

Edinburgh Research Explorer

Rapid development and adjoining of transient finite element
models

Citation for published version:
Maddison, JR & Farrell, PE 2014, 'Rapid development and adjoining of transient finite element models'
Computer methods in applied mechanics and engineering, vol. 276, pp. 95–121. DOI:
10.1016/j.cma.2014.03.010

Digital Object Identifier (DOI):
10.1016/j.cma.2014.03.010

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer methods in applied mechanics and engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1016/j.cma.2014.03.010
https://www.research.ed.ac.uk/portal/en/publications/rapid-development-and-adjoining-of-transient-finite-element-models(a7781257-8ac1-4cd2-b354-a50e30e1551d).html

Rapid development and adjoining of transient finite element models

J. R. Maddisona,c,∗, P. E. Farrellc,d

aSchool of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,
Edinburgh EH9 3JZ, United Kingdom

bAtmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford
OX1 3PU, United Kingdom

cMathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
dCenter for Biomedical Computing, Simula Research Laboratory, 1325 Lysaker, Norway

Abstract

Recent advances in high level finite element systems have allowed for the symbolic repre-
sentation of discretisations and their efficient automated implementation as model source
code. This allows for the extremely compact implementation of complex non-linear mod-
els in a handful of lines of high level code. In this work we extend the high level finite
element FEniCS system to introduce an abstract representation of the temporal discreti-
sation: this enables the similarly rapid development of transient finite element models.
Efficiency is achieved via aggressive optimisations that exploit the temporal structure,
such as automated pre-assembly and caching of forms, and the robust re-use of matrix
factorisations and preconditioner data. The resulting models are as fast or faster than
hand-optimised finite element codes. The high level representation of the system re-
mains extremely compact and easily manipulated. This structure is exploited to derive
the associated discrete adjoint model automatically, with the adjoint model inheriting
the performance advantages of the forward model. Combined, this provides a system for
the rapid development of efficient transient models, together with their discrete adjoints.

Keywords: automated code generation, finite element method, discrete adjoint,
Navier-Stokes, barotropic vorticity, FEniCS

1. Introduction

1.1. Automated code generation in computational science

Automated code generation is a crucial tool in computational science, as it allows
scientists and engineers to express the structure of an algorithm in notation close to its

∗Corresponding author
Email addresses: j.r.maddison@ed.ac.uk (J. R. Maddison), patrick.farrell@maths.ox.ac.uk

(P. E. Farrell)
Telephone: +44 131 6505036 (J. R. Maddison)

Preprint submitted to Elsevier April 30, 2014

mathematical formulation. It raises the level of abstraction at which computers may be
used, shields programmers from low level details of how a solution is to be obtained on
a particular machine, and allows for the solution of problems which would otherwise be
too costly or too complex to program. For example, in the preliminary design document
for the FORTRAN programming language, Backus [1] writes:

FORTRAN will comprise a large set of programs to enable the IBM 704 to
accept a concise formulation of a problem in terms of a mathematical notation
and to produce automatically a high speed 704 program for the solution of the
problem . . . [S]uch a system will make experimental investigation of various
mathematical models and numerical methods more feasible and convenient
both in human and economic terms.

In the decades since this same motivation of reflecting mathematical structure in code
led to the development of other environments in which higher level problems may be
expressed, such as the wildly successful MATLAB environment for numerical linear
algebra [2].

The FEniCS project [3] aims to develop a software environment for the automated
solution of partial differential equations (PDEs) via the finite element method. In partic-
ular, it allows the user to specify a variational form representation of the model equations
in the Unified Form Language (UFL, [4, 5]), which closely mimics the mathematical no-
tation in which finite element discretisations may be written. The UFL representation
of a problem is automatically compiled by a dedicated form compiler [6] into efficient
C++ code, much as FORTRAN code is compiled by a dedicated compiler into efficient
machine code.

The UFL abstraction for the spatial discretisation of PDEs has a number of impor-
tant advantages. As the mathematical structure of the PDE is available for analysis,
important equation-specific optimisations may be performed that low level compilers
cannot automate, or that would be too laborious to implement by hand [7, 8]. UFL is
remarkably compact: a finite element discretisation that might take thousands or tens
of thousands of lines of FORTRAN or C++ code to implement can be cleanly expressed
in just a handful of lines of UFL. For example, even the complicated elliptic relaxation
turbulence model [9] can be represented in eleven lines of UFL code (ignoring boundary
conditions) [10]. As UFL expresses what problem is to be solved, without specifying how
it is to be solved, the system is free to adapt the implementation to the hardware, includ-
ing GPUs [11, 12, 13]. Lastly, the ability to analyse the mathematical structure of the
equations vastly simplifies the task of algorithmic differentiation, and allows for the fully
automated derivation of the adjoint model associated with a given forward model [14];
these adjoint models can in turn be used to automatically solve PDE-constrained opti-
misation problems [15] and conduct generalised stability analyses [16]. Adjoint models
will be discussed further in section 1.2.

However, UFL lacks a native representation for specifying time-dependent problems:
in general the user must perform the temporal discretisation by hand and implement it
as a sequence of spatial problems. With this manual approach the FEniCS system is

2

unable to automatically perform optimisations that exploit the temporal structure of the
discretisation, such as the pre-assembly and caching of terms that occur repeatedly, and
the reuse of preconditioners or factorisations in the linear solvers. These optimisations
are crucial for efficient implementations of timestepping models, but the user must add
them by hand. Some limited support for special types of time dependent problems within
the FEniCS system is in development – here we address the general case.

Aside from the unnecessary labour, the absence of temporal abstraction has a major
disadvantage: the implementation of the temporal optimisations breaks the spatial ab-
straction. The model can no longer be cleanly expressed as a list of variational problems
to be solved; the user must manually pre-assemble certain terms outside of the time
loop, assemble other terms inside the time loop, and express the problem at the level of
matrices and vectors. Firstly, this loss of structure makes the code significantly harder
to read, understand, debug and modify. The expression of the problem and guidance for
how it should be solved have been irretrievably interwoven. Secondly, it damages per-
formance portability: for example, on a GPU it may be preferable to recompute terms,
rather than cache them, but the user has irrevocably committed to one strategy or the
other. Thirdly, it significantly hampers the automated derivation of adjoint models, as
the variational structure of the time-dependent problem must be pieced together from
the lower-level implementation.

In this paper we introduce an abstraction for expressing time-dependent models,
and apply this methodology in combination with the FEniCS system. This temporal
abstraction allows for the high level expression of both the spatial and temporal struc-
ture of the problem, and resolves all the aforementioned disadvantages. The user can
specify the spatial discretisation in the native UFL format, while applying the temporal
optimisations necessary for efficiency. In particular, the task of adjoint derivation of
timestepping models is greatly simplified, and the entire suite of temporal optimisations
may be applied to the adjoint model.

For all its advantages, high-level systems that rely on automated code generation also
come with drawbacks. Such systems are more complex, with more layers of abstraction,
and can thus be less robust and harder to debug. There is a trade-off between the
flexibility and generality of lower-level approaches, and the rapid speed and ease of
development associated with higher-level approaches; such systems usually lack escape
hatches to implement algorithms not expressible in the high-level abstraction. However,
the advantages of using high-level systems often greatly outweigh the disadvantages,
especially in the typical case where the main constraint on the development of scientific
software is the availability of programmer time.

1.2. Adjoint models

The topic of adjoints is fundamental to the theory of differential and integral equa-
tions [17, pg. 147], and connects to almost everything in the computational mathematics
of PDEs. To mention some examples of relevance to the computational physicist, adjoints
are central to a priori and a posteriori error estimation [18, 19, 20, 21, 17], sensitivity
studies [22, 23], PDE-constrained optimisation [24, 25, 26, 27, 28], non-normal stability
analysis [29, 30, 31], and PDE-constrained Bayesian inference [32].

3

A forward model maps some inputs (initial conditions, boundary conditions, physi-
cal properties, etc.) to outputs (solution fields, and functionals of those solution fields),
generally in a non-linear manner. Its linearisation (the so-called tangent linear model)
linearly propagates the effect of a single perturbation in an input to the resulting per-
turbations in all outputs. This can be used to compute directional derivatives – a
generalisation of the gradient, defining the derivative of a functional with respect to
arbitrary perturbations in input parameter functions (see Appendix B). The Hermitian
transpose of the linearisation (the so-called adjoint model) linearly propagates causality
in the transpose sense, from a single perturbation in an output back to the perturbations
in the many inputs that caused it. Intuitively, the tangent linear model computes the
many effects of a single cause, while the adjoint model computes the many causes of a
single effect.

Developing adjoint models is widely considered to be very difficult, especially for
time-dependent models. This has been a major impediment to the widespread applica-
tion of the advanced techniques that depend on adjoints. For example, Giles and Pierce
[33] state:

Considering the importance of design to aeronautical engineering, and indeed
to all of engineering, it is perhaps surprising that the development of adjoint
CFD codes has not been more rapid . . . [I]t seems likely that part of the
reason is its complexity.

This difficulty is one of the main motivations for the field of algorithmic differentiation
(AD; see, e.g., [34]).

A core aim of AD is to enable the automated derivation of adjoint models from the
forward model source code, for example by means of a source-to-source tool such as
TAPENADE [35], TAF [36], or OpenAD [37]. These tools proceed by considering each
elementary operation performed by the forward model, differentiating each in turn, and
composing the result with the chain rule. In this context, an “elementary operation”
refers to the mathematical functions available natively in C or FORTRAN, such as a
single addition, multiplication, or trigonometric function evaluation. This approach has
the significant benefit that, given a forward model which can be processed by the AD
tool, an adjoint model can (in principle) be generated automatically, without the need
to differentiate and adjoin the entire model by hand. AD has seen a diverse range of
successful practical applications, including for example in engineering design [38, 39] and
large-scale ocean state estimation [40, 41]. However, the black-box line-by-line applica-
tion of AD without any consideration of the mathematical structure of the problem can
be too inefficient for practical use [42]. In addition the implementation of an adjoint
model is significantly hampered by the need to access forward model data in the reverse
order to which it was computed, necessitating the use of data checkpointing and recovery
strategies.

In recent work, an alternative higher level approach has been proposed [14], imple-

4

mented in the dolfin-adjoint library1. Instead of interpreting the elementary instructions
appearing in low level source code such as C or FORTRAN, the elementary instructions
are reinterpreted at the highest possible level of mathematical abstraction; in partic-
ular, in the finite element case, this means interpreting the program as a sequence of
variational problems. This allows for the exploitation of the mathematical structure of
the model, which has several key advantages: the adjoint models are derived with the
minimum of user intervention, are measured to closely approximate optimal theoretical
efficiency2, parallelise naturally, and make use of the optimal checkpointing strategy of
Griewank and Walther [43].

