 

paracetamol overdose directly results in over 300 deaths in USA [1] and around 150 in 

UK [2]. The antidote, N-acetylcysteine, replenishes cellular glutathione [3] and is highly 

effective at preventing DILI if administered soon after overdose, but its efficacy declines 

substantially with delayed treatment [4]. 

 

Besides challenges with DILI treatment in clinical medicine, in drug development DILI is 

a major safety concern and remains one of the main reasons for denial of drug approval, 

withdrawal of drugs from the market, or “black box” warnings by the USA Food and 

Drug Administration (FDA) [5]. DILI due to paracetamol overdose is dose-dependent 

and, to an extent, predictable from the dose ingested and a timed blood drug 

concentration. By contrast, idiosyncratic liver toxicity is usually identified in late stages 

of drug development or after a new drug has already been released to the marketplace, 

occurring in less than 1 per 10,000-100,000 of subjects who take the medication in 

therapeutic doses [6]. Partly because of its rarity, the pathogenesis of idiosyncratic DILI 

is incompletely understood which makes it hard to predict in earlier drug development 

stages [7]. Therefore, high throughput and improved models are needed for predicting 

human DILI with potential therapeutic compounds and to identify new markers and 

mediators of DILI secondary to established liver toxic drugs such as paracetamol. 
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The zebrafish is a promising animal for assessing drug-induced toxicity in a variety of 

organ systems [8]. Well-established zebrafish assays have frequently been utilised for 

measurement of cardiac function, CNS assessment, gastrointestinal function and 

developmental toxicity [9, 10]. The zebrafish liver can also be used to study drug 

toxicity, however in comparison to other organs, the zebrafish model of liver toxicity has 

been utilised less frequently.  

 

This review will highlight the strengths and weaknesses of zebrafish for studying DILI. 

The use of this model has the potential to identify new drug targets for the treatment of 

DILI and play a role in pre-clinical drug development. Also, the use of zebrafish is in line 

with the 3R’s (reduce, refine, and replace) approach of animal use for scientific purposes 

by replacing higher order animals with lower order zebrafish (particularly zebrafish 

embryos). 

 

Potential advantages of zebrafish as a model for studying DILI 

Histopathology and clinical chemistry have been traditionally used to report liver 

toxicity in established animal models. To decrease the cost and time of toxicity studies, 

alternative test systems have been developed. These include liver slices [11] cultured 

primary hepatocytes [12], immortal hepatic cell lines such as the human hepatoma-

derived HepG2 line [13] and the recently derived human hepatocyte HepaRG line [14]. 

The advantage of these ex vivo and in vitro approaches is that they can be used efficiently 

for high throughput screening. However, the usefulness of these approaches for 

toxicological testing of compounds can be questioned based on differences in gene A
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expression between the different systems [15] and the low sensitivity of the cytotoxicity 

assays, which can be less than 25% for the detection of liver toxic agents [16]. 

To perform liver toxic testing with a higher degree of sensitivity, in vivo assessment is 

necessary. This allows study of a drug’s dose-dependent toxicity within the complex 

physiology of a whole organism. Higher vertebrate organisms (e.q. rodents and pigs) are 

physiologically similar to humans, and have been used for this approach. However, 

smaller, lower order vertebrates, such as the zebrafish (Danio rerio), have similar 

molecular and cellular processes that can accurately model human physiology [8]. In 

addition, the zebrafish offers significant advantages compared to rodents (table 1) and 

other larger animals. The zebrafish embryo is optically transparent and grows outside 

the uterus. This makes it possible to easily detect and monitor developmental changes 

from the single cell stage. For example, the zebrafish embryo has allowed researchers to 

study embryonic lethal phenotypes, something that was not possible with mammalian 

models [17]. Additionally, an early zebrafish embryo, at 3 days post fertilisation (dpf), is 

approximately 3.5mm. This allows zebrafish embryos to be grown in high stocking 

densities in multi-well plates. The high fecundity of the zebrafish - each female can lay 

approximately 200 eggs per week - can generate hundreds of embryos for screening, 

each of which has very rapid development. This reduces the cost of zebrafish husbandry 

significantly, when compared to larger laboratory animals. Furthermore, the Wellcome 

