THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators

Citation for published version:
Benyi, A \& Oh, T 2014, 'Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators' Journal of Fourier Analysis and Applications, vol. 20, no. 2, pp. 282-300. DOI: 10.1007/s00041-013-9312-3

Digital Object Identifier (DOI):
10.1007/s00041-013-9312-3

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Journal of Fourier Analysis and Applications

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s00041-013-9312-3.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

SMOOTHING OF COMMUTATORS FOR A HÖRMANDER CLASS OF BILINEAR PSEUDODIFFERENTIAL OPERATORS

ÁRPÁD BÉNYI AND TADAHIRO OH

Abstract

Commutators of bilinear pseudodifferential operators with symbols in the Hörmander class $B S_{1,0}^{1}$ and multiplication by Lipschitz functions are shown to be bilinear Calderón-Zygmund operators. A connection with a notion of compactness in the bilinear setting for the iteration of the commutators is also made.

1. Motivation, preliminaries and statements of main Results

The work of Calderón and Zygmund on singular integrals and Calderón's ideas $[7,8]$ about improving a pseudodifferential calculus, where the smoothness assumptions on the coefficients are minimal, have greatly affected research in quasilinear and nonlinear PDEs. The subsequent investigations about multilinear operators initiated by Coifman and Meyer [12] in the late 70s have added to the success of Calderón's work on commutators. A classical bilinear estimate, the so-called Kato-Ponce commutator estimate [20], is crucial in the study of the Navier-Stokes equations. This estimate is a general Leibniz-type rule which takes the form

$$
\begin{equation*}
\left\|D^{\alpha}(f g)\right\|_{L^{r}} \lesssim\left\|D^{\alpha} f\right\|_{L^{p}}\|g\|_{L^{q}}+\|f\|_{L^{p}}\left\|D^{\alpha} g\right\|_{L^{q}} \tag{1.1}
\end{equation*}
$$

for $1<p, q \leq \infty, 0<r<\infty, 1 / p+1 / q=1 / r$ and $\alpha>0$. More general Leibniztype rules that apply to bilinear pseudodifferential operators with symbols in the bilinear Hörmander classes $B S_{\rho, \delta}^{m}$ (see (1.7) below for their definition) can be found, for example, in the works of Bényi et al. [1, 2, 3] and Bernicot et al. [6]. Interestingly, for $\alpha=1$ and in dimension one, the Kato-Ponce estimate (1.1) is closely related to the boundedness of the so-called Calderón's first commutator. Given a Lipschitz function a and $f \in L^{2}$, define $C(a, f)$ by

$$
C(a, f)=p \cdot v \cdot \int_{\mathbb{R}} \frac{a(x)-a(y)}{(x-y)^{2}} f(y) d y .
$$

Then, denoting by H the classical Hilbert transform, we can identify the operator $C(a, \cdot)$ with the commutator of $T=H \circ \partial_{x}$ and the multiplication by the Lipschitz function a; that is, $C(a, f)=[T, a](f):=T(a f)-a T(f)$. While we have no hope

[^0]of controlling each of the individual terms defining $[T, a]$, the commutator itself does behave nicely; Calderón showed [8] that $\|[T, a]\|_{L^{2}} \leq\left\|a^{\prime}\right\|_{L^{\infty}}\|f\|_{L^{2}}$, effectively producing the bilinear boundedness of the operator $C: \operatorname{Lip}_{1} \times L^{2} \rightarrow L^{2}$. Moreover, the boundedness of the first commutator can be extended to give the following result, see [22, Theorem 4 on p. 90]:

Theorem A. Let T_{σ} be a linear pseudodifferential operator with symbol $\sigma \in S_{1,0}^{1}$ and a be a Lipschitz function such that $\nabla a \in L^{\infty}$. Then, $\left[T_{\sigma}, a\right]$ is a linear CalderónZygmund operator. In particular, $\left[T_{\sigma}, a\right]$ is bounded on $L^{p}, 1<p<\infty$. Conversely, if $\left[D_{j}, a\right]$ is bounded on $L^{2}, j=1 \ldots, n$, then $\nabla a \in L^{\infty}$.

