

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Plate tephra; preserved bubble walls from large slug bursts during violent Strombolian eruptions.

Citation for published version:

Ruth, D & Calder, E 2014, 'Plate tephra; preserved bubble walls from large slug bursts during violent Strombolian eruptions.' Geology, vol. 42, no. 1, pp. 11-44. DOI: 10.1130/G34859.1

Digital Object Identifier (DOI):

10.1130/G34859.1

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Geology

Publisher Rights Statement: © 2013 Geological Society of America.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

¹ Plate tephra: Preserved bubble walls from large slug bursts

2 during violent Strombolian eruptions

3 Dawn C.S. Ruth¹* and Eliza S. Calder^{1,2}

4 ¹Department of Geology, 411 Cooke Hall, Buffalo, New York 14260, USA

5 ²School of Geosciences, Grant Institute, The King's Buildings, West Mains Road,

6 University of Edinburgh, Edinburgh EH9 3JW, UK

7 *E-mail: dcs34@buffalo.edu.

8 ABSTRACT

9 Unusual "plate tephra" are described and provide key information about rarely 10 observed processes occurring during volcanic eruptions. The tephra formed during the 11 2008–2009 eruption of Llaima volcano, Chile and dispersed as far as 9 km from the vent. 12 The plates are angular clasts of vesicular basaltic-andesite ranging in size from 1 to 14 13 cm and in thickness from 2 to 5 mm. External features such as ridges, varying degrees of 14 curvature, and adhered material are present. Internal textures include strong crystal 15 alignment and deformed enclaves. We propose that the plates are wall fragments formed 16 during the rupture of large gas slugs associated with unsteady fire fountaining during the 17 violent Strombolian phase of the eruption. The presence of plate tephra may be a 18 diagnostic feature of highly unsteady activity where slug rupture is concurrent with the 19 formation of a sustained eruption column.

20 INTRODUCTION

Distinct vesicular, basaltic andesite plates produced during the violent
Strombolian opening phase of the 2008–2009 eruption of Llaima volcano, Chile, are

23	investigated. These clasts are part of the juvenile tephra that also included a bimodal
24	scoria population, characterized by brown and black scoria of low and high density,
25	respectively. The plates share morphological characteristics with other unusual tephra
26	such as pajaritos (Foshag and González, 1956), lava flakes (Maleyev and Vande-Kirkov,
27	1983), and limu o Pele (Schipper and White, 2010). Here we characterize the Llaima
28	plate tephra, investigate their origin, and present a formation model that explains their
29	morphological, textural, and dispersal characteristics. These plates represent an
30	overlooked fragmentation product in the context of violent Strombolian eruptions, yet
31	their generation has important implications for both conduit and plume processes.
32	2008–2009 ERUPTION OF LLAIMA
33	Llaima is a basaltic andesite stratovolcano (3125 m a.s.l. [above sea level])
34	located in the Southern Volcanic Zone of the Chilean Andes (Fig. 1), which erupted on
35	average every 5–6 yr over the past 400 yr (Dzierma and Wehrmann, 2010). The latest

36 eruption began on 1 January 2008 with violent Strombolian activity producing a

37 sustained eruption column 3.5–11 km in height. A tephra blanket was deposited to the

ast-southeast, with thicknesses up to 11 cm (Smithsonian Institution, 2013a). The

39 opening phase lasted 13.5 h, and lower level activity continued occasionally until 21

40 February 2008. Periodic low-level Strombolian activity persisted until July 2008 and

41 waned by the end of April 2009 (Smithsonian Institution, 2013b).