Trust’s Sanger Institute has sequenced the genome of the zebrafish and many of these 

sequences have been annotated  (http://vega.sanger.ac.uk/Danio_rerio/Info/Index)  

[18]. Further advantages of the zebrafish have been described elsewhere in literature 

[10, 19-21].  
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Zebrafish liver anatomy is different to rodents and humans 

Studies examining the zebrafish organs, specifically the liver, have revealed multiple 

similarities with higher vertebrates [22]. When liver budding starts at 28 hours post 

fertilisation (hpf), growth factor and gene expression similar to humans and rodents has 

been reported in zebrafish [23]. When hepatic organogenesis is completed at 72 hpf, the 

liver is perfused with blood and is functional [24]. At 120 hpf, the zebrafish is actively 

seeking food and the yolk sac reserves have become exhausted. By this time, the larval 

fish already has a fully functional liver. In comparison, in the embryonic mouse the 

primary liver bud starts to grow around embryonic day 8.5-9 and the liver is mature at 

embryonic day 18.5, just before birth [25]. The tri-lobed liver of the zebrafish is similar 

to other mammals with regard to biological function. This includes processing of lipids, 

vitamins, proteins and carbohydrates and the synthesis of serum proteins [22]. The 

main difference between the mammalian and zebrafish liver is the structural 

organisation of the liver tissue. Instead of having the large bile ducts, portal veins and 

hepatic arteries organised in portal tracts, these are randomly allocated throughout the 

liver parenchyma in the zebrafish. Hepatocytes in the mammal liver are arranged in 

plates whereas in the zebrafish liver they are arranged in tubules. In zebrafish, the bile 

canaliculi radiate centripetally between hepatocytes to anastomose with a single 

ductular cell forming a ductule at the centre of the tubule. These ductules form a 

network that transports the bile secreted by hepatocytes. Downstream, these ductules 

merge into intrahepatic bile ducts, which converge at the cystic duct, which exits the 

liver at the hilum to connect with the gallbladder. Subsequently, the gallbladder empties 

into the intestine through the common bile duct (figure 1) [23, 26]. The above 

mentioned lack of lobular arrangement impairs morphological differentiation between 

venules from the portal or hepatic vein, as these vessels are histologically identical. 
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Zebrafish drug metabolism is similar to rodents and humans 

One of the key physiological functions of the liver is oxidative catalytic transformation 

which leads to activation or inactivation of many endogenous and exogenous 

compounds. This metabolism is mainly performed by the cytochrome P450 (CYP) 

enzymes, which are predominantly localized in the liver. The metabolic reactions 

performed by the CYP enzymes include oxidation, reduction and hydrolysis. CYPs can be 

divided into two major groups: the first, with generally narrow substrate specificity, are 

predominantly involved in synthesis, activation or inactivation of endogenous 

regulatory molecules. The second group predominantly metabolise xenobiotics, but may 

also metabolise endogenous compounds [27, 28].  

These reactions are divided in two phases, phase I and II. In phase I, the metabolised 

compound is oxidised, reduced or hydrolysed. These phase I reactions are 

predominantly mediated by CYP enzymes. In phase II, conjugation takes place (not CYP 

enzyme mediated). The rate of these reactions is controlled by expression levels and 

activity of the specific enzymes [29].  