However for time dependent problems the variational structure of a finite element
model may be obscured. If a structured discretisation is applied in time then the time
dependent model consists of a very large number of individual spatially discrete vari-
ational problems. Temporal optimisations may be applied which exploit the resulting
temporal structure, but the optimisations easily obscure the high level representation of
the model equations. For example, it is often far more efficient to cache matrices, rather
than re-assemble the variational forms used to describe them; thus, the equations must
be written in terms of linear algebra operations, rather than in variational form. The use
of general linear algebra operations allows for a more efficient model implementation,
but requires a very general AD tool if an adjoint model is to be derived. Restriction to
variational forms prohibits the use of specific optimisation strategies, but can be adjoined
via direct symbolic manipulation of equations.

This issue strongly motivates the development of an abstraction for time dependent
problems which retains the variational structure of the spatially discrete model equations,
includes a description of the time discretisation, and permits the application of aggressive
temporal optimisations. Such an approach can ensure an efficient model implementation
while retaining a high level structure which can be manipulated and adjoined via the
methodology of Farrell et al. [14].

Section 2 discusses the structure of a transient model and its discrete adjoint, and
uses this discussion to motivate the elements required in order to provide a high level
representation of model timestepping. Section 3 describes the implementation of a tool
enabling such a high level representation, building on top of the FEniCS system. Section
4 provides two more complex examples, and the paper concludes in section 5.

2. Structure of timestepping models

In this section the high level structure of a generic timestepping model is outlined. In
particular a timestepping model is broken into three key stages: initialisation, timestep-
ping, and finalisation. Each of these stages can be further sub-divided into discrete equa-
tions. Crucially, the timestepping stage contains a regular repeating structure, which

1http://dolfin-adjoint.org/
2This is an idealised estimate of how fast the adjoint model can be, by counting how many linear

systems the forward and adjoint models must assemble and solve.

5

has a compact high level representation and is amenable to optimisation strategies.
Section 2.1 discusses the general structure of a timestepping model, and section 2.2

discusses the structure of the associated discrete adjoint model. Section 2.3 uses these
discussions to identify the functionality required for a high level representation of a
timestepping model.

2.1. Block structure of a timestepping model

Let x be the entire solution of a time dependent numerical model. This solution
vector contains the values of all fields at all times. Then the discrete numerical model
may in general be written as:

A (x)x = b (x) , (1)

where the left-hand-side matrix A (x) and right-hand-side vector b (x) are, if the model
is non-linear, dependent upon the solution vector x. Note that equation (1) is a purely
conceptual representation — typically, the one-shot construction of the entire system (1)
is impractical. Instead, the causal structure of the time-dependent model is exploited:
later values depend on earlier ones but, for an initial value problem, not vice versa.
Hence for a time-dependent initial value problem the solution vector x may always be
defined so that the matrix A (x) is block lower-triangular. It is assumed throughout the
remainder of this section that such a definition for x is used.

The entire system (1) may now be divided into a number of coupled sub-systems,
corresponding to the division of x into sub-vectors, with the corresponding division of
A (x) into distinct matrix blocks and b (x) into corresponding sub-vectors. In a numeri-
cal model these sub-systems are solved in sequence via forward substitution. The entire
model system may, for example, be divided into sub-systems corresponding to individual
discrete equations solved at individual time levels. The system may, alternatively, be
divided into a very large number of sub-systems corresponding to the individual ele-
mentary instructions appearing in model source code. The fundamental approach used
in this article is that the model system should be divided into the largest sub-systems
which can be conveniently defined and manipulated. Automated code generation allows
a numerical model to be described and implemented via the specification of discrete
model equations, and dolfin-adjoint manipulates such a description of a finite element
model to yield the associated discrete adjoint — this corresponds to the former division
of the model system into relatively large sub-systems corresponding to model equations.
On the other hand, implementation in a lower level language such as C or FORTRAN
requires a numerical model to be described and implemented via the specification of in-
dividual elementary instructions, and algorithmic differentiation tools manipulate such
an implementation to yield the associated discrete adjoint — this corresponds to the
latter division of a model into a very large number of small sub-systems.

We initially consider the division of the model system into even larger sub-systems,
corresponding to three distinct stages: initialisation, timestepping, and finalisation. It
is assumed that every timestep has an identical form: the same equations are solved,
with different inputs (and possibly different parameter values) at every timestep. The

6

timestepping stage therefore has a regular repeating structure, with the structure poten-
tially repeated a very large number of times [44]. The timestepping stage is thus divided
into distinct timesteps. Each timestep is then further divided into two distinct stages:
the timestep variable solve stage, in which new field values are computed using old field
values, and the timestep variable cycle stage, in which old field values are replaced using
the new field values. The timestep solve stage comprises the discrete model equations,
while the timestep cycle stage consists of simple assignments. In principle the introduc-
tion of a timestep cycle stage is not required. However, this reflects the way in which
timestepping models are often written – in a timestep old field data are used to compute
new field data, and then the old field data are updated ahead of the next timestep.

Let xn be a sub-vector of x corresponding to data associated with timestep n, with
x0 corresponding to the initial condition and xN corresponding to the final solution.
Let xN,× correspond to the solution after the finalisation stage. The existence of a
finalisation stage allows for the one-time calculation of final model diagnostics. Then
the initialisation stage takes the form:

A0
D

(
x0
)
x0 = b0

(
x0
)
, (2)

for some matrix A0
D

(
x0
)

and vector b0
(
x0
)

(which may depend upon the solution vector
x0 if the initialisation equation is non-linear). The timestep variable solve stage takes
the form:

MD

(
xn, xn+1,+

)
xn+1,+ = −MO

(
xn, xn+1,+

)
xn + c

(
xn, xn+1,+

)
, (3)

where xn+1,+ are the newly computed field values, MD

(
xn, xn+1,+

)
and MO

(
xn, xn+1,+

)
are some matrices, and c

(
xn, xn+1,+

)
is some vector (noting that the matrices and this

vector may again depend upon the solution vectors in a non-linear model). The timestep
variable cycle stage takes the form of a simple assignment:

xn+1 = xn+1,+. (4)

Hence, in this notation, xn corresponds to the old field values, used to compute the new
field values xn+1,+. The finalisation stage takes the form:

AND
(
xN , xN,×

)
xN,× = −ANO

(
xN , xN,×

)
xN + bN

(
xN , xN,×

)
, (5)

where AND
(
xN , xN,×

)
and ANO

(
xN , xN,×

)
are some matrices and bN

(
xN , xN,×

)
is some

7

vector. The model system therefore takes the form of (1), with:

A =



A0
D

MO MD

−I I
MO MD

−I I
. . .

MO MD

−I I
ANO AND


,

x =



x0

x1,+

x1

x2,+

x2

...
xN,+

xN

xN,×


, b =



b0

c
0
c
0
...
c
0
bN


, (6)

where I is an identity matrix, and where explicit dependencies have been dropped for
clarity.

Hence, with this sub-division of a timestepping model, the matrix A takes a block bi-
diagonal lower-triangular form. The initialisation equation (2), timestep solve equation
(3), and finalisation equation (5), can now be further subdivided, for example by division
into individual discrete model equations. The timestepping abstraction library, described
in section 3, provides a means of describing the inherent block structure captured by
(6).

2.2. Block structure of an adjoint model

Let the model depend upon a number of parameters, encapsulated by the vector m.
Define a functional J (x (m) ,m), depending upon the model solution and the parameters
m, where the solution itself depends upon the parameters m. Then the total derivative
of the functional with respect to a particular parameter mi is defined:

dJ

dmi
= lim

δmi→0

J (x (. . . ,mi + δmi, . . .) , . . . ,mi + δmi, . . .)− J (x (. . . ,mi, . . .) , . . . ,mi, . . .)

δmi
.

(7)
It follows directly [25] that:

dJ

dmi
=

∂J

∂mi
− ∂F

∂mi
· λ, (8)

8

where F (x,m) = A (x,m)x− b (x,m), and λ is the solution of the adjoint model equa-
tion: [

∂F

∂x

]∗
λ =

[
∂J

∂x

]∗
, (9)

where (. . .)∗ denotes the Hermitian transpose. If the adjoint model solution λ is known
then one can compute the derivative with respect to many parameters, simultaneously,
via (8).

The adjoint model system associated with a timestepping forward model therefore
takes the form:

[
∂F

∂x

]∗
=



B0
D PO

PD −I
I PO

PD −I
I PO

. . .

I BN
O

BN
D


,

λ =



λ0

λ1,+

λ1

λ2,+

λ2

...
λN

λN,×


,

[
∂J

∂x

]∗
=



[
∂J
∂x0

]∗
0[
∂J
∂x1

]∗
0[
∂J
∂x2

]∗
...[

∂J
∂xN

]∗[
∂J

∂xN,×

]∗


, (10)

with:

B0
D =

[
∂

∂x0

(
A0
Dx0 − b0

)]∗
, (11a)

PO =

[
∂

∂xn
(
MDx

n+1,+ +MOx
n − c

)]∗
, (11b)

PD =

[
∂

∂xn+1,+

(
MDx

n+1,+ +MOx
n − c

)]∗
, (11c)

BN
O =

[
∂

∂xN
(
ANDx

N,× +ANOx
N − bN

)]∗
, (11d)

BN
D =

[
∂

∂xN,×
(
ANDx

N,× +ANOx
N − bN

)]∗
, (11e)

and where explicit dependencies have again been dropped for clarity.
Hence, with this sub-division of a timestepping model, the adjoint model matrix

[∂F/∂x]∗ takes a block bi-diagonal upper-triangular form. If the forward model initiali-
sation equation (2), timestep solve equation (3), and finalisation equation (5), are now

9

further subdivided, for example by division into discrete model equations, then the ad-
joint model blocks (11) can be constructed by differentiating the equations with respect
to their dependencies, and then adjoining the resulting matrices.

In particular, if the discrete model equations correspond to finite element discreti-
sations, then the UFL library supplies the symbolic manipulation tools required to con-
struct components of the adjoint model blocks (11). This is precisely the methodology
applied for more general finite element models in Farrell et al. [14]. However here, with
the specification of a structure for a timestepping model, three key simplifications can be
applied. First, only a reduced number of model equations need be considered, and the
repeating structure of the timestepping model can then be exploited. Second, no “long
range” dependencies are permitted – for example each forward timestep solve equation
depends only upon xn and xn+1,+, and not on field data from any earlier timesteps.
Third, many adjoint model blocks appearing in the adjoint system matrix [∂F/∂x]∗ are
known to be identity matrices, associated with the timestep variable cycle stage. Com-
bined, these properties significantly simplify the implementation of the methodology of
Farrell et al. [14] when applied specifically to a timestepping model.