The statement of Theorem A is the very manifestation of the so-called commutator smoothing effect: while the Hörmander class of symbols $S_{1,0}^{1}$ does not yield bounded pseudodifferential operators on L^{p}, the commutator with a sufficiently smooth function (Lipschitz in our case) fixes this issue. An application of this result can be found in the work of Kenig, Ponce and Vega [21] on nonlinear Schrödinger equations.

The smoothing effect of commutators gets better when we commute with special multiplicative functions. For example, the result of Coifman, Rochberg and Weiss [11] gives the boundedness on $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$, of linear commutators of CalderónZygmund operators and pointwise multiplication, when the multiplicative function (or symbol) is in the John-Nirenberg space BMO. Uchiyama [28] improved the boundedness to compactness if the multiplicative function is in $C M O$; here, $C M O$ denotes the closure of C^{∞}-functions with compact supports under the BMO-norm. The CMO in our context stands for "continuous mean oscillation" and is not to be confused with other versions of $C M O$ (such as "central mean oscillation"). In fact, the $C M O$ we are considering coincides with $V M O$, the space of functions of "vanishing mean oscillation" studied by Coifman and Weiss in [13], but also differs from other versions of $V M O$ found in the literature; see, for example, [5] for further comments on the relation between $C M O$ and $V M O$. An application of this compactness to deriving a Fredholm alternative for equations with $C M O$ coefficients in all L^{p} spaces with $1<p<\infty$ was given by Iwaniec and Sbordone [19]. Other important applications appear in the theory of compensated compactness of Coifman, Lions, Meyer and Semmes [10] and in the integrability theory of Jacobians, see Iwaniec [18].

In this work, we seek to extend such results for linear commutators to the multilinear setting. For ease of notation and comprehension, we restrict ourselves to the bilinear case. The bilinear Calderón-Zygmund theory is nowadays well understood; for example, the work of Grafakos and Torres [15] makes available a bilinear $T(1)$ theorem for such operators. As an application of their $T(1)$ result, we can obtain the boundedness of bilinear pseudodifferential operators with symbols in appropriate Hörmander classes of bilinear pseudodifferential symbols. Moreover, the bilinear Hörmander pseudodifferential theory has nowadays a similarly solid foundation, see again $[1,2,3]$ and the work of Bényi and Torres [4].

Our discussion on the study of such classes of bilinear operators, on the one hand, exploits the characteristics of their kernels in the spatial domain and, on the other hand, makes use of the properties of their symbols in the frequency domain. First, consider bilinear operators a priori defined from $\mathcal{S} \times \mathcal{S}$ into \mathcal{S}^{\prime} of the form

$$
\begin{equation*}
T(f, g)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y, z) f(y) g(z) d y d z \tag{1.2}
\end{equation*}
$$

Here, we assume that, away from the diagonal $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3 n}: x=y=z\right\}$, the distributional kernel K coincides with a function $K(x, y, z)$ locally integrable in $\mathbb{R}^{3 n} \backslash \Omega$ satisfying the following size and regularity conditions in $\mathbb{R}^{3 n} \backslash \Omega$:

$$
\begin{equation*}
|K(x, y, z)| \lesssim(|x-y|+|x-z|+|y-z|)^{-2 n} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|K(x, y, z)-K\left(x^{\prime}, y, z\right)\right| \lesssim \frac{\left|x-x^{\prime}\right|}{(|x-y|+|x-z|+|y-z|)^{2 n+1}} \tag{1.4}
\end{equation*}
$$

whenever $\left|x-x^{\prime}\right| \leq \frac{1}{2} \max \{|x-y|,|x-z|\}$. While the condition (1.4) is not the most general that one can impose in such theory, see [15], we prefer to work with this simplified formulation in order to avoid unnecessary further technicalities. For symmetry and interpolation purposes we also require that the formal transpose kernels $K^{* 1}, K^{* 2}$ (of the transpose operators $T^{* 1}, T^{* 2}$, respectively), given by