When selecting an animal model for toxicity testing, characterization of the metabolic 

properties of the selected species is very important. These properties influence DILI, for 

example, by creating reactive metabolites and this will determine whether a compound 

is toxic [30]. Therefore, the application of zebrafish as a model of human (hepatic) 

endogenous and exogenous compound metabolism requires that the full range of CYP 

genes, these have been identified in zebrafish and annotated with regard to their 

phylogenetic relationships to human CYPs. This essential study was reported by 

Goldstone and colleagues, who characterised a total of 94 CYP genes in the zebrafish 

genome [27]. Based on homologous amino acid sequences, they reported that these A
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genes fitted into 18 CYP gene families that are also present in humans and other 

mammals. CYP families 1-4, that predominantly metabolize exogenous compounds, are 

more diverse in zebrafish than in humans. However, analysis of shared synteny 

demonstrates an evolutionary relationship between human and zebrafish CYP genes. In 

the CYP families 5-51, zebrafish have single genes like humans, and there is a high 

degree of conservation between human and zebrafish sequences [27].  

Metabolism experiments demonstrate that drugs are metabolised when exposed to 

zebrafish embryos by similar reactions to those in humans. An overview of reported 

metabolic experiments is presented in table 2. The metabolic degradation of the widely 

used non-steroidal anti-inflammatory drug ibuprofen is well studied in different 

mammals [31, 32]. The compound is metabolized by different reactions including 

oxidation of the parent compound to hydroxyl-ibuprofen and carboxy-ibuprofen, and 

glucuronic acid conjugation of both parent and metabolite compounds [33]. In humans, 

the oxidation of ibuprofen is catalysed by the CYP2C8/9 isoforms [34]. When ibuprofen 

is exposed to zebrafish embryos, hydroxylated ibuprofen can be detected in the 

zebrafish extracts and water samples, suggesting that zebrafish have an analogous 

metabolic system to the human CYP2C8/9 [35].  

Following exposure to high dose paracetamol, in humans, rat and mice, the reactive 

metabolite N-acetyl-p-benzoquinone imine (NAPQI) is formed by phase I metabolism of 

paracetamol by predominately CYP3A4 [36-38]. Recently, Hui Ting and colleagues, used 

a glutathione trapping assay for NAPQI to determine that zebrafish generate the same 

reactive metabolite as humans. The same authors reported that the zebrafish CYP3A65, 

orthologue for the human CYP3A4, contributed to the formation of NAPQI, as well as the 

phase I hydroxylation of testosterone [39]. A
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Alderton and colleagues [40] confirmed that zebrafish embryos are able to perform the 

metabolic phase I reactions, oxidation, N-demethylation, O-demethylation, and N-

dealkylation as well as the metabolic phase II metabolic reactions sulfation and 

glucuronidation. The metabolites of three compounds were profiled: cisapride, 

verapamil and chlorpromazine. With cisapride, the mammalian phase I reactions 

(piperidine N-delakylation, fluorophenyl ring oxidation), and phase II reactions 

(glucuronidation resulting in glucuronide conjugates) were not observed in zebrafish 

[41]. However, following exposure of zebrafish to verapamil, a number of metabolites 

were formed by N-dealkylation and hydroxylation; these reactions are also present in 

mammals [42]. Three major metabolites of chlorpromazine, which are excreted in 

human urine, were also excreted by zebrafish; these metabolites were formed by 

hydroxylation, oxidation, N-demethylation, glucuronidation and sulfation. Alderton and 

colleagues also reported that zebrafish embryos were able to de-ethylate phenacetin, 

demethylate dextromethorphan and hydroxylate bupropion [40].  

The nuclear receptor, pregnane X receptor (PXR), is involved in the transcriptional 

regulation of cytochrome P4503A (CYP3A) and the multidrug resistance 1 transporter 

(MDR1) [43, 44]. Studies have confirmed that CYP enzymes can be induced and inhibited 

in zebrafish as reported in mammals. Bresolin and colleagues [45], studied the in vivo 

expression of PXR, CYP3A and MDR1 genes in the liver of zebrafish treated with the 

synthetic steroid pregnenolone 16α-carboninitrile (PCN), a potent PXR agonist [46]. The 

liver of the fish treated with PCN had a 1.9-fold increase in PXR followed by a 1.8-fold 

increase of CYP3A and 1.6-fold increase in the MDR1. This suggests that the regulation of 