2.3. Requirements for a high level timestepping abstraction

Two key elements are required in order to construct a high level representation
for a timestepping model. First, one must be able to describe the structure of the
system represented by (6). In particular one must be able to describe the equations
which comprise the initialisation, timestep solve, and finalisation stages, and to describe
the sub-vectors xn and xn,+. Second, in order for certain time discretisation specific
optimisations to be applied, one must be able to label certain model data, such as
parameters or boundary conditions, as time independent. For example an equation
term can be identified as time independent, and therefore amenable to caching, only
if the parameters on which it depends are themselves known to be time independent.
Explicit labelling of time independent data facilitates such analysis.

In order for a discrete adjoint model to be derived and implemented automatically
a third key requirement is that equation dependencies should be easily identified, and
that the timestepping model must be easily manipulated. It must be possible to perform
the necessary differentiation and adjoining operations required to construct the adjoint
model system represented by (10). It is also essential that adjoint model dependencies
can be easily identified and recorded, so that forward model data can be checkpointed
and regenerated as required by an adjoint model calculation.

3. A high level representation for timestepping models

In the previous section the conceptual structure of a timestepping model, and its
associated discrete adjoint model, has been outlined. In this section the high level
representation and automated implementation of a timestepping finite element model is
described. The principles considered are general – one could consider the addition of a
timestepping abstraction to a fairly general class of automated code generation tools.
Here the specific application to the FEniCS system is considered.

10

Section 3.1 describes the implementation of a transient finite element model using
only native FEniCS functionality, and highlights some issues that arise. Section 3.2
introduces a timestepping abstraction library, which adds a high level representation
of a model time discretisation to the FEniCS system, and section 3.3 discusses the
automated application of optimisations which exploit the temporal structure. Section
3.4 describes how such a representation may be used to derive an associated discrete
adjoint model automatically and section 3.5 describes the automated verification of the
derived discrete adjoint model.

3.1. Transient finite element models and DOLFIN

DOLFIN is a front end for the FEniCS system. This library provides the tools re-
quired to describe finite element spatial discretisations, and uses other tools in the FEn-
iCS system to implement these discretisations as efficient working model code. However,
no means of describing a general time discretisation is provided, and time dependent
problems are typically constructed by hand. In this article only the Python interface
to DOLFIN is considered. For complete documentation of DOLFIN and the FEniCS
system, see Logg et al. [3].

As an exception, some limited support for the solution of time dependent problems
within DOLFIN is in development. This adds functionality for special types of time
dependent problems, including ODEs and the application of Runge-Kutta discretisa-
tions to a single time-dependent PDE (although the latter cannot be used to construct
the model shown in this section). Here, instead, a general approach is sought, which
can be used to construct complex time dependent models, and allows for the inclusion
of multiple coupled time dependent equations which possibly have differing temporal
discretisations.

Consider the 1D advection-diffusion problem for a tracer T :

∂tT + u∂xT = κ∂xxT on x ∈ (0, 1) , (12a)

T = T0 at t = 0, (12b)

T = 1 at x = 0, (12c)

where u > 0 and κ is the diffusivity. Let the space Ω = (0, 1) be covered by a set of
cells, and equip these cells with degree one Lagrange basis functions φi. Thus construct
a P1 continuous Galerkin spatial discretisation with a simple streamline-upwind Petrov-
Galerkin (SUPG) method in space [45, 46], and a Crank-Nicolson discretisation in time
[47]: ∫ 1

0
ψiT

δ,0dx =

∫ 1

0
ψiT0dx, (13a)

∫ 1

0

(
ψi +

1

2
∆x

u

|u|
∂xψi

)[
1

∆t

(
T δ,n+1 − T δ,n

)
+ u∂xT

δ,n+ 1
2

]
dx

=
[
κψi∂xT

δ,n+ 1
2

]1

0
−
∫ 1

0
κ∂xψi∂xT

δ,n+ 1
2dx. (13b)

11

Here ∆x is the cell size, ∆t is the timestep size, T δ,n is the solution at time level n, and
T δ,n+ 1

2 = 1
2

(
T δ,n + T δ,n+1

)
. The test functions are chosen so that ψi ∈ {φi : φi|x=0 = 0},

and the T δ,n are defined via T δ,n = φ0 +
∑

i ψiT̃
n
i , where φ0|x=0 = 1. The Dirichlet

boundary condition (12c) is thus applied in the strong sense. A “no boundary condition”
outflow boundary condition is applied [48].

Figure 1 shows a complete and functional implementation of this model in DOLFIN
using a very high level representation. The discrete initialisation equation (13a) and
timestep equation (13b) can be clearly identified. Note also that this model divides into
an initialisation stage (consisting of one discrete equation), a timestep solve stage (con-
sisting of one discrete equation) and a timestep variable cycle stage (in which variables
corresponding to T δ,n and T δ,n+1 are swapped). This example illustrates how, when
writing a model using DOLFIN, a time discretisation must typically be constructed by
hand. Moreover, the implementation fails to exploit the structure inherent in the time
dependent problem.

Figure 2 shows a more practical implementation, using only native FEniCS func-
tionality. Here, data which are known to be time independent are computed ahead of
time, cached, and reused at every timestep. A linear solver caching option is also en-
abled. The timestep loop in this latter, optimised, implementation is much faster than
the earlier very high level implementation3. However this illustrates a key issue with
the manual construction of a time discretisation in this fashion — the optimisations
required to ensure an efficient implementation of the time discretisation break the high
level representation of the spatial discretisation. In this example discrete equations are
replaced with lower lever linear algebra operations. For more complex examples, with
multiple fields, equations, and with a mixture of time dependent and time independent
data, the application of time discretisation specific optimisations leads to additional code
complexity, increasing the gap between the mathematical notation and the source code
implementation.

3.2. Adding a time discretisation abstraction to DOLFIN

In this section a new Python library is described. This new timestepping abstrac-
tion library builds upon the functionality of the DOLFIN library, and makes extensive
use of the FEniCS system. In particular all symbolic manipulation, finite element as-
sembly, and interfacing with linear solver libraries is handled by the FEniCS system.
The timestepping abstraction library manages, analyses, and optimises individual model
equations, and calls the DOLFIN library and other FEniCS tools as required in order
to form a functioning timestepping model. The library source code is available as part
of the dolfin-adjoint project4.

3In this extremely small example usually negligible overheads have a significant cost, and hence the
utility of a direct performance comparison here is limited. Explicit performance numbers are provided
for more complex examples in section 4.

4http://dolfin-adjoint.org/

12

from dolfin import *

The velocity, diffusivity, and timestep size

u = as_vector([Constant(1.0)])

kappa = Constant(0.02)

dt = Constant(1.0 / 64.0)

Model mesh and function space

mesh = UnitIntervalMesh(32)

space = FunctionSpace(mesh, family = "Lagrange", degree = 1)

test = TestFunction(space)

Two functions, representing T on two time levels

T_n, T_np1 = Function(space), Function(space)

The initial condition

T_0 = interpolate(Expression("x[0] < DOLFIN_EPS ? 1.0 : 0.0"), space)

Define and solve the initialisation equation

T_bc = DirichletBC(space, 1.0, "on_boundary && x[0] < DOLFIN_EPS")

solve(inner(test, T_n) * dx - inner(test, T_0) * dx == 0,

T_n, T_bc, solver_parameters = {"linear_solver":"lu"})

32 timesteps

for i in range(32):

Define and solve the timestep solve equation

T_h = 0.5 * (T_n + T_np1)

test_supg = test \

+ 0.5 * CellSize(mesh) * dot(u, grad(test)) / sqrt(dot(u, u))

solve((1.0 / dt) * inner(test_supg, T_np1 - T_n) * dx \

+ inner(test_supg, dot(u, grad(T_h))) * dx \

- inner(test, kappa * dot(grad(T_h), FacetNormal(mesh))) * ds

+ inner(grad(test), kappa * grad(T_h)) * dx == 0,

T_np1, bcs = T_bc, solver_parameters = {"linear_solver":"lu"})

Perform the timestep variable cycle

T_np1, T_n = T_n, T_np1

Figure 1: A complete and functional finite element model for the advection-diffusion problem (12)
written using DOLFIN, with a discretisation corresponding to (13). The model is integrated from an
initial condition corresponding to T̃ 0

i = 0, with u = 1, κ = 0.02, and ∆x = 1/64, for 0.5 units of time
with an advective Courant number of 0.5. This implementation applies no time discretisation specific
optimisations.

13

from dolfin import *

The velocity, diffusivity, and timestep size

u = as_vector([Constant(1.0)])

kappa = Constant(0.02)

dt = Constant(1.0 / 64.0)

Model mesh and function space

mesh = UnitIntervalMesh(32)

space = FunctionSpace(mesh, family = "Lagrange", degree = 1)

test, trial = TestFunction(space), TrialFunction(space)

Two functions, representing T on two time levels

T_n, T_np1 = Function(space), Function(space)

The initial condition

T_0 = interpolate(Expression("x[0] < DOLFIN_EPS ? 1.0 : 0.0"), space)

Define and solve the initialisation equation

T_bc = DirichletBC(space, 1.0, "on_boundary && x[0] < DOLFIN_EPS")

solve(inner(test, T_n) * dx - inner(test, T_0) * dx == 0,

T_n, T_bc, solver_parameters = {"linear_solver":"lu"})

Pre-assemble timestep solve matrices

test_supg = test \

+ 0.5 * CellSize(mesh) * dot(u, grad(test)) / sqrt(dot(u, u))

M_dt = assemble((1.0 / dt) * inner(test_supg, trial) * dx)

N = assemble(inner(test_supg, dot(u, grad(trial))) * dx

- inner(test, kappa * dot(grad(trial), FacetNormal(mesh))) * ds

+ inner(grad(test), kappa * grad(trial)) * dx)

M_lhs = M_dt + 0.5 * N; T_bc.apply(M_lhs)

M_rhs = M_dt - 0.5 * N

Define an LU solver and enable a caching option

solver = LUSolver()

solver.parameters["reuse_factorization"] = True

32 timesteps

for i in range(32):

Solve the timestep solve equation

b = M_rhs * T_n.vector()

T_bc.apply(b)

solver.solve(M_lhs, T_np1.vector(), b)

Perform the timestep variable cycle

T_np1, T_n = T_n, T_np1

Figure 2: A complete and functional finite element model for the advection-diffusion problem (12) written
using DOLFIN, with a discretisation corresponding to (13), with the same parameters as the model in
figure 1. This implementation applies time discretisation specific optimisations, with static data cached,
and a linear solver optimisation option enabled.

14

The library provides the functionality outlined in section 2.3. Specifically, time-
independent data may be declared:

kappa = StaticConstant(0.02)

In this example the variable kappa is defined to be a time-independent constant value.
Constant fields and boundary conditions may be similarly declared. This information
can then be used to optimise the implementation of the timestepping model.