42 **DEPOSIT DESCRIPTION**

Isopleth and isopach maps were produced for the tephra deposit (Fig. 2). For both
scoria, the isopleth dispersal axis is due east of the vent, whereas the plate isopleths mark
a more constrained zone to the east-southeast of the vent. Plate dimensions range from

46	major axis diameters of ~14 cm (6 km from the vent) to 1 cm (9 km from the vent). Over
47	the same area, black scoria range in size from 8 to 5 cm and the brown scoria from 7 to 3
48	cm (see the GSA Data Repository ¹). Plate abundance is estimated at $<1\%$ of the deposit
49	by volume. It was not possible to distinguish whether they occupied a specific
50	stratigraphic position.
51	The average plate density is 813 kg m ⁻³ , whereas black and brown scoria densities
52	are 583 kg m ⁻³ , and 340 kg m ⁻³ , respectively (Fig. 2a-c, insets). Eruption parameters were
53	calculated as follows: the deposit volume is ${\sim}1.31 \times 10^6~\text{m}^3$ after Bonadonna and Costa
54	(2012); and assuming a deposit density of 583 kg m ⁻³ , the mass eruption rate (MER) for
55	the opening 13 h, 36 min, is $\sim 1.6 \times 10^4$ kg s ⁻¹ after Pioli et al. (2008).
56	TEPHRA CHARACTERISTICS
57	Hand Sample Textures
58	Plate shapes are oblate to bladed based on the Zingg shape parameter (Zingg,
-	
59	1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively
59 60	1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant
59 60 61	1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and
59606162	1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and 3c), but ~5% are folded with the edges tacked together. Scoria fragments are found
5960616263	1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and 3c), but ~5% are folded with the edges tacked together. Scoria fragments are found adhered to either surface. Major-axis parallel ridges and tension cracks are present on the
 59 60 61 62 63 64 	1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and 3c), but ~5% are folded with the edges tacked together. Scoria fragments are found adhered to either surface. Major-axis parallel ridges and tension cracks are present on the plate surfaces, occasionally on both sides.
 59 60 61 62 63 64 65 	 1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and 3c), but ~5% are folded with the edges tacked together. Scoria fragments are found adhered to either surface. Major-axis parallel ridges and tension cracks are present on the plate surfaces, occasionally on both sides. Microscopic Textures
 59 60 61 62 63 64 65 66 	 1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and 3c), but ~5% are folded with the edges tacked together. Scoria fragments are found adhered to either surface. Major-axis parallel ridges and tension cracks are present on the plate surfaces, occasionally on both sides. Microscopic Textures Thin sections show contrasting vesicularity and crystallinity for the three clast
 59 60 61 62 63 64 65 66 67 	 1935; Wilson and Huang, 1979) (Fig. 3a) (Table 1). Minor axis dimensions are relatively constant (~4 mm), irrespective of plate size. By contrast, both scoria are generally equant to prolate. Approximately 90% of the 120 plates collected show curvature (Figs. 3b and 3c), but ~5% are folded with the edges tacked together. Scoria fragments are found adhered to either surface. Major-axis parallel ridges and tension cracks are present on the plate surfaces, occasionally on both sides. Microscopic Textures Thin sections show contrasting vesicularity and crystallinity for the three clast types (see the Data Repository, Fig. 4). Vesicularity in the black scoria is moderate to

69	vesicularity with abundant smaller, more homogeneous and rounded vesicles. In the
70	plates, vesicles are convolute (with roughness from impinging crystals) to rounded and
71	are well connected, often forming long trains of bubbles parallel to the major plane.
72	The black scoria are highly crystalline (\sim 50%–60%; tachylite), whereas the brown
73	scoria has lower crystallinity (~10%-15%; sideromelane). Some brown scoria contain
74	clots of higher crystallinity magma which are similar to the black scoria. Crystallinity of
75	the plates ranges from 40 to 50 vol%, similar to that observed in the black scoria. The
76	black and brown scoria are texturally akin to the "high porphyricity" (HP) and "low
77	porphyricity" (LP) scoria at Stromboli, respectively (Francalanci et al., 2004).
78	In all tephra, the mineralogy is mostly plagioclase with minor olivine (Fig. 4a and
79	4b). Plagioclase phenocrysts are 10–15 vol% of the overall crystal population, are
80	euhedral to subhedral, sieve textured with growth rims, and occasionally occur as
81	glomerocrysts. Olivine represent ~1 vol% of the total crystal population are subhedral to
82	anhedral with visible melt inclusions. The groundmass for all tephra is mostly plagioclase
83	microlites. Minor amounts of pyroxene and Fe-Ti spinel (<10 μ m) are present in the
84	black scoria and plates.
85	A striking internal textural feature unique to the plates is the ubiquitous alignment
86	of crystals (Fig. 4c). Plagioclase and olivine phenocrysts and plagioclase microlites are

parallel to subparallel to the plate-parallel plane. Relatively large, dark enclaves, with
high Fe-Ti spinel and pyroxene content, are also present (Figs. 4a and 4b). The enclaves
are aligned relative to the major plane and show pinch-and-swell features. Neighboring
crystals and spinel-rich bands bend around the enclaves and glomerocrysts where present.