PXR, CYP3A and MDR1 is conserved in zebrafish and similar to mammals [45].  A
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Tseng and colleagues [47], studied the effect of different drugs on CYP3A expression in 

zebrafish. CYP3A65 expression was upregulated in the embryo (84hpf) intestine by 

rifampicin and dexamethasone. In addition to the PXR pathway, the aryl hydrocarbon 

receptor (AHR2) has a role in the pathway that regulates gene expression and is 

activated by endogenous and exogenous compounds, such as drugs and xenobiotics  

[48]. AHR2 is present in different mammals such as human, mouse and rat and regulates 

expression levels of enzymes involved in phase I metabolism including CYP1A2, CYP1B1 

and aldehyde dehydrogenase 3A1 (ALDH3A1) and phase II metabolism including 

NAD(P)H dehydrogenase quinone 1 (NQO1), UDP glucuronosyltransferase 1A2 

(UGT1A2) and glutathione S-transferase alpha 1 (STA1). [49] Expression of CYP3A65 

was increased by exposing fish to 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), a AHR2 

ligand [50], during early embryonic stages and inhibition of AHR2 translation by 

antisense morpholino oligonucleotides inhibited both normal and TCDD-stimulated 

CYP3A65 transcription in embryonic intestine. These data suggest that AHR2 regulates 

CYP3A65 expression in zebrafish [47]. 

 

In summary, the zebrafish liver contains enzymes that metabolise a variety of 

endogenous and exogenous compounds in a similar fashion as humans. Additionally, 

these enzymes are subject to similar regulation mechanisms as reported in human. 

These findings support the potential of the zebrafish as animal model for DILI. 
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The zebrafish immune system is similar to rodents and humans 

Hepatic inflammation is commonly reported in various liver diseases, including DILI. 

Liver toxic drugs can have a direct effect on liver cells to release damage associated 

molecular patterns (DAMPS) that stimulate immune cell secretion of chemokines and 

cytokines. Various immune cells such as lymphocytes, neutrophils and macrophages can 

subsequently infiltrate the liver. This complex immune response has been widely 

described by several authors [51-53]. Additionally, specific genetic backgrounds can be 

a risk factor for idiosyncratic DILI in humans [54, 55]. For example, a variety of 

leukocyte antigen (HLA) haplotypes are associated with immunological drug 

hypersensitivity (e.g. amoxicillin/clavulanate and abacavir) [56-59]. 

Many similarities exist between the zebrafish and the mammalian immune system. 

Different studies of haematopoiesis in zebrafish have demonstrated that most, if not all, 

cell types of the human immune system have zebrafish counterparts, although the sites 

of origin differ [60]. There is a variation in the repertoire of chemokine receptors in 

different species, regardless of the specific evolutionary position. Despite this, the 

expression and function of orthologous chemokine receptors in lower and higher 

vertebrates are highly similar [61]. While the zebrafish metabolises drugs using similar 

pathways to humans, whether a similar immune response takes place with DILI in 

zebrafish is yet to be confirmed.  
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A range of drugs induce liver toxicity in zebrafish 

Different methods have been used to assess liver toxicity in zebrafish, for example, 

visual assessment of gross and microscopic morphological changes, serum enzyme and 

biomarker tests, hepatic excretory tests, and assessment of alterations in chemical 

constituents of the liver. 

Gross/subgross visual phenotypic assessment 

The ability to perform assays for liver toxicity with visually assessable phenotypic 

endpoints enables the transparent larval zebrafish to be used in high throughput 

screening. 

A comparative toxic screen of 50 different compounds classified to be liver toxic by USA 

Food and Drug Administration (FDA), and non-toxic controls, was performed in 

zebrafish embryos. The compounds were screened in a researcher-blinded fashion for 

evaluation of three specific phenotypic endpoints of liver toxicity: change in liver size, 

liver morphological abnormality and yolk sac retention. A sensitivity for liver toxic drugs 

of 86% and specificity for non-liver toxic drugs of 77% was reported which resulted in 

an overall correlation of 84% with mammalian in vivo data [62]. However, when 4 

compounds were excluded from the analysis because of low uptake into the embryo 

from the tank water, an increased sensitivity, specificity and overall predictability of 

97%, 77% and 91% was reported [63]. 