Second, time dependent fields may be defined:

levels = TimeLevels(levels = [n, n + 1], cycle_map = {n:n + 1})

T = TimeFunction(levels, space, name = "T")

In this example a time-dependent field T is defined, which exists on a given function space
space and on the specified time levels. The variable n is used as an abstract handle to
indicate an arbitrary timestep. In this example, the field T is defined to exist upon
one past time level n and one future time level n + 1. The time-dependent field is also
provided with information regarding the cycling of data at the end of each timestep – in
this case data at time level n + 1 replaces data at time level n during the timestep cycle.
The specification of time dependent fields, and the specification of field data cycling at
the end of each timestep, is sufficient to define the model time level sub-vectors xn and
xn+1,+ (see section 2.1).

Given the definition of parameters and time dependent fields, time discretised equa-
tions may be defined. These are handled by registering model equations, for example
for the initialisation:

system = TimeSystem()

T_bc = StaticDirichletBC(space, 1.0, "on_boundary && x[0] < DOLFIN_EPS")

system.add_solve(inner(test, T[0]) * dx == inner(test, T_ic) * dx,

T[0], T_bc, solver_parameters = {"linear_solver":"lu"})

Here a TimeSystem object maintains the record of registered equations, and a single
initialisation equation is registered, corresponding exactly to equation (13a). The time
level data is referred to symbolically via simple indexing, so that T[0] corresponds to
T δ,0. The relationship between the model description and the mathematical notation is
therefore maintained. Similarly, the timestep solve equation is registered via:

T_h = 0.5 * (T[n] + T[n + 1])

test_supg = test \

+ 0.5 * CellSize(mesh) * dot(u, grad(test)) / sqrt(dot(u, u))

system.add_solve((1.0 / dt) * inner(test_supg, T[n + 1] - T[n]) * dx

+ inner(test_supg, dot(u, grad(T_h))) * dx

== inner(test, kappa * dot(grad(T_h), FacetNormal(mesh))) * ds

- inner(grad(test), kappa * grad(T_h)) * dx,

T[n + 1], bcs = T_bc, solver_parameters = {"linear_solver":"lu"})

This corresponds exactly to equation (13b). Again, time level data is referred to symbol-
ically via simple indexing, so that T[n] corresponds to T δ,n and T[n + 1] corresponds
to T δ,n+1,+. The equations thus registered enable the initialisation stage, timestep solve
stage, and finalisation stage to be described, thereby providing a representation of the
forward model structure (6).

15

Note that so far equations have only been described. No equation assembly or linear
solves have been performed. In the transition from model description to model execution
the equations are first analysed and time discretisation specific optimisations are applied.
This is achieved via:

system = system.assemble()

This also initialises the model, solving all initialisation equations. The model is then
executed via simple high level instructions, for example:

system.timestep(ns = 32)

system.finalise()

A complete model, incorporating the code examples discussed in this section, is shown
in figure 3. The code is compact and high level. Model equations are described and solved
via symbolic representations of the discrete equations, with all time discretisation specific
optimisations applied automatically and internally by the library. Specific optimisation
strategies which can be applied are detailed in the following section.

3.3. Time discretisation specific optimisations

The assemble call, highlighted in the previous section, marks the transition from
the description of a timestepping model to the execution of the code itself. Time dis-
cretisation specific optimisations are applied at this step. The TimeSystem object, used
to register the model equations, maintains an internal symbolic representation of the
model equations. These may be easily manipulated to identify model dependencies (see
Appendix A) and to extract individual equation terms. In particular, the following key
optimisations may be applied.

First, if an equation is linear, and if the equation left-hand-side matrix is found to be
static (time-independent), the matrix may be assembled and cached (pre-assembly). If
the equation boundary conditions are static (and in particular are applied on the same
part of the domain boundary for all time) then the matrix, with boundary conditions
applied, may be cached. If the equation matrix is non-static or the equation is non-
linear then matrix memory and sparsity patterns may be re-used. The matrix may be
also be split into a static (and pre-assembled) part, and a non-static part. This latter
optimisation results in a trade-off between the cost of adding matrices and the cost of
finite element assembly, and hence is disabled by the timestepping library by default.
Further more subtle optimisations are also possible – for example, the cost of the matrix
addition in the latter optimisation may be reduced by ensuring that the two matrices
have matching sparsity patterns.

Second, if a given right-hand-side term is static, then it may be assembled and cached.
If a given right-hand-side term may be broken into a matrix multiply with a static matrix
(static matrix multiplied by non-static vector), then the matrix may be assembled and
cached.

Third, linear solver optimisation options may be enabled automatically. In particular,
for equations with static cached matrices, matrix factorisation or preconditioner data
may be reused on each timestep. In addition equations with identical left-hand-side
matrices may be identified, and a single solver reused for all such equations.

16

Each of these optimisation strategies may be applied by hand using the native FEn-
iCS system. However this process becomes increasingly cumbersome as more fields and
equations are considered, which may contain equations with complex mixtures of static
and non-static terms. If equation terms are modified, new parameters are introduced,
or existing parameters are modified so that they switch from being static to time de-
pendent, then in a hand optimised code one must propagate all modifications manually.
Increasingly subtle optimisations, such as the matching of matrix sparsity patterns, may
be applied quite easily by the optimisation routines, but lead to complexity and du-
plication when applied by hand. The optimisations are required in order to maximise
efficiency, but if applied by hand are largely a time consuming and error prone distrac-
tion.

3.4. Deriving a discrete adjoint model

The high level representation of a timestepping model provides sufficient information
for a discrete adjoint model to be derived automatically, via the methodology of Farrell
et al. [14]. The high-level representation enables equation dependencies to be easily
identified. Each registered equation is analysed in turn, differentiated with respect to its
dependencies, and used to construct associated adjoint model equations. More advanced
dependency analysis has not been implemented (for example, one need not adjoin fully
diagnostic equations which do not influence a given functional) and this may be required
in more advanced configurations. Nevertheless the high level abstraction means that, at
least compared to lower level algorithmic differentiation approaches, the total number
of dependency relationships which need be considered is considerably reduced. See
Appendix A for a more detailed description of the steps involved in the adjoining process.

The timestepping library derives a discrete adjoint model via a single modification to
the forward model code. Specifically, in the analysis stage, one requests the derivation
of a discrete adjoint model:

system = system.assemble(adjoint = True, functional = T[N] * T[N] * dx)

In this example a discrete adjoint model is requested, using a functional defined to be
equal to the square of the L2 norm of the final T , J =

∫ 1
0 T

δ,NT δ,Ndx.
Crucially the discrete adjoint model thus derived has a high level symbolic repre-

sentation, and moreover retains information regarding the temporal structure of the
equations. Hence time discretisation specific optimisations, as described in section 3.3,
can be applied to the adjoint model. If a forward model equation is modified, then
a new consistent discrete adjoint model is derived, and the steps required to optimise
the new adjoint code are handled automatically and internally. Since the optimisation
strategies require detailed knowledge of the model equations, the manual application of
these optimisations to the adjoint model would require intricate manual intervention in
the adjoint model implementation.

A total derivative can now be computed upon completion of forward model timestep-
ping via a single call:

dJ = system.compute_gradient(T_ic)

17

This method executes the adjoint model and computes the total derivative via equation
(8) – this particular example computes the derivative of the functional with respect to
the initial condition, T0. A basic checkpointing algorithm may also be enabled:

system = system.assemble(adjoint = True, functional = T[N] * T[N] * dx, \

disk_period = 20)

In this example a forward model checkpoint is saved to disk after every 20 timesteps.
The compute_gradient method then performs any necessary re-running of the forward
model between the checkpoints. The checkpointing scheme currently checkpoints all
TimeFunction dependencies (which, as noted above, may be sub-optimal), and requires
a means of restoring time dependent parameters to be provided by the user. Since
the forward model can be advanced with ease more advanced checkpointing algorithms,
such as the method described in Griewank and Walther [43], could in principle be used,
although such algorithms are not currently implemented.

Figure 3 includes the derivation of a discrete adjoint model associated with the
advection-diffusion model (13), with the calculation of a total derivative of a functional.
The final T , and the computed derivative, are shown in figure 4. The discrete adjoint
model is derived, and a total derivative calculation is performed, via exactly two modi-
fications to the forward model code: the first to request an adjoint model and define a
functional, and the second to compute a total derivative.

3.5. Verifying a discrete adjoint model

It is important that, once a discrete adjoint model is derived, the correctness of the
adjoint model is asserted. In particular, if the forward model and functional are differ-
entiable, then the total derivative of the functional with respect to model parameters
should be computed exactly (except for precision related errors) by equation (8).

The consistency of a computed total derivative can be verified via a Taylor remainder
convergence test. Specifically, this test exploits the fact that given a non-linear functional
the remainder:∣∣∣∣J (x (m+ εδm) ,m+ εδm)− J (x (m) ,m)− ε dJ

dm
· δm

∣∣∣∣ = O
(
ε2
)
, (14)

converges asymptotically at second order in perturbation amplitude. The Taylor re-
mainder (14) will converge asymptotically at second order only if the derivative dJ/dm
is computed correctly5. See Navon et al. [49] for a related verification procedure.

The timestepping library can perform a Taylor remainder convergence test automat-
ically via:

orders = system.taylor_test(T_ic, grad = dJ, ntest = 6, fact = 1.0e-4)

5As always with finite differencing, if the perturbation δm is too large then the asymptotic second
order convergence rate will not be observed. If the perturbation δm is too small then the calculation
of the Taylor remainder will be polluted by precision errors, and again the asymptotic second order
convergence rate will not be observed.

18

from dolfin import *

from timestepping import *

The velocity, diffusivity, and timestep size

u = as_vector([StaticConstant(1.0)])

kappa = StaticConstant(0.02)

dt = StaticConstant(1.0 / 64.0)

Model mesh and function space

mesh = UnitIntervalMesh(32)

space = FunctionSpace(mesh, family = "Lagrange", degree = 1)

test = TestFunction(space)

A time dependent function

levels = TimeLevels(levels = [n, n + 1], cycle_map = {n:n + 1})

T = TimeFunction(levels, space, name = "T")

The initial condition

T_ic = StaticFunction(space, name = "T_ic")

T_ic.interpolate(Expression("x[0] < DOLFIN_EPS ? 1.0 : 0.0"))

Register model equations

system = TimeSystem()

Register the initialisation equation

T_bc = StaticDirichletBC(space, 1.0, "on_boundary && x[0] < DOLFIN_EPS")

system.add_solve(inner(test, T[0]) * dx == inner(test, T_ic) * dx,

T[0], T_bc, solver_parameters = {"linear_solver":"lu"})

Register the timestep solve equation

T_h = 0.5 * (T[n] + T[n + 1])

test_supg = test \

+ 0.5 * CellSize(mesh) * dot(u, grad(test)) / sqrt(dot(u, u))

system.add_solve((1.0 / dt) * inner(test_supg, T[n + 1] - T[n]) * dx

+ inner(test_supg, dot(u, grad(T_h))) * dx

== inner(test, kappa * dot(grad(T_h), FacetNormal(mesh))) * ds

- inner(grad(test), kappa * grad(T_h)) * dx,

T[n + 1], bcs = T_bc, solver_parameters = {"linear_solver":"lu"})

Perform analysis and optimisation, and derive a discrete adjoint model

system = system.assemble(adjoint = True, functional = T[N] * T[N] * dx)

Perform 32 timesteps

system.timestep(ns = 32)

system.finalise()

Execute the adjoint model and compute a total derivative

dJ = system.compute_gradient(T_ic, project = True)

Figure 3: A complete and functional finite element model for the advection-diffusion problem (12)
written using the timestepping abstraction library, with a discretisation corresponding to (13), and with
the same parameters as the model in figure 1. This implementation applies time discretisation specific
optimisations automatically, and includes the derivation of a discrete adjoint model.