$$
K^{* 1}(x, y, z)=K(y, x, z) \quad \text { and } \quad K^{* 2}(x, y, z)=K(z, y, x)
$$

also satisfy (1.4). Moreover, for an additional simplification, in the following we will replace the regularity conditions (1.4) on $K, K^{* 1}$ and $K^{* 2}$ with the natural conditions on the gradient ∇K :

$$
\begin{equation*}
|\nabla K(x, y, z)| \lesssim(|x-y|+|x-z|+|y-z|)^{-2 n-1} \tag{1.5}
\end{equation*}
$$

for $(x, y, z) \in \mathbb{R}^{3 n} \backslash \Omega$. We say that such a kernel $K(x, y, z)$ is a bilinear CalderónZygmund kernel. Moreover, given a bilinear operator T defined in (1.2) with a Calderón-Zygmund kernel K (which satisfies (1.3) and (1.5)), we say that T is a bilinear Calderón-Zygmund operator if it extends to a bounded operator from $L^{p_{0}} \times L^{q_{0}}$ into $L^{r_{0}}$ for some $1<p_{0}, q_{0}<\infty$ and $1 / p_{0}+1 / q_{0}=1 / r_{0} \leq 1$.

The crux of bilinear Calderón-Zygmund theory is the following statement, see [15].
Theorem B. Let T be a bilinear Calderón-Zygmund operator. Then, T maps $L^{p} \times L^{q}$ into L^{r} for all p, q, r such that $1<p, q<\infty$ and $1 / p+1 / q=1 / r \leq 1$. Moreover, we also have the following end-point boundedness results:
(a) When $p=1$ or $q=1$, then T maps $L^{p} \times L^{q}$ into $L^{r, \infty}$;
(b) When $p=q=\infty$, then T maps $L^{\infty} \times L^{\infty}$ into $B M O$.

Theorem B assumes the boundedness $L^{p_{0}} \times L^{q_{0}} \rightarrow L^{r_{0}}$ of the operator T for some Hölder triple $\left(p_{0}, q_{0}, r_{0}\right)$. Obtaining one such boundedness via appropriate cancelation conditions is another topic of interest in the theory of linear and multilinear operators with Calderón-Zygmund kernels. A satisfactory answer is provided by the
$T(1)$ theorem; the following bilinear version, as stated by Hart [17], is equivalent to the formulation in [15] and is strongly influenced by the fundamental work of David and Journé [14] in the linear case.

Theorem C. Let $T: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ be a bilinear singular integral operator with Calderón-Zygmund kernel K. Then, T can be extended to a bounded operator from $L^{p_{0}} \times L^{q_{0}}$ into $L^{r_{0}}$ for some $1<p_{0}, q_{0}<\infty$ and $1 / p_{0}+1 / q_{0}=1 / r_{0} \leq 1$ if and only if T satisfies the following two conditions:
(i) T has the weak boundedness property,
(ii) $T(1,1), T^{* 1}(1,1)$ and $T^{* 2}(1,1)$ are in $B M O$.

For the definition of the weak boundedness property, see Subsection 2.5.
Now, we turn our attention to the relation between bilinear Calderón-Zygmund operators and bilinear pseudodifferential operators. A bilinear pseudodifferential operator T_{σ} with a symbol σ, a priori defined from $\mathcal{S} \times \mathcal{S}$ into \mathcal{S}^{\prime}, is given by

$$
\begin{equation*}
T_{\sigma}(f, g)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \sigma(x, \xi, \eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{i x \cdot(\xi+\eta)} d \xi d \eta \tag{1.6}
\end{equation*}
$$

We say that a symbol σ belongs the bilinear class $B S_{\rho, \delta}^{m}$ if

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \lesssim(1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)} \tag{1.7}
\end{equation*}
$$

for all $(x, \xi, \eta) \in \mathbb{R}^{3 n}$ and all multi-indices α, β and γ. Such symbols are commonly referred to as bilinear Hörmander pseudodifferential symbols. The collection of bilinear pseudodifferential operators with symbols in $B S_{\rho, \delta}^{m}$ will be denoted by $\mathcal{O} p B S_{\rho, \delta}^{m}$. Note that, for example, operators in $\mathcal{O} p B S_{\rho, \delta}^{m}$ model the product of two functions and their derivatives.