He and colleagues [64], exposed zebrafish embryos at 120hpf to 6 known mammalian 

liver toxic drugs (acetaminophen, aspirin, tetracycline HCl, sodium valproate, 

cyclophosphamide and erythromycin) and 2 non-toxic compounds (sucrose and biotin), 

after which 3 phenotypic visual endpoints of liver toxicity were quantitatively assessed. A
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These endpoints were: liver degeneration score, changes in liver size and shape, and 

yolk sac retention. These endpoints were easily measured under a light microscope 

without the need for dissection. All 6 liver toxic compounds induced liver degeneration, 

reduced liver size and delayed yolk sac retention which suggested this assay could be 

predictive for liver toxicity. Zhang and colleagues [65], have developed a transgenic 

zebrafish line (LiPan) that expresses a liver-specific fluorescent protein (DsRed) under 

the fabp10a promoter. They reported that the LiPan line could identify liver toxic drugs 

by  detecting changes in both liver red fluorescence and liver size in a dosage-dependent 

fashion. This was demonstrated by exposing the LiPan line to the liver toxic drugs 

paracetamol, aspirin, isoniazid and phenylbutazone. 

Liver histopathology  

Specific changes in zebrafish histology have been reported: North and colleagues 

reported necrosis after zebrafish were treated with paracetamol [66]. As described in 

other mammals, exposing zebrafish to hexachlorocyclohexane results in specific 

histological changes such as hepatic macrovesicular triglyceride droplets, glycogen 

depletion and the presence of club-shaped mitochondria [67]. Exposure of zebrafish to 

thioacetamide induces steatohepatitis, which is accompanied by the accumulation of 

fatty droplets and apoptosis [68]. Zebrafish exposed to ethanol display histological 

changes such as steatosis, as seen in alcoholic liver disease in human [69]. In conclusion, 

both embryonic and adult zebrafish are amenable to study of the histological changes 

that accompany different liver diseases, such as steatosis, apoptosis and necrosis. 

Circulating biomarkers 

Whilst zebrafish embryos offer a range of advantages that facilitate high throughput 

screening, adult zebrafish are needed if circulating biomarkers are to be measured. A
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Murtha and colleagues determined multiple serum biochemical values in zebrafish (±1 

year old) such as total bilirubin concentration (mean ± SD, 0.38 ± 0.1 mg/dl, range 0.2-

0.6) and serum alanine transaminase (ALT) activity (mean ± SD, 376 ± 25.3 U/L, range 

343 -410) [70]. However, in our laboratory we have reported lower ALT activity (range 

12-137 U/L) in serum from zebrafish (5-24 months old). In a paracetamol induced liver 

toxicity model in adult zebrafish, North and colleagues, demonstrated that ALT activity 

increased in zebrafish in a dose and time dependent fashion [66]. Injury was reduced by 

acetylcysteine treatment of paracetamol exposed zebrafish, as is the case in humans [4]. 

We have observed similar effects of paracetamol on zebrafish in our laboratory. In the 

same model we reported an increase in circulating microRNA-122 concentration, a new 

experimental biomarker for liver toxicity in human [71], in fish with liver injury [72]. 

Cox and colleagues reported that after paracetamol exposure, inhibition of the enzymic 

regulator S-nitrosoglutathione reductase (GSNOR) minimised liver toxicity in zebrafish. 

A GSNOR specific inhibitor improved survival, histology and lowered ALT activity 

through the cytoprotective Nrf2 pathway. Paracetamol toxicity studies in GSNOR-

deficient mice confirmed conservation of the hepatoprotective properties of S-

nitrosothiol signalling across vertebrates [73].This supports the zebrafish being a 

translational model of human paracetamol toxicity and biomarker research.  