19

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Tδ,N

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dJ

dT δ0

Figure 4: Left: Final solution, T δ,N , for the numerical model shown in figure 3. Right: The total
derivative with respect to the initial condition, dJ/dT δ0 , where J (x,m) =

∫ 1

0
T δ,NT δ,Ndx and T δ0 is P1

on the model mesh. See Appendix B for the definition of dJ/dT δ0 .

The taylor_test method perturbs a given parameter, reassembles any pre-assembled
equations if required, executes the forward model using this perturbed parameter, and
computes the Taylor remainder via (14). This is repeated for differing sized perturbations
ntest times, with ε = 2i for the ith perturbation. This was used to verify the model
shown in figure 3. The results from a Taylor remainder convergence test are shown in
figure 5.

4. Examples

In this section two more complex applications of the approach are provided, and the
performance of the forward and adjoint models is assessed. Section 4.1 describes the
application to the incompressible Navier-Stokes equations, and section 4.2 describes the
application to the barotropic vorticity equation.

4.1. Incompressible Navier-Stokes

The incompressible Navier-Stokes equations for a fluid of constant density are:

∂tu+ (u · ∇)u = −∇p+ ν∇2u, (15a)

∇ · u = 0, (15b)

where u is the velocity, p is the pressure (divided by the density), and ν is the kinematic
viscosity. We consider the solution of these equations for the driven cavity configuration
(see, for example, Burggraf [50]), in the unit square Ω = (0, 1)2 and with boundary
conditions:

ux = uF (x), uy = 0 on y = 1,

ux = 0, uy = 0 on x = 0, x = 1, y = 0, (16)

20

100 101

ε

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Ta
yl

or
 re

m
ai

nd
er

First order convergence
Second order convergence
Remainder, no gradient
Remainder, with gradient

Figure 5: Taylor remainder convergence test for the model shown in figure 3. × symbols: The Tay-
lor remainder |J (x (m+ εδm) ,m+ εδm)− J (x (m) ,m)|, which makes no use of gradient information,
converges asymptotically at first order. + symbols: The Taylor remainder (14), which makes use of the
gradient computed using the adjoint model, converges asymptotically at second order as required.

where ux and uy are the x- and y-components of u respectively. The Navier-Stokes equa-
tions (15) are discretised in space using triangle elements with degree one discontinuous
Lagrange basis functions for velocity and degree two continuous Lagrange basis functions
for pressure (P1DG − P2). This velocity pressure element pair is LBB stable [51]. The
momentum advection term is integrated by parts and the cell interface term is treated
using averaging of the interfacial fluxes, to ensure that the model is differentiable. Weak
no-normal-flux boundary conditions are applied to the advection operator. The viscous
term is treated using an interior penalty method [52, 53] with a penalty parameter value
of η = 10. Weak Dirichlet boundary conditions, corresponding to (16), are applied to
the viscous term. The equations are discretised in time using the pressure projection
method described in Ford et al. [54], consisting of a Crank-Nicolson discretisation (im-
plicit midpoint rule) with the non-linear system approximately solved to second order
accuracy in time via two Picard iterations. The pressure projection equations are solved
with UMFPACK [55] via PETSc [56], and the velocity equations solved via PETSc with
Bi-CGSTAB [57] preconditioned with incomplete LU factorisation.

The P1DG − P2 velocity-pressure element pair has the important property that
the discrete Laplacian matrix formed in the pressure projection step (the −CTM−1C
matrix in the notation of Ford et al. [54]) is identical to the discrete Laplacian formed
by multiplying the Laplacian operator by a P2 test function and integrating by parts
[58]. The former construction requires the separate assembly of divergence and mass
matrices, and then the application of linear algebra operations. The latter construction
requires the assembly of a single matrix directly from a single bilinear form. Hence the
latter construction has a simple high level symbolic representation.

The model was implemented using the timestepping abstraction library. The re-

21

sulting code is extremely compact, comprising ≈ 260 lines of code if comments and
debugging tests are neglected. The primary model development was performed over a
few days by a single individual. The discrete adjoint model was derived, and a total
derivative calculation performed, via exactly two modifications to the forward model
source code, as described in section 3.4.

A quasi-uniform resolution unstructured triangle mesh covering the unit square was
generated using Gmsh [59], with a requested element size of 0.01 units. The resulting
mesh contained a total of 11671 vertices and 22944 triangle elements. This leads to
68832 degrees of freedom for each component of the velocity field and 46285 degrees of
freedom for the pressure field. A solution to the driven-cavity problem was computed
on this mesh with ν = 0.001 and uF (x) = −1, corresponding to a Reynolds number of
1000. A timestep size of ∆t = 0.01, corresponding to an advective Courant number of
approximately 1, was used. The model was integrated from rest for T = 300 units of
time, after which the steady state measure defined by Botella and Peyret [60, equation
(6)] had a value less than 4×10−12. A P2 velocity divergence D ∈ P was computed via:∫

Ω
φD = −

∫
Ω
∇φ · u ∀φ ∈ P, (17)

where P is the P2 pressure space, and a P2 stream function ψ ∈ P 0 was computed via:∫
Ω
φψ =

∫
Ω
∇φ · (ẑ × u) ∀φ ∈ P 0, (18)

where P 0 = {φ ∈ P : φ = 0 on ∂Ω}. The stream function was therefore computed using
a strong homogeneous Dirichlet boundary condition. The final minimum value of ux is
−1.0018, indicating a small numerical undershoot. The final L∞ norm of the velocity
divergence is6 3.4 × 10−11, indicating that discrete incompressibility is enforced – the
error is attributed to accumulated floating point round-off errors. The final stream
function is shown in figure 6. The final stream function has a maximum value of 0.11929,
which differs from the value quoted in Botella and Peyret [60, table 6] by 0.30%. The
final stream function has a minimum value of −0.0017191, which differs from the value
quoted in Botella and Peyret [60, table 12] by 0.61%. Hence the model solution closely
approximates the benchmark values.

The functional was defined to be the final kinetic energy:

J =
1

2

∫
Ω
u|t=T · u|t=T . (19)

The adjoint model employed disk checkpointing, and was used to compute the derivative
with respect to the boundary condition for ux at y = 1, shown in figure 7. For verification

6The L∞ norm and ranges of P2 fields quoted here are computed from nodal value ranges. For a P2
field these can differ slightly from the field range, as the basis functions are not bounded between zero
and unity.

22

Figure 6: The final stream function for the solution of the incompressible Navier-Stokes equations for
the driven cavity configuration at Reynolds number 1000. Contours are as per Botella and Peyret [60,
figure 1].

purposes a similar derivative calculation was also performed for a configuration run over
only 0.1 units of time, and this shorter calculation was successfully verified via a Taylor
remainder convergence test.

The model performance was tested using a configuration run for 1 unit of time,
corresponding to a total of 100 timesteps. The performance was tested on a machine with
a 2.80 GHz Intel Core i5-2300 processor, with version 1.2.0 of DOLFIN. All tests used
identical compiler optimisation flags, had output and diagnostics disabled and, when an
adjoint model was derived, stored the entire model trajectory in memory. Practical time-
dependent derivative calculations usually require the use of intermittent disk storage,
which is not included in this performance analysis. Such checkpointing schemes require
some amount of re-execution of the forward model during the adjoint calculation, and
also incur additional input/output costs; the amount of re-execution depends on the
number of checkpoints available [43]. For each measurement the model was run three
times and the average taken. Table 1 shows the measured execution times. The execution
times with pre-assembly disabled (but with linear solver optimisation options enabled)
are also shown. Note that disabling pre-assembly also disables other optimisations,
including some memory reuse and the reuse of sparsity patterns for time dependent
matrices.

The use of pre-assembly is found to decrease the forward model run time (with
the adjoint model disabled) by 41%. The use of pre-assembly is found to decrease the
gradient calculation time (which includes the cost of running the adjoint model) by 36%.

The adjoint efficiency of this model is defined to be the cost of running the forward
model and computing the total derivative (excluding the analysis), versus the cost of
running the forward model with no adjoint model enabled (excluding the analysis). The
measured adjoint efficiency is 2.17, versus an expected optimal efficiency for this model

23

0.0 0.2 0.4 0.6 0.8 1.0
x

0.10

0.05

0.00

dJ
duF

Figure 7: The derivative of the final kinetic energy with respect to the forcing boundary condition
for ux at y = 1, for the solution of the incompressible Navier-Stokes equations for the driven cavity
configuration at Reynolds number 1000. Here the discrete boundary condition uF is a P1DG field on
the 1D boundary mesh. See Appendix B for the definition of dJ/duF .

Model configuration Model component Time (s) Normalised time

No adjoint Analysis 3.83 0.0483
Forward model 79.32 1.0000

Total 85.70 1.0804

With adjoint Analysis 11.18 0.1409
Forward model 80.21 1.0112

Gradient calculation 92.07 1.1607
Total 186.04 2.3454

No pre-assembly, Analysis 0.73 0.0092
no adjoint Forward model 135.17 1.7041

Total 138.45 1.7455

No pre-assembly, Analysis 3.31 0.0417
with adjoint Forward model 134.63 1.6973

Gradient calculation 144.57 1.8226
Total 285.07 3.5938

Table 1: Model execution times for the Navier-Stokes example. The forward model time includes the
cost of field initialisation, timestepping, and any field finalisation. The gradient calculation time is the
full cost of computing the total derivative of the functional. The analysis time is the cost of performing
optimisations specific to the temporal discretisation and deriving the adjoint model (if these are enabled).
The total time is the entire model execution time, excluding only the importing of libraries and some
debugging code.

24

Model configuration Model component Time (s)

Timestepping library, Analysis 3.91
upwinding of interfacial Forward model 80.82
advective fluxes Total 87.27

Fluidity Total 271.82

Table 2: Model execution times comparing solvers for the Navier-Stokes equations. The efficiency of the
model generated by the timestepping library compares well to an established CFD model, most likely
due to the increased efficiency associated with the FEniCS system and due to the application of time
discretisation optimisations.

of 2. While this is slightly sub-optimal, this is nevertheless sufficiently efficient to be
of practical use. Note that, if form pre-assembly is disabled, then the adjoint model
efficiency is measured to be 2.07. This latter, improved, adjoint efficiency is spurious –
it is easier to achieve an improved relative adjoint efficiency if the absolute efficiency of
the model is reduced.