91 SIMILAR TEPHRA FROM ELSEWHERE

92	Similar tephra have been found elsewhere including pajaritos from Parícutin,
93	Mexico (Foshag and González, 1956; Pioli et al., 2008) and lava flakes from Tolbachik,
94	Russia (Maleyev and Vande-Kirkov, 1983). Pajaritos are microvesicular sideromelane
95	plates, centimeteres in diameter that show partial folding, and have external millimeter
96	size ridges (Pioli et al., 2008). Lava flakes are 5–20 cm diameter, 1–3 mm thick, slightly
97	vesicular, and show deformation (Maleyev and Vande-Kirkov, 1983). Only Maleyev and
98	Vande-Kirkov (1983) proposed that the plates represented ruptured bubbles walls, but
99	both studies associated these clasts with violent, pulsating, Strombolian activity.
100	Small (millimeter size) glassy, non-vesicular plates, termed limu o Pele, are
101	observed at lava flow ocean entries and in submarine deposits, notably at Lo'ihi volcano,
102	Hawaii (Schipper and White, 2010). Again, formation models involve the inflation and
103	rupture of basalt bubbles produced by either trapped super-heated seawater (Clague et al.,
104	2000), and/or from magmatic gases associated with Strombolian eruptions (Clague et al.,
105	2003).

106 **C**

CONCEPTUAL MODEL OF FORMATION

107 We suggest that pajaritos, lava flakes, and the Llaima plates are formed by the 108 same mechanism and recommend the umbrella term "plate tephra" be used to describe 109 similar clasts in the future. Our model elaborates on the basic model invoked by Maleyev 110 and Vande-Kirkov (1983) and accounts for a number of common features of these clasts. 111 We interpret the distinct shape of the plates, as well as internal textures, as caused 112 by extensional thinning of a magma film originating as walls of large slugs (several to 113 tens of meters in diameter) (Fig. 5a). In this model, expanding bubbles, near or above the 114 vent, experience film thinning, ductile deformation, and then undergo a primary phase of

115	inertial fragmentation, generating large, possibly sheet-shaped tatters of magma. During
116	flight, these ductile tatters are subject to chaotic rotation, torsion, and tension, as well as
117	cooling. Upon cooling to the glass transition temperature and thinning to a critical film
118	thickness of ~4 mm, they fragment brittly forming the observed angular plates. The
119	plates, instead of being ejected ballistically, were entrained into the eruption column and
120	dispersed according to their interaction with the wind field.
121	Strong crystal alignment during bubble expansion has been reproduced
122	experimentally (Yu et al., 2008). Furthermore, the near perfect crystal alignment with the
123	plate-parallel plane is typically formed in pure shear conditions associated with thinning
124	and extension (Manga, 1998). The observed pinch-and-swell enclaves and flow banding
125	are characteristics inherited at this stage. We infer that initial fragmentation of the bubble
126	film produces fluidal ejecta (on the basis of video observations), so primary
127	fragmentation is inertial, rather than brittle, in nature (Namiki and Manga, 2008).
128	Possible film retraction and additional plastic deformation of these plate parent particles
129	is evident in the form of the surface ridges (i.e., wrinkles, see Debrégeas et al., 1998),
130	variable curvature, tacked edges, and adhered material. The observed cracks are
131	interpreted as tension fracturing of a cooler, brittle crust covering ductile interior. Finally,
132	the abrupt selvages and lack of thinning at the edge of individual plates imply a
133	secondary brittle fragmentation event, probably occurring in the eruption column.
134	Online videos of the eruption show highly unsteady fire fountaining punctuated
135	by discrete slug bursts occurring tens to hundreds of meters above the vent (Fig. 5a).
136	Illustrative screen shots of footage from 23:00 on 1 January 2008–04:00 on 2 January
137	2008 (local time) (Figs. 5b and 5c) shows the continued advance and expansion of a

138 fragmentation front populated by large sheets and clots of lava from a recently ruptured

139 slug. In the video, fire fountaining resumes shortly after this particular slug rupture.