Challenges in using zebrafish as a new model for DILI 

 

Although a substantial amount of research demonstrates the potential of zebrafish as a 

model of liver toxicity, there are a number of challenges. 

Zebrafish are often exposed to drug by dissolving the drug in the water which enables 

easy and fast drug administration, this is an advantage of the model that allows for high A
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throughput phenotypic screening, especially if transgenic lines are used [74]. The 

problem with this method of drug administration is that, although the concentration of 

drug in water is known, the amount taken up by the fish is imprecise and variable which 

limits the study of toxicokinetics. Berghmans and colleagues [75], studied the uptake of 

nine compounds in zebrafish embryos by dissolving the compounds in the water and 

found a large variability in the bioavailability of the different compounds. This was 

because the physiochemical properties of different compounds determine the 

absorption of the compounds into the fish through the gills and intestine, rather than 

simply their aqueous concentration. If required, drugs can be injected into the yolk sac 

of embryonic fish and this method can therefore quantify the administered dose at the 

expense of being time-consuming [76].  

The relationship between the drug’s lipophilicity and the amount of compound 

penetrating the zebrafish has been determined [75] however no single physiochemical 

property can accurately predict the uptake of different types of compounds [77]. 

Therefore, bioanalysis should be performed to correlate the amount of drug in the fish 

(the real body burden) and the observed toxic effects [78]. For instance, sodium 

valproate, a potential liver toxic drug in humans did not cause toxic effects in zebrafish 

embryos, possibly due to poor uptake of this drug. In contrast, valproic acid did cause 

liver toxicity in zebrafish embryos with higher blood concentrations, indicating 

increased uptake [62]. To overcome the possible problem of absorption, the amount of 

drug taken up by the fish can be determined by using radio-labelled compound and 

liquid scintillation counting (LSC) or radio high performance liquid chromatography 

(rHPLC). Other methods that determine the uptake of drug into fish include extracting 

the embryos with acetonitrile and then using LCMS-MS analysis [79], and determining 

the uptake of compounds by drawing blood from adult zebrafish and measure the 
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concentration of the compound in blood plasma. However, because of the low blood 

yields obtained from zebrafish, typically 3 to 20 µl of whole blood [80-84], 10 to 20 fish 

may have to be pooled. Zang and colleagues [84], described a recovery method that 

allows for serial blood sampling from adult zebrafish, but it takes one to two weeks for 

fish to recover normal haemoglobin values after taking a small blood sample of 2 µl. This 

delayed recovery may limit the application to toxicity studies. 

Goldstone and colleagues [27], demonstrated that 66 of the 88 studied CYP genes in 

zebrafish embryos have a differential level of expression during development between 3 

hpf through 48 hpf. This stresses the importance of age on toxicity when zebrafish 

embryos are used. In liver toxicity studies, embryos must be >3dpf [27]. Circadian 

rhythms will influence an organism’s susceptibility and responses to xenobiotic 

exposure. It is established that ATP binding cassette (ABC) transporters have a 

significant impact on bio-availability, metabolism and excretion of drugs. The gene 

expression of some transporters, including P-glycoprotein (Pgp), could be under 

circadian transcriptional regulation in zebrafish, as reported in mice [85]. Therefore, 

age-related and circadian-related gene expression profiles will impact on the relative 

higher amount of toxic metabolite, which might influence susceptibility. It is for this 

reason that standardisation of protocols when using embryonic stages are an important 

consideration in high throughput screens. 

Conclusion 

Early identification of liver toxic compounds would accelerate the drug discovery and 

development process and lower the enormous costs. The zebrafish appears to be a 

model that may complement established models. However, before the model can be 

applied on wider scale more validation is needed to confirm the translatability of the A
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model to humans. This may include testing established human liver toxic and non-liver 

toxic compounds, comparing dose responses between fish and humans and developing 

translational biomarkers that bridge between fish, rodents and humans. Furthermore, 

the immunological response observed with DILI in humans has to be studied in 

zebrafish to confirm mechanistic similarity. Ultimately, use of the zebrafish as model for 

DILI is promising and may enable better decision-making in the early stages of drug 

discovery before a compound is tested in higher mammals. 
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Legends to tables/figures 

Table 1  Comparative advantages of using zebrafish and mice to model DILI 

 

Table 2 Specific metabolic drug reactions reported in zebrafish compared with 

humans.  