For further comparison, the performance of the Navier-Stokes model is compared
against an existing finite element code. Fluidity is a multi-purpose finite element CFD
code with a diverse range of applications (see, for example, Piggott et al. [61] and Davies
et al. [62]). Although a continuous adjoint model has previously been derived by hand
[63, 64], this is no longer available. Note that Fluidity supports features which are
not currently supported by FEniCS (and hence are not supported by the timestepping
library), and Fluidity supports many more features than are considered in this example.

Fluidity was configured to simulate the driven cavity configuration, with the configu-
ration matching, as closely as possible, the model developed here using the timestepping
abstraction library. The Fluidity configuration uses upwinding of the interfacial advec-
tive fluxes, rather than averaging. The performance of Fluidity was assessed on the same
test machine as used for the model written using the timestepping library, with the code
compiled using aggressive compiler optimisations and with minimal model output. For
each measurement Fluidity was run three times and the average taken. The resulting
measured execution times are shown in table 2. The execution times of a model written
using the timestepping abstraction library, using upwinding of the interfacial advective
fluxes, are provided for reference. Fluidity is found to be 3.11 times slower than this
model, indicating that the model generated by the timestepping library has a competitive
efficiency.

4.2. Barotropic vorticity

The barotropic vorticity equation on a β-plane for a fluid of constant density and
thickness and subject to wind forcing is:

∂tq +∇ · (uq) = ν∇2 (q − βy) + ẑ ×∇ ·
(
FW
ρ0H

)
, (20a)

q = ∇2ψ + βy, (20b)

25

where q is the potential vorticity, ψ is the stream function, u = ẑ×∇ψ is the incompress-
ible velocity, FW is the wind stress, ν is the (Laplacian momentum) viscosity coefficient,
y is the meridional coordinate, ρ0 is the fluid density, and H is the fluid depth. We con-
sider the solution of these equations in a square Ω = (0, L)2 subject to free-slip boundary
conditions:

q − βy = 0, ψ = 0 on x = 0, x = L, y = 0, y = L, (21)

and subject to a wind forcing of the form:

Fx =

 +τ0 cos
(
π y−ymL−ym

)
−τ0 cos

(
π y
yM

) if y ≥ yM
if y < yM

, Fy = 0, (22)

where Fx and Fy are the x- and y-components of F , ym = (0.2x + 0.4)L defines the
meridional coordinate of the eastward wind stress maximum, and x is the zonal coordi-
nate. Model parameter values are β = 2×10−11 m−1 s−1, ν = 150 m2 s−1, H = 1000 m,
L = 2000 km, and τ0/ρ0 = 4×10−5 N kg−1 m. These parameters correspond to a Munk
width of δM = (ν/β)1/3 = 19.6 km and a Reynolds number relative to the Sverdrup
velocity scale of Re = τ0/ (ρ0Hβν) = 13.

The equations are discretised in space using triangle elements with degree two con-
tinuous Lagrange (P2) elements for the potential vorticity and stream function, with
the boundary conditions (21) applied in the strong sense. The equations are discretised
in time using third order Adams-Bashforth, with the model started via a second order
explicit Runge-Kutta step and a second order Adams-Bashforth step, thereby ensuring
global third order time accuracy. A timestep size of ∆t = 30 minutes was used. A quasi-
uniform resolution unstructured triangle mesh covering Ω was generated using Gmsh
[59], with a requested element size of 16 km. The resulting mesh contained a total of
17967 vertices and 35436 triangle elements. This leads to 71369 degrees of freedom for
the potential vorticity and stream function fields.

The model was implemented using the timestepping abstraction library. The result-
ing model code is again extremely compact, comprising ≈ 160 lines of code if comments
and debugging tests are neglected. Figure 8 shows the model solution after a 100 year
(100× 365 days) spinup from rest. Once spun up, the model was run for 60 days. The
functional was defined to be the integral of the final kinetic energy over the eastern
region:

J =
1

2

∫
Ω
MH u|t=T · u|t=T . (23)

where M = 1 if x > 0.9L and 0 otherwise. The adjoint model used disk checkpointing.
The total derivative of this functional was computed with respect to Fx/ρ0 over the
60 day integration, and is shown in figure 9. For verification purposes the forward
model was also integrated from rest for 14 days, and a total derivative calculation was
successfully verified for this configuration via a Taylor remainder convergence test.

The model performance was tested using a configuration run for 14 days from rest.
Adjoint model tests computed the total derivative with respect to the initial potential
vorticity, and used memory storage rather than disk checkpointing. Other details of

26

Figure 8: Solution of the barotropic vorticity equation after a spinup of 100 years from rest. Left:
Potential vorticity q. Right: Transport stream function Hψ (in Sverdrups).

Figure 9: Left: Total derivative of the functional (23) evaluated 60 days after spinup (60 days after figure
8), with respect to Fx/ρ0 over days 30–60 after spinup. Right: Total derivative of the functional (23)
evaluated 60 days after spinup, with respect to Fx/ρ0 over days 0–60 after spinup. As the length of the
derivative calculation is increased the sensitivity propagates away from the eastern region over which
the kinetic energy is integrated, indicating that flow near the eastern boundary becomes increasingly
sensitive to changes in interior wind forcing as longer time intervals are considered.

27

Model configuration Model component Time (s) Normalised time

No adjoint Analysis 1.08 0.0325
Forward model 33.05 1.0000

Total 38.94 1.1782

With adjoint Analysis 2.20 0.0664
Forward model 34.42 1.0417

Gradient calculation 42.78 1.2945
Total 84.14 2.5462

No pre-assembly, Analysis 0.16 0.0049
no adjoint Forward model 172.07 5.2068

Total 176.98 5.3555

No pre-assembly, Analysis 0.42 0.0128
with adjoint Forward model 173.52 5.2508

Gradient calculation 174.41 5.2777
Total 353.10 10.6848

Table 3: Model execution times for solvers for the barotropic vorticity equation written using the
timestepping abstraction library.

the test configuration and test machine are identical to the benchmark described in the
Navier-Stokes example in section 4.1. Table 3 shows the resulting measured execution
times, including the execution times with pre-assembly disabled. The use of pre-assembly
is found to decrease the forward model run time (with the adjoint model disabled) by
81%, and to decrease the gradient calculation time (which includes the cost of running
the adjoint model) by 75%. Hence with pre-assembly optimisations the forward model
is approximately five times faster, while the adjoint model is approximately four times
faster. If both pre-assembly and solver optimisation options are disabled then both
the forward and adjoint models are 30 times slower than the optimised versions. This
model uses an explicit time discretisation with direct LU solvers [55], and hence time
discretisation optimisations are essential.

The adjoint efficiency of this model is defined to be the cost of running the forward
model and computing the total derivative (excluding the analysis) versus the cost of
running the forward model with no adjoint model enabled (excluding the analysis). The
measured adjoint efficiency is 2.34, versus an expected optimal efficiency for this model
of 2. This is deemed to be sufficiently efficient for practical use. If pre-assembly and
solver optimisation options are disabled then the adjoint efficiency is 2.00007, with (as
previously noted) a much higher absolute cost.

5. Conclusions

The development of a numerical model typically consists of the design and selection
of continuous model equations, the discretisation of these equations, and then the im-

28

plementation of the discretised system on a computer. Each of these steps is often the
focus of distinct scientific disciplines: for example the physics of a system is embedded
in the selection and approximation of continuous equations, and is certainly not related
to the details of the source code implementation. Automated code generation enables
the logical separation of the discretisation and implementation steps, thereby allowing
the model developer to focus on the physics of a problem, or to focus on the selection
and testing of discretisations and numerical algorithms.

In this article the principles of automated code generation have been extended to
include the model time discretisation. Specifically, a new high level representation for
transient finite element models has been presented. This approach builds upon the FEn-
iCS system, and adds an additional library to the FEniCS suite of tools which enables a
high level symbolic representation of the model time discretisation. The symbolic rep-
resentation is used to construct an efficient implementation of the timestepping model,
with time discretisation specific optimisations, such as pre-calculation and caching of
static data, applied automatically and internally. Moreover the high level representa-
tion is amenable to symbolic manipulation. This is exploited to enable the automated
derivation of an associated discrete adjoint model, which also benefits from these op-
timisations. Combined, the approach enables a high level representation of a complex
time dependent problem, an efficient implementation of the model, and the automated
derivation and efficient implementation of an associated discrete adjoint model.

The library was tested via the implementation of a solver for the incompressible
Navier-Stokes equations. This complex model was developed extremely rapidly, and
was found to be more than three times faster than the existing CFD code Fluidity.
The adjoint model efficiency was measured to be 2.17. The adjoint model, and a total
derivative calculation, were derived via only two minor modifications to the forward
model code.

The library was further tested via the implementation of a solver for the barotropic
vorticity equation. The model used an explicit time discretisation and direct solvers, and
pre-assembly optimisations were found to be essential for this configuration. The forward
and adjoint models were approximately five and four times faster respectively when pre-
assembly optimisations were enabled. It is expected that pre-assembly optimisations are
of particular importance for models with explicit time discretisations, and are relatively
less important for implicit models with (typically) more expensive linear solves.

The generality of the timestepping abstraction library has been tested via the im-
plementation and adjoining of many differing models with various time discretisations.
Other model equations implemented include the non-linear Burgers’ equation, advection-
diffusion, the multi-layer quasi-geostrophic equations, the Boussinesq Navier-Stokes equa-
tions, Stokes’ flow, and the Cahn-Hilliard equation. Time discretisations tested in-
clude explicit Runge-Kutta schemes, Adams-Bashforth schemes, backward Euler, Crank-
Nicolson, leapfrog, and implicit discontinuous Galerkin.

This article has described the primary high-level functionality of the timestepping
abstraction library. Lower-level interfaces are available which, for example, can be used
to define custom linear or non-linear solvers. One may also define time integrated func-

29

tionals and define time dependent parameters. The timestepping abstraction library has
also been integrated into the more general dolfin-adjoint library, demonstrating that the
approach can be extended and used as part of a larger system.

The timestepping abstraction library acts as an intermediate layer, building on the
FEniCS system. As a result the library inherits many of the desirable features of the
FEniCS system, including efficient finite element assembly, access to efficient linear alge-
bra libraries, and parallelisation methods. For example many models written using the
timestepping abstraction library already support MPI parallelism. Should additional
parallelisation methods be added to the FEniCS system, such as the exploitation of
GPUs, then the timestepping abstraction library will be able to use these methods.

The implementation described in this article has been built upon the FEniCS system,
but the general principles are not dependent upon these tools. If an alternative abstract
representation and automated implementation of a spatial discretisation is available then
a timestepping abstraction can be built onto this framework.