140 IMPLICATIONS

141 Material Behavior

142 The plate tephra experience significant rheological changes during the entire 143 formation process. Their complex deformation and fragmentation history is determined 144 by both cooling-related and strain-rate dependent behavior of magma. The limu o Pele 145 have distinctive features (see Schipper and White, 2010), which unlike those of the subaerial plates, are determined by rapid quenching ($10^{5.31}$ K s⁻¹; Potuzak et al., 2008) 146 147 before fragmentation (i.e., quench granulation; Maicher et al., 2000; Schipper et al., 148 2013). Calculated minimum quench rates for the Llaima plate tephra range from 2 to 5 K s^{-1} (see the Data Repository), about six orders of magnitude slower than limu o Pele. 149 150 Thus, initial fragmentation occurs prior to the completion of cooling, allowing for post-151 fragmentation melt relaxation, plastic deformation, and material adhesion during flight. 152 Assuming the estimated quench rate and an eruption temperature of 1050 $^{\circ}$ C, the glass 153 transition temperature (700 °C; Gregg and Zimbelman, 2000) could be reached in $\sim 1-3$ 154 min, allowing for secondary brittle fragmentation to occur during flight. 155 **Conduit Flow** 156 Magma provenance is inferred from internal textures in the tephra. The high 157 crystallinity and density of the plates and black scoria suggests this magma may have

- 158 originated near the conduit walls (e.g., Cimarelli et al., 2010), and/or that vesicle collapse
- 159 occurred during film thinning. The high vesicularity and low crystallinity of the brown

160 scoria suggests a hotter, more volatile-rich magma, that ascended from depth up the

161 center of the conduit.

162	Video observations indicate highly unsteady eruptive behavior, with intensity and
163	gas decoupling varying on minute to second time scales. The fire fountaining and
164	resultant scoria represent relatively high intensity and either limited gas decoupling (for
165	foam fragmentation), or complete decoupling (if an annular flow regime is achieved).
166	The plates and large slugs indicate periods of relatively low intensity with significant gas
167	decoupling. Rapidly fluctuating behavior is possible due to nonlinear coupling and
168	decoupling of ascending phases (i.e., magma and gas) (Dartevelle and Valentine, 2007),
169	which may be enhanced by viscosity variations in the conduit. According to Pioli et al.
170	(2009), the estimated MER of 10^4 kg s^{-1} implies limited gas decoupling and the
171	development of a sustained column, which corresponds with plume observations
172	(Smithsonian Institution, 2013a). Since MER is an eruption-averaged value, finer scale
173	variations in conduit flow behavior are not captured. In this context plates can be a useful
174	diagnostic feature of highly unsteady violent Strombolian eruptions.
175	Plume Conditions

Based on their planar shape and similar densities to the scoria, we infer the plates had a lower fall velocity, as a function of increased surface drag and chaotic fall behavior (e.g., tumbling and fluttering) (Foshag and González, 1956; Wilson and Huang, 1979; Andersen et al., 2005; Pioli et al., 2008). This would have allowed increased transport of the plates, with respect to the scoria, which is reflected in the factor of 2.5 difference in the clast diameters at the same distance (Figs. 2a-2c). Further, the cross-wind distribution of plates in the deposit was evidently limited with respect to the scoria; this likely relates

to the complex interaction of the plates with the wind field, such as possibly the

184 decoupling from the plume at lower heights.