 

Figure 1  Schematic transverse representations of mammalian and zebrafish liver 

architecture (A) The mammalian liver lobule. Arranged with plates of 

hepatocytes radiating outward from a central vein (CV). At the corners of 

each lobule are portal tracts (PT) containing a portal vein (PV), hepatic 

artery (HA) and a bile duct (BD). (B) Mammalian bilayered hepatocyte 

plate. Bicellular canaliculi (CA) are located adjacent to the hepatocytes (H) 

in the hepatocyte plate (HP), a basal hepatocyte membrane allows 

transport of oxygen, proteins and different macromolecules to the 

hepatocytes. Blood enters the liver through the portal vein and hepatic 

artery after which it enters the central vein through sinusoid vessels, 

located between the plates. (C) The zebrafish liver architecture. The portal 

vein (PV), hepatic artery (HA), bile ducts (BD), hepatocyte tubule (HT) and 

the central vein (CV) are scattered throughout the parenchyma. (D) 

Zebrafish hepatocytes (H) are arranged in tubules around small bile ducts, 

which receive bile from the hepatocyte canaliculi (CA). Sinusoids are A
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located at the periphery of these tubules (E) Histological image of male 

zebrafish liver (H&E staining at x200). Note the presence of several biliary 

ducts (arrows), bile ductules (arrowheads), and blood vessels (*) with lack 

of lobular arrangement. (F) Histological image of female zebrafish liver 

(H&E staining at x400). This high power image displays sinusoidal spaces 

between hepatocytes (arrows), and an instance of the tubular 

arrangement of hepatocytes (encircled), which is frequently not visible 

histologically. Note the difference in staining of male and female zebrafish 

liver. 
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Advantages of zebrafish Advantages of mice 

Optically large and transparent embryos Characterized inbred strains, including knock-out and knock-in strains 

Ex utero development Complement of all mammalian organs and physiological similarity to humans 

Similar cellular and sub-cellular processes to humans Easier to draw blood than fish 

Rapid development of liver ~72-96 hpf Feasible to perform pharmaco/toxico kinetic studies 

High fecundity (~200 eggs/female/week) Genome duplication of fish results in multiple copies of genes 

Large numbers of fish can be easily maintained  

Embryonic fish can survive up to 7 days without a Cardiovascular system  

Low overall cost  

Easy drug delivery by dissolving in the tank water, with possibility of drug delivery by microinjection  

Feasibility of high throughput screens  

High n numbers available per study, allowing improved statistical analysis  

Lower order mammal (in line with 3R principle) 

 

Table 1 

A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

29 

 

Drug metabolism in zebrafish     

Compound Reaction observed in zebrafish Similar to human Human P450 isotype  Ref 
Ibuprofen Hydroxylation Yes CYP2C8/9 [33] 

Paracetamol Hydroxylation Yes CYP3A4 [37] 

Testosterone Hydroxylation Yes CYP3A4 [37] 

Cisapride Sulphate conjugation No CYP3A4 [38] 

Verapamil N-dealkylation and Hydroxylation Yes CYP3A4, CYP2C8/9, CYP1A2 [38] 

Chlorpromazine Hydroxylation, Oxidation, N-Demethylation, 
Glucuronidation and Sulfation 

Yes CYP1A2, CYP2D6 [38] 

Phenacetin De-ethylation Yes CYP1A2 [38] 

Dextromethorphan Demethylate Yes CYP2D6 [38] 

Bupropion Hydroxylation Yes CYP2B6 [38] 

 

Table 2 
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