Thus far the only time discretisation specific optimisations that have been considered
are optimisations which act to minimise computation time. Moreover at present these
optimisations are applied in a “maximally aggressive” fashion. The ability for more de-
tailed configuration is clearly desirable. This could potentially be aided by the heuristic
selection of optimisation methods. For some problems it may also be necessary to con-
sider alternative optimisations which reduce memory usage, rather than computation
time.

In certain cases the symbolic analysis of the forward and adjoint solves is unable
to identify common intermediates that can be re-used between expressions, which may
cause the algorithmic complexity of the adjoint assembly to be unnecessarily high (see
Griewank [65] for a related discussion). In future work the analysis engine described will
be made more sophisticated to identify such cases, and to automatically rewrite them
to reuse the available intermediates.

The ultimate objective of the high level representation for model timestepping pre-
sented here is to minimise the steps required to create an efficient transient finite el-
ement model with an efficient discrete adjoint model available. The particular aim of
the authors is to enable the rapid implementation, testing, and optimisation of physical
parameterisation schemes. This particular use case involves a modification of the con-
tinuous model equations themselves. Hence it is highly desirable to minimise the burden
associated with the implementation of the (modified) discretised equations and, for the
purpose of gradient-based optimisation, to minimise the burden associated with the de-
velopment of associated discrete adjoint models. Previous approaches for automated
adjoint derivation, such as algorithmic differentiation of low level source code, impose
a high development and maintenance burden, which significantly impedes the use of
adjoint models. It is hoped that the new approach will reduce the technical barrier to
their adoption, facilitating their more widespread use.

30

Acknowledgements

JRM acknowledges useful discussions with C. J. Cotter, D. A. Ham and M. E.
Rognes. Financial support was provided by the UK Natural Environment Research
Council (NE/H020454/1), the UK Engineering and Physical Sciences Research Council
(EP/I00405X/1, EP/K030930/1, and EP/G036136/1), an EPSRC Pathways to Impact
award, and a Center of Excellence grant from the Research Council of Norway to the
Center for Biomedical Computing at Simula Research Laboratory.

Appendices

Appendix A. Adjoining a transient finite element model

This appendix provides an example of the derivation of the discrete adjoint of a
transient finite element model.

Appendix A.1. Burgers’ equation discretisation

Consider the 1D non-linear Burgers’ equation:

∂tu+ u∂xu = ν∂xxu on x ∈ (0, 1) , (A.1a)

u = u0 at t = 0, (A.1b)

u = 0 at x = 0, 1, (A.1c)

where u is the velocity and ν is the kinematic viscosity. Let the space (0, 1) be covered
by a set of cells, and equip these cells with degree one Lagrange basis functions φi. Thus
construct a P1 continuous Galerkin finite element discretisation with a Crank-Nicolson
(implicit midpoint rule) time discretisation:∫ 1

0
ψiu

δ,0dx =

∫ 1

0
ψiu0dx, (A.2a)

∫ 1

0
ψi

[
1

∆t

(
uδ,n+1 − uδ,n

)
+ uδ,n+ 1

2∂xu
δ,n+ 1

2

]
dx = −

∫ 1

0
ν∂xψi∂xu

δ,n+ 1
2dx. (A.2b)

Here ∆t is the timestep size, uδ,n is the solution at time level n, and uδ,n+ 1
2 = 1

2

(
uδ,n + uδ,n+1

)
.

The test functions are chosen so that ψi ∈
{
φi : φi|x=0,1 = 0

}
, and the uδ,n are defined

via uδ,n =
∑

i ψiũ
n
i . The Dirichlet boundary condition (A.1c) is thus applied in the

strong sense. This simple discretisation is not stable, and is here used primarily as a
simple non-linear example.

Consistent with the discussion in section 2.1, the discrete model equations can be
re-written equivalently as: ∫ 1

0
ψiu

δ,0dx =

∫ 1

0
ψiu0dx, (A.3a)

31

∫ 1

0
ψi

[
1

∆t

(
uδ,n+1,+ − uδ,n

)
+ uδ,n+ 1

2
,+∂xu

δ,n+ 1
2
,+

]
dx = −

∫ 1

0
ν∂xψi∂xu

δ,n+ 1
2
,+dx,

(A.3b)
uδ,n+1 = uδ,n+1,+, (A.3c)

where uδ,n,+ =
∑

i ψiũ
n,+
i and uδ,n+ 1

2
,+ = 1

2

(
uδ,n + uδ,n+1,+

)
. Hence (A.3a) is the ini-

tialisation equation, (A.3b) is the timestep solve equation, and (A.3c) is the timestep
cycle equation. The three equations (A.3) corresponds to the three unique equations
appearing in the forward system (6) for this model.

Appendix A.2. Burgers’ equation discrete adjoint

Define a functional:

J
(
uδ,N

)
=

∫ 1

0
uδ,Nuδ,Ndx. (A.4)

The resulting discrete adjoint model is:

λ̃Ni =

∫ 1

0
2ψiu

δ,Ndx, (A.5a)

∫ 1

0

[
ψi

1

∆t
λδ,n+1,+ +

1

2

(
ψi∂xu

δ,n+ 1
2
,+ + uδ,n+ 1

2
,+∂xψi

)
λδ,n+1,+ +

1

2
ν∂xψi∂xλ

δ,n+1,+

]
dx

−λ̃n+1
i = 0,

(A.5b)

∫ 1

0

[
−ψi

1

∆t
λδ,n+1,+ +

1

2

(
ψi∂xu

δ,n+ 1
2
,+ + uδ,n+ 1

2
,+∂xψi

)
λδ,n+1,+ +

1

2
ν∂xψi∂xλ

δ,n+1,+

]
dx

+λ̃ni = 0,
(A.5c)

where λδ,n,+ =
∑

i ψiλ̃
n,+
i . Equation (A.5b) is the adjoint equation associated with

(A.3b), and (A.5c) is the adjoint equation associated with (A.3c). The adjoint model
can be integrated backwards in time from the terminal condition (A.5a), via repeated
solution of equation (A.5b) for each λδ,n+1,+ and of equation (A.5c) for the λ̃ni . The
three equations (A.5) correspond to the three unique equations appearing in the adjoint
system (10) for this model.

Appendix A.3. Automated derivation of the Burgers’ equation discrete adjoint

Given an appropriate symbolic representation of the discrete forward model (A.3),
and appropriate symbolic manipulation tools, the discrete adjoint model (A.5) can be
derived automatically. This is the methodology presented in Farrell et al. [14], using the
tools of the FEniCS system, which we sketch here.

In the following nu and dt are DOLFIN Constant objects representing ν and ∆t
respectively, and u_n and u_np1_p are DOLFIN Function objects representing uδ,n and

32

uδ,n+1,+ respectively. test represents a general test function,
∑

i ψiψ̃i for arbitrary ψ̃i.
Then, using the DOLFIN library, the following yields a symbolic representation of the
timestep solve equation (A.3b):

u_nph_p = 0.5 * (u_n + u_np1_p)

F = inner(test, (1.0 / dt) * (u_np1_p - u_n)) * dx \

+ inner(test, dot(as_vector([u_nph_p]), grad(u_nph_p))) * dx \

+ inner(grad(test), nu * grad(u_nph_p)) * dx

eq = F == 0

bc = DirichletBC(space, 0.0, "on_boundary")

Dependencies of equation (A.3b) can be identified via the UFL function:

deps = ufl.algorithms.extract_coefficients(F)

The dependencies can then be processed to identify the Function dependencies, u_n and
u_np1_p. dolfin-adjoint uses this information to construct a “tape” of model equations
and model equation dependencies [14]. The timestepping abstraction library uses this
information in the analysis of registered equations (see section 3.2).

The left-hand-side matrix associated with equation (A.5b) can be constructed via:

mat_np1_p = assemble(adjoint(derivative(F, u_np1_p)))

hbc = homogenize(bc)

hbc.apply(mat_np1_p)

The first term in equation (A.5c) can be constructed via:

vec_n = assemble(action(adjoint(derivative(F, u_n)), lam_np1_p))

hbc.apply(vec_n)

where lam_np1_p represents λδ,n+1,+. The key functions in each case are the derivative
function, which differentiates a variational form with respect to a discrete field, and the
adjoint function, which constructs an adjoint form. The assemble function assembles
the symbolic representation of a form to yield a matrix or vector, generating lower level
code to perform the assembly as required.

Appendix B. Riesz representer

Consider a discrete function mδ =
∑N

i=1 φim̃i ∈ V δ ⊂ L2(Ω), where the φi form a
basis for V δ. Consider also a functional J(mδ) which is assumed to be Fréchet differen-
tiable. Then the Gâteaux derivative of J(mδ) in each direction φi is:

dJ(mδ;φi) =
∂J

∂m̃i
. (B.1)

Given some perturbations δm̃i to the m̃i, the linear perturbation to J(mδ) is:

δJ = dJ(mδ; δmδ) =

N∑
i=1

∂J

∂m̃i
δm̃i, (B.2)

33

where δmδ =
∑N

i=1 φiδm̃i ∈ V δ. Equivalently this may be written:

δJ = dJ(mδ; δmδ) =

∫
Ω

dJ

dmδ
δmδ, (B.3)

where dJ/dmδ ∈ V δ is the Riesz representer for the Gâteaux derivative, defined via:

dJ(mδ;φi) =

∫
Ω

dJ

dmδ
φi ∀i ∈ {1, . . . , N} . (B.4)

Conceptually, the dJ(mδ;φi) define the linear sensitivity of the functional J(mδ)
with respect to perturbations to the degrees of freedom m̃i of mδ. dJ/dmδ is a linear
sensitivity density function which defines the linear sensitivity of the functional J(mδ)
with respect to perturbations to mδ, via the L2 inner product (B.3).

[1] J. Backus, Preliminary Report: Specifications for the IBM Mathematical FOR-
mula TRANSlating System, FORTRAN, Technical Report, International Business
Machines, 1954.

[2] C. B. Moler, Design of an interactive matrix calculator, in: Proceedings of the May
19-22, 1980, national computer conference, AFIPS ’80, ACM, New York, NY, 1980,
pp. 363–368. doi:10.1145/1500518.1500576.

[3] A. Logg, K.-A. Mardal, G. N. Wells (Eds.), Automated solution of differential equa-
tions by the finite element method: The FEniCS book, volume 84 of Lecture Notes
in Computational Science and Engineering, Springer, 2012.

[4] M. S. Alnæs, UFL: a finite element form language, in: A. Logg, K. A. Mardal, G. N.
Wells (Eds.), Automated Solution of Differential Equations by the Finite Element
Method, Springer, 2011, pp. 299–334.

[5] M. S. Alnæs, A. Logg, K. B. Øelgaard, M. E. Rognes, G. N. Wells, Unified Form
Language: A domain-specific language for weak formulations of partial differential
equations, ACM Transactions on Mathematical Software 40 (2014) 9:1–9:37.