185 CONCLUSIONS

186 We characterize an uncommonly reported type of plate-shaped tephra produced 187 during a violent Strombolian eruption at Llaima volcano. From morphological, textural 188 and video observations we infer the plates are formed by thinning and extension of a 189 magma film, followed by inertial fragmentation as large gas slugs emanate from the 190 conduit and rupture above the vent. The primary fragmentation results in thin sheets that 191 continue to deform in flight, eventually cooling and undergoing secondary, brittle 192 fragmentation to form the observed plates. They are formed during highly unsteady flow 193 where the bursting of discrete gas slugs punctuates the more sustained fire fountaining. 194 The plates are entrained into the eruption column, yet their distinct aerodynamic 195 properties result in slightly modified dispersal features with respect to the scoria. Finally, 196 this class of tephra although not common, is also not unique, and has been briefly 197 described previously under a variety of nomenclature. We propose that these should 198 collectively be termed plate tephra and suggest that they are an important diagnostic 199 feature of the highly unsteady flow conditions common in some violent Strombolian 200 eruptions.

201 ACKNOWLEDGMENTS

Funding provided by a Geological Society of America Graduate Student
Research Grant to Ruth and National Science Foundation grant EAR-0828070 to
Calder. Thanks to J. Cortés, D. Schonwalder-Angel, R. Leach, P. Whelley, and A.
Brownell for help in the field. Thanks to J. Ball, A. Graettinger, and G. Valentine for

- 206 helpful discussions. Useful comments were provided by C.I. Schipper and three
- 207 anonymous reviewers.

208 **REFERENCES CITED**

- 209 Andersen, A., Pesavento, U., and Wang, Z.J., 2005, Unsteady aerodynamics of fluttering
- and tumbling plates: Journal of Fluid Mechanics, v. 541, p. 65–90,
- doi:10.1017/S002211200500594X.
- 212 Bonadonna, C., and Costa, A., 2012, Estimating the volume of tephra deposits: A new
- simple strategy: Geology, v. 40, p. 415–418, doi:10.1130/G32769.1.
- 214 Cimarelli, C., Di Traglia, F., and Taddeucci, J., 2010, Basaltic scoria textures from a
- 215 zoned conduit as precursors to violent Strombolian activity: Geology, v. 38, p. 439–
- 216 442, doi:10.1130/G30720.1.
- 217 Clague, D.A., Davis, A.S., Bischoff, J.L., Dixon, J.E., and Geyer, R., 2000, Lava bubble-
- 218 wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount
- and Kilauea Volcano: Bulletin of Volcanology, v. 61, p. 437–449,
- doi:10.1007/PL00008910.
- 221 Clague, D.A., Batiza, R., Head, J.W., III, and Davis, A.S., 2003, Pyroclastic and
- hydroclastic deposits on Loihi Seamount, Hawaii, *in* White, J.D.L., et al., eds.,
- 223 Explosive Subaqueous Volcanism: American Geophysical Union Monograph 140, p.
- 224 73–96.
- 225 Dartevelle, S., and Valentine, G.A., 2007, Transient multiphase processes during the
- explosive eruption of basalt through a geothermal borehole (Námafjall, Iceland,
- 227 1977) and implications for natural volcanic flows: Journal of Volcanology and
- 228 Geothermal Research, v. 262, p. 363–384, doi:10.1016/j.epsl.2007.07.053.