[6] R. C. Kirby, A. Logg, A compiler for variational forms, ACM Transactions on
Mathematical. Software 32 (2006) 417–444.

[7] K. B. Ølgaard, G. N. Wells, Optimizations for quadrature representations of fi-
nite element tensors through automated code generation, ACM Transactions on
Mathematical Software 37 (2010) 8:1–8:23.

[8] G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, S. J. Sher-
win, Finite element assembly strategies on multi-core and many-core architectures,
International Journal for Numerical Methods in Fluids 71 (2012) 80–97.

[9] P. A. Durbin, B. A. Pettersson Reif, Statistical theory and modeling for turbulent
flows, Wiley, 2001.

34

[10] M. Mortensen, H. P. Langtangen, G. N. Wells, A FEniCS-based programming
framework for modeling turbulent flow by the Reynolds-averaged Navier–Stokes
equations, Advances in Water Resources 34 (2011) 1082–1101.

[11] G. R. Markall, D. A. Ham, P. H. J. Kelly, Towards generating optimised finite
element solvers for GPUs from high-level specifications, Procedia Computer Science
1 (2010) 1815–1823.

[12] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, P. H. J. Kelly, Performance anal-
ysis of the OP2 framework on many-core architectures, SIGMETRICS Performance
Evaluation Review 38 (2011) 9–15.

[13] M. G. Knepley, A. R. Terrel, Finite element integration on GPUs, ACM Transac-
tions on Mathematical Software 39 (2013) 10:1–10:13.

[14] P. E. Farrell, D. A. Ham, S. W. Funke, M. E. Rognes, Automated derivation of the
adjoint of high-level transient finite element programs, SIAM Journal on Scientific
Computing 35 (2013) C369–C393.

[15] S. W. Funke, P. E. Farrell, A framework for automated PDE-constrained op-
timisation, Submitted to ACM Transactions on Mathematical Software, 2013.
ArXiv:1302.3894 [cs.MS].

[16] P. E. Farrell, C. J. Cotter, S. W. Funke, A framework for the automation of
generalised stability theory, SIAM Journal in Scientific Computing 36 (2014) C25–
C48.

[17] M. B. Giles, E. Süli, Adjoint methods for pdes: a posteriori error analysis and
postprocessing by duality, Acta Numerica (2002) 145–236.

[18] S. Prudhomme, J. T. Oden, On goal-oriented error estimation for elliptic prob-
lems: application to the control of pointwise errors, Computer Methods in Applied
Mechanics and Engineering 176 (1999) 313–331.

[19] A. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis,
John Wiley & Sons, 2000.

[20] N. A. Pierce, M. B. Giles, Adjoint recovery of superconvergent functionals from
PDE approximations, SIAM Review 42 (2000) 247–264.

[21] R. Becker, R. Rannacher, An optimal control approach to a posteriori error esti-
mation in finite element methods, Acta Numerica 10 (2001) 1–102.

[22] J. Marotzke, R. Giering, K. Q. Zhang, D. Stammer, C. Hill, T. Lee, Construction
of the adjoint MIT ocean general circulation model and application to Atlantic
heat transport sensitivity, Journal of Geophysical Research: Oceans 104 (1999)
29529–29547.

35

[23] P. Heimbach, C. Wunsch, R. M. Ponte, G. Forget, C. Hill, J. Utke, Timescales
and regions of the sensitivity of Atlantic meridional volume and heat transport:
Toward observing system design, Deep Sea Research Part II: Topical Studies in
Oceanography 58 (2011) 1858–1879.

[24] J. L. Lions, Optimal control of systems governed by partial differential equations,
Springer-Verlag, 1971.

[25] M. D. Gunzburger, Perspectives in flow control and optimization, Advances in de-
sign and control, SIAM, 2003.

[26] B. Mohammadi, O. Pironneau, Shape optimization in fluid mechanics, Annual
Review of Fluid Mechanics 36 (2004) 255–279.

[27] C. Wunsch, Discrete inverse and state estimation problems with geophysical fluid
applications, Cambridge University Press, 2006.

[28] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE constraints,
volume 23 of Mathematical Modelling: Theory and Applications, Springer, 2009.

[29] B. F. Farrell, P. J. Ioannou, Generalized stability theory. Part I: Autonomous
operators, Journal of the Atmospheric Sciences 53 (1996) 2025–2040.

[30] L. N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnor-
mal Matrices and Operators, Princeton University Press, 2005.

[31] L. Zanna, P. Heimbach, A. M. Moore, E. Tziperman, Upper-ocean singular vectors
of the North Atlantic climate with implications for linear predictability and vari-
ability, Quarterly Journal of the Royal Meteorological Society 138 (2012) 500–513.

[32] J. Martin, L. Wilcox, C. Burstedde, O. Ghattas, A stochastic Newton MCMC
method for large-scale statistical inverse problems with application to seismic in-
version, SIAM Journal on Scientific Computing 34 (2012) A1460–A1487.

[33] M. B. Giles, N. A. Pierce, An introduction to the adjoint approach to design, Flow,
Turbulence and Combustion 65 (2000) 393–415.

[34] A. Griewank, A. Walther, Evaluating derivatives: principles and techniques of al-
gorithmic differentiation, Frontiers in Applied Mathematics, SIAM, 2008.

[35] L. Hascoët, V. Pascual, TAPENADE 2.1 user’s guide, Technical Report RT-
0300, INRIA Sophia Antipolis, Sophia Antipolis, FR 06902, 2004. URL:
http://www.inria.fr/rrrt/rt-0300.html.

[36] R. Giering, T. Kaminski, Applying TAF to generate efficient derivative code of
Fortran 77-95 programs, Proceedings in Applied Mathematics and Mechanics 2
(2003) 54–57.

36

[37] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill,
C. Wunsch, OpenAD/F: A modular, open-source tool for automatic differentiation
of Fortran codes, ACM Transactions on Mathematical Software 34 (2008).

[38] C. A. Mader, J. R. R. A. Martins, A. C. Marta, Towards aircraft design using an
automatic discrete adjoint solver, in: 18th AIAA Computational Fluid Dynamics
Conference, American Institute of Aeronautics and Astronautics, 2007.

[39] F. Alauzet, O. Pironneau, Continuous and discrete adjoints to the Euler equations
for fluids, International Journal for Numerical Methods in Fluids 70 (2012) 135–157.

[40] P. Heimbach, C. Hill, R. Giering, An efficient exact adjoint of the parallel MIT Gen-
eral Circulation Model, generated via automatic differentiation, Future Generation
Computer Systems 21 (2005) 1356–1371.

[41] Wunsch, C. and Heimbach, P., Practical global oceanic state estimation, Physica
D 230 (2007) 197–208.

[42] J. E. V. Peter, R. P. Dwight, Numerical sensitivity analysis for aerodynamic opti-
mization: a survey of approaches, Computers & Fluids 39 (2010) 373–391.

[43] A. Griewank, A. Walther, Algorithm 799: Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation, ACM
Transactions on Mathematical Software 26 (2000) 19–45.

[44] A. Kowarz, A. Walther, Optimal checkpointing for time-stepping procedures in
ADOL-C, in: Proceedings of the 6th international conference on Computational
Science - Volume Part IV, ICCS’06, Springer-Verlag, 2006, pp. 541–549.

[45] A. N. Brooks, T. J. R. Hughes, Streamline upwind / Petrov-Galerkin formula-
tions for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering
32 (1982) 199–259.

[46] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, The finite element method for fluid
dynamics, 6 ed., Butterworth-Heinemann, 2005.

[47] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type, Mathematical Proceed-
ings of the Cambridge Philosophical Society 43 (1947) 50–67.

[48] D. F. Griffiths, The ’no boundary condition’ outflow boundary condition, Interna-
tional Journal for Numerical Methods in Fluids 24 (1997) 393–411.

[49] I. M. Navon, X. Zou, J. Derber, J. Sela, Variational data assimilation with an
adiabatic version of the NMC spectral model (????).

[50] O. R. Burggraf, Analytical and numerical studies of the structure of steady sepa-
rated flows, Journal of Fluid Mechanics 24 (1966) 113–151.

37

[51] C. J. Cotter, D. A. Ham, C. C. Pain, S. Reich, LBB stability of a mixed Galerkin
finite element pair for fluid flow simulations, Journal of Computational Physics 228
(2009) 336–348.

[52] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontin-
uous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis
39 (2002) 1749–1779.

[53] K. B. Ølgaard, A. Logg, G. N. Wells, Automated code generation for discontinuous
Galerkin methods, SIAM Journal on Scientific Computing 31 (2008) 849–864.

[54] R. Ford, C. C. Pain, M. D. Piggott, A. J. H. Goddard, C. R. E. de Oliveira, A. P.
Umpleby, A nonhydrostatic finite-element model for three-dimensional stratified
oceanic flows. Part I: Model formulation, Monthly Weather Review 132 (2004)
2816–2831.

[55] T. A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multi-
frontal method, ACM Transactions on Mathematical Software 30 (2004) 196–199.

[56] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc Users Manual, Technical
Report ANL-95/11, Argonne National Laboratory, 2011. Revision 3.2.

[57] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and
Statistical Computing 13 (1992) 631–644.

[58] C. J. Cotter, D. A. Ham, C. C. Pain, A mixed discontinuous / continuous finite
element pair for shallow-water ocean modelling, Ocean Modelling 26 (2009) 86–90.

[59] C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-
in pre- and post-processing facilities, International Journal for Numerical Methods
in Engineering 79 (2009) 1309–1331.

[60] O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow,
Computers & Fluids 27 (1998) 421–433.

[61] M. D. Piggott, G. J. Gorman, C. C. Pain, P. A. Allison, A. S. Candy, B. T. Martin,
M. R. Wells, A new computational framework for multi-scale ocean modelling based
on adapting unstructured meshes, International Journal for Numerical Methods in
Fluids 56 (2008) 1003–1015.

[62] D. R. Davies, C. R. Wilson, S. C. Kramer, Fluidity: A fully unstructured anisotropic
adaptive mesh computational modeling framework for geodynamics, Geochemistry
Geophysics Geosystems 12 (2011).

[63] F. Fang, C. C. Pain, M. D. Piggott, G. J. Gorman, A. J. H. Goddard, An adaptive
mesh adjoint data assimilation method applied to free surface flows, International
Journal for Numerical Methods in Fluids 47 (2005) 995–1001.

38

[64] F. Fang, M. D. Piggott, C. C. Pain, G. J. Gorman, A. J. H. Goddard, An adaptive
mesh adjoint data assimilation method, Ocean Modelling 15 (2006) 39–55.

[65] A. Griewank, On automatic differentiation, in: M. Iri, K. Tanabe (Eds.), Mathe-
matical Programming: Recent Developments and Applications, Kluwer Academic
Publishers, 1989, pp. 83–108.

39