229	Debrégeas, G., de Gennes, PG., and Brochard-Wyart, F., 1998, The life and death of
230	"bare" viscous bubbles: Science, v. 279, p. 1704–1707,
231	doi:10.1126/science.279.5357.1704.
232	Dzierma, Y., and Wehrmann, H., 2010, Eruption time series statistically examined:
233	probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern
234	Volcanic Zone, Chile: Journal of Volcanology and Geothermal Research, v. 193,
235	p. 82–92, doi:10.1016/j.jvolgeores.2010.03.009.
236	Foshag, W.F., and González, J., 1956, Birth and development of Parícutin Volcano
237	Mexico: U.S. Geological Survey Bulletin, v. 965, p. 355–489.
238	Francalanci, L., Tommasini, S., and Conticelli, S., 2004, The volcanic activity of
239	Stromboli in the 1906–1998 A.D. period: mineralogical, geochemical and isotope
240	data relavant to the understanding of the plumbing system: Journal of Volcanology
241	and Geothermal Research, v. 131, p. 179–211, doi:10.1016/S0377-0273(03)00362-7.
242	Gregg, T.K.P., and Zimbelman, J.R., 2000, Volcanic vestiges, in Zimbelman, J.R. and
243	Gregg, T.K.P., eds., Environmental Effects on Volcanic Eruptions: From Deep
244	Oceans to Deep Space: Amsterdam, Kluwer Academin and Plenum Publishers, p.
245	243–251.
246	Houghton, B.F., and Wilson, C.J.N., 1989, A vesicularity index for pyroclastic deposits:
247	Bulletin of Volcanology, v. 51, p. 451–462, doi:10.1007/BF01078811.
248	Maicher, D., White, J.D.L., and Batiza, R., 2000, Sheet hyaloclastite: density-current
249	deposits of quench and bubble-burst fragments from thin, glassy sheet lava flows,
250	Seamount Six, Eastern Pacific Ocean: Marine Geology, v. 171, p. 75–94,
251	doi:10.1016/S0025-3227(00)00109-2.

252	Maleyev, Y.F., and Vande-Kirkov, Y.V., 1983, Features of pyroclastics of the Northern
253	Breakthrough of the Great Tolbachik Fissure Eruption and the origin of its pale-grey
254	ash, in Fedotov, S.A. and Markhinin, Y.K., eds., The Great Tolbachik Fissure
255	Eruption: Geological and geophysical data 1975–1976: Cambridge, UK, Cambridge
256	University Press, p. 57–71.
257	Manga, M., 1998, Orientation distribution of microlites in obsidian: Journal of
258	Volcanology and Geothermal Research, v. 86, p. 107-115, doi:10.1016/S0377-
259	0273(98)00084-5.
260	Morgan, D.J., and Jerram, D.A., 2006, On estimating crystal shape for crystal size
261	distribution analysis: Journal of Volcanology and Geothermal Research, v. 154, p. 1–
262	7, doi:10.1016/j.jvolgeores.2005.09.016.
263	Namiki, A., and Manga, M., 2008, Transition between fragmentation and permeable
264	outgassing of low viscosity magmas: Journal of Volcanology and Geothermal
265	Research, v. 169, p. 48-60, doi:10.1016/j.jvolgeores.2007.07.020.
266	Pioli, L., Azzopardi, B.J., and Cashman, K.V., 2009, Controls on the explosivity of scoria
267	cone eruptions: Magma segregation at conduit juncitons: Journal of Volcanology and
268	Geothermal Research, v. 186, p. 407–415, doi:10.1016/j.jvolgeores.2009.07.014.
269	Pioli, L., Erlund, E., Johnson, E., Cashman, K., Wallace, P., Rosi, M., and Delgado
270	Granados, H., 2008, Explosive dynamics of violent Strombolian eruptions: The
271	eruption of Parícutin Volcano 1943–1952 (Mexico): Earth and Planetary Science
272	Letters, v. 271, p. 359–368, doi:10.1016/j.epsl.2008.04.026.

- 273 Potuzak, M., Nichols, A.R.L., Dingwell, D.B., and Clague, D.A., 2008, Hyperquenched
- volcanic glass from Loihi Seamount, Hawaii: Earth and Planetary Science Letters,
- 275 v. 270, p. 54–62, doi:10.1016/j.epsl.2008.03.018.
- 276 Schipper, C.I., Sonder, I., Schmid, A., White, J.D.L., Dürig, T., Zimanowski, B., and
- Büttner, R., 2013, Vapour dynamics during magma-water interaction experiments:
- 278 hydromagmatic origins of submarine volcaniclastic particles (limu o Pele):
- 279 Geophysical Journal International, v. 192, p. 1109–1115, doi:10.1093/gji/ggs099.
- 280 Schipper, C.I., and White, J.D.L., 2010, No depth limit to hydrovolcanic limu o Pele:
- analysis of limu from Lo'ihi Seamount, Hawai'i: Bulletin of Volcanology, v. 72,
- 282 p. 149–164, doi:10.1007/s00445-009-0315-5.
- 283 Institution, S., 2013a, Llaima: Bulletin of the Global Volcanism Network, v. 33,
- 284 http://www.volcano.si.edu/world/volcano.cfm?vnum=1507-
- 285 11=&volpage=var#bgvn_3306.
- 286 Institution, S., 2013b, Llaima: Bulletin of the Global Volcanism Network, v. 35,
- 287 http://www.volcano.si.edu/world/volcano.cfm?vnum=1507-
- 288 11=&volpage=var#bgvn_3506.
- 289 Wilson, L., and Huang, T.C., 1979, The influence of shape on the settling velocity of
- volcanic ash particles: Earth and Planetary Science Letters, v. 44, p. 311–324,
- doi:10.1016/0012-821X(79)90179-1.
- 292 Yu, G., Li, X., Lieber, C.M., and Cao, A., 2008, Nanomaterial-incorporated blown
- bubble films for large-area aligned nanostructures: Journal of Materials Chemistry,
- v. 18, p. 728–734, doi:10.1039/b713697h.
- Zingg, T., 1935, Beitrage zur Schotteranalyse [Ph.D. thesis]: Zurich, ETH, 141 p.

296**FIGURE CAPTIONS**

Figure 1. A: Location map of Llaima volcano, Chile. B: Southeast view of the eruption
plume (~3–5 km above the vent) produced on 15 January 2008. Courtesy of Juan Enrique
Llona.

300

301 Figure 2. Simplified isopleth maps for plate tephra (A), black (B), and brown (C) scoria. 302 Black dots denote sample locations. Average diameter (cm) was calculated from three 303 measured dimensions of the ten largest clasts at each location, where possible. For the 304 plates, the parenthetical values are the average diameter calculated from the major and 305 intermediate axes only, for easier comparison with scoria isopleths. The insets are the 306 density histograms for each tephra type. Density determined after Houghton and Wilson 307 (1989). D: Deposit isopach map with contours in centimeters. 308 309 Figure 3. A: Plot of axial ratios of plates and scoria, the tephra after Wilson and Huang 310 (1979). Note that the plates and scoria fall in separate fields. B: Assorted plates with 311 varied curvature and size. C: Image of curved plate tephra and the major-axis parallel

312313

ridges.

314 Figure 4. A: Thin section image shown parallel to major axis of a plate exhibiting aligned

315 plagioclase and deformed enclaves. B: Backscattered electron (BSE) image of the

316 enclave in A. The plagioclases align around the enclave, which exhibits more Fe-Ti

317 spinel and pyroxene. Image obtained using a SU-70 Hitachi SEM at University at

318 Buffalo, New York, USA. C: Rose diagrams of the main mineral phases. Data plotted in

 obtain the true average orientation. The horizontal axis is 0°. Axial ratios calculated using CSDSlice (Morgan and Jerram, 2006). Additional thin section images are shown in the Data Repository (see footnote 1). Figure 5. A: Model for plate formation illustrating the relationship between conduit flow and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	319	the northwest quadrant of the rose diagram were projected into the southeast quadrant to
 321 CSDSlice (Morgan and Jerram, 2006). Additional thin section images are shown in the 322 Data Repository (see footnote 1). 323 324 Figure 5. A: Model for plate formation illustrating the relationship between conduit flow 325 and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in 326 the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. 328 Dashed lines in this image show the location of the fragmentation front in B. 329 ³³⁰ ¹GSA Data Repository item 2013xxx, xxxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or 332 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	320	obtain the true average orientation. The horizontal axis is 0°. Axial ratios calculated using
 Data Repository (see footnote 1). Figure 5. A: Model for plate formation illustrating the relationship between conduit flow and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	321	CSDSlice (Morgan and Jerram, 2006). Additional thin section images are shown in the
 Figure 5. A: Model for plate formation illustrating the relationship between conduit flow and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	322	Data Repository (see footnote 1).
 Figure 5. A: Model for plate formation illustrating the relationship between conduit flow and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	323	
 and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	324	Figure 5. A: Model for plate formation illustrating the relationship between conduit flow
 the foreground right, corresponds to tree branches. B: Fragmentation front captured after a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	325	and resultant tephra type. B,C: Screen shots of the video at 1:33–1:35. Note, silhouette in
 a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B. Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	326	the foreground right, corresponds to tree branches. B: Fragmentation front captured after
 Dashed lines in this image show the location of the fragmentation front in B. ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	327	a slug burst. C: Expanding fragmentation front of the same large ruptured slug as in B.
 ³²⁹ ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at ³³¹ www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or ³³² Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	328	Dashed lines in this image show the location of the fragmentation front in B.
 ¹GSA Data Repository item 2013xxx, xxxxxxx, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 	329	
 331 www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or 332 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 333 334 335 	330	¹ GSA Data Repository item 2013xxx, xxxxxxx, is available online at
 332 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 333 334 335 	331	www.geosociety.org/pubs/ft2013.htm, or on request from editing@geosociety.org or
333 334 335	332	Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
	333 334 335	

	n	Average Major Axis (cm)	Average Intermediate Axis (cm)	Average Minor Axis (cm)	Zingg (b/a) (intermediate/major)	Zingg (c/b) (minor/intermediate)
Plates	424	4.5 (±2.4)	3.3 (±1.8)	0.4 (±0.2)	0.7	0.1
Black scoria	1009	3.6 (±1.4)	2.5 (±1.2)	1.6 (±1.1)	0.7	0.6
Brown scoria	1025	2.9 (±1.3)	2.0 (±1.1)	1.3 (±0.8)	0.7	0.7

Note: Numbers in parentheses are 1σ standard deviation and n is number of clasts measured.

336

Figure 1

Figure 2

Figure 4

Figure 5

1 SUPPLEMENTAL MATERIALS

2 Quench rate calculation

Quench rates were estimated using the following equation (Xu and Zhang, 2002): 3 4 $q=(T_{ae}-T_{ff})h/\rho C_{p}L$ where T_{ae} is the apparent equilibrium temperature, T_{ff} is the glass transition temperature, h is the 5 6 heat transfer coefficient, ρ is material density, C_p is the heat capacity of basalt, and L is the effective half thickness of the object (volume/surface area). We assumed an equilibrium 7 8 temperature of 1450 K, a glass transition temperature of 1000 K (Gregg and Zimbelman, 2000), a heat transfer coefficient of 50 W m⁻² K⁻¹ (Robertson, 1988), a density of 2750 kg m⁻³, and heat 9 capacity of 1200 J kg⁻¹ K⁻¹ (Greg and Zimbelman, 2000). To determine L, we assumed the plate 10 shapes were rectangular prisms with the dimensions reported in Table 1. 11 **Figures and Video** 12 Back scattered electron images of the brown and black scoria are provided for reference 13 (Fig. S1). Additional thin sections are provided to show the range of textures observed within the 14

15 plate tephra (Fig. S2).

16 Observations of one fragmenting slug concurrent with fire fountaining were conducted on17 video provided by Patricio Oberg.

References

19	Gregg, T.K.P., and Zimbelman, J.R., 2000, Volcanic Vestiges, in Zimbelman, J.R. and Gregg,
20	T.K.P. eds., Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep
21	Space, Kluwer Academin/Plenum Publishers, p. 243-251.
22	Robertson, E.C., 1988, Thermal properties of rocks: U.S. Geologic Survey Open-File Report 88-
23	441, 106 p.
24	Xu, Z., and Zhang, Y., 2002, Quench rates in air, water, and liquid nitrogen, and inferences of
25	temperature in volcanic eruption columns: Earth and Planetary Science Letters, v. 200, p.
26	315-330.

27 FIGURE CAPTION

- Figure S1. Back-scattered electron images of brown scoria (A) and black scoria (B). Note that
- 29 images were collected at the same scale.
- 30 Figure S2. An assortment of plate tephra in thin section. All tephra are at approximately the
- 31 same scale. Note the ubiquitously aligned plagioclase crystals, the presence of flow banding and
- 32 wide range of vesicularity.

33