It is a known fact that bilinear Calderón-Zygmund kernels correspond to bilinear pseudodifferential symbols in the class $B S_{1,1}^{0}$, see [15]. Moreover, Calderón-Zygmund operators are "essentially the same" as pseudodifferential operators with symbols in the subclass $B S_{1, \delta}^{0}, 0 \leq \delta<1$, a fact that in turn is tightly connected to the existence of a symbolic calculus for $B S_{1, \delta}^{0}$, see [1].

Theorem D. Let $\sigma \in B S_{1, \delta}^{0}, 0 \leq \delta<1$. Then, $T_{\sigma}^{* j}=T_{\sigma^{* j}}$ with $\sigma^{* j} \in B S_{1, \delta}^{0}, j=1,2$, and T_{σ} is a bilinear Calderón-Zygmund operator.

Thus, we can view bilinear Calderón-Zygmund operators on the frequency side as operators given by (1.6) with symbols $\sigma \in B S_{\rho, \delta}^{m}$, where $\rho=1,0 \leq \delta<1$ and $m=0$.

Our main interest is to consider the previously defined bilinear operators under the additional operation of commutation. For a bilinear operator T, and (multiplicative) functions b, b_{1}, and b_{2}, we consider the following three bilinear commutators:

$$
\begin{aligned}
{[T, b]_{1}(f, g) } & =T(b f, g)-b T(f, g), \\
{[T, b]_{2}(f, g) } & =T(f, b g)-b T(f, g), \\
{\left[\left[T, b_{1}\right]_{1}, b_{2}\right]_{2}(f, g) } & =\left[T, b_{1}\right]_{1}\left(f, b_{2} g\right)-b_{2}\left[T, b_{1}\right]_{1}(f, g) .
\end{aligned}
$$

First, we consider the case when T is a bilinear Calderón-Zygmund operator with kernel K and b, b_{1}, b_{2} belong to $B M O\left(\mathbb{R}^{n}\right)$. Then, the three bilinear commutators can formally be written as

$$
\begin{aligned}
{[T, b]_{1}(f, g)(x) } & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y, z)(b(y)-b(x)) f(y) g(z) d y d z \\
{[T, b]_{2}(f, g)(x) } & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y, z)(b(z)-b(x)) f(y) g(z) d y d z, \\
{\left[\left[T, b_{1}\right]_{1}, b_{2}\right]_{2}(f, g)(x) } & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x, y, z)\left(b_{1}(y)-b_{1}(x)\right)\left(b_{2}(z)-b_{2}(x)\right) f(y) g(z) d y d z .
\end{aligned}
$$

As in the linear case, these operators are bounded from $L^{p} \times L^{q} \rightarrow L^{r}$ with $1 / p+1 / q=$ $1 / r$ for all $1<p, q<\infty$, see Grafakos and Torres [16], Perez and Torres [24], Perez et al. [25] and Tang [27], with estimates of the form

$$
\begin{gathered}
\left\|[T, b]_{1}(f, g)\right\|_{L^{r}},\left\|[T, b]_{2}(f, g)\right\|_{L^{r}} \lesssim\|b\|_{B M O}\|f\|_{L^{p}}\|g\|_{L^{q}}, \\
\left\|\left[\left[T, b_{1}\right]_{1}, b_{2}\right]_{2}(f, g)\right\|_{L^{r}} \lesssim\left\|b_{1}\right\|_{B M O}\left\|b_{2}\right\|_{B M O}\|f\|_{L^{p}}\|g\|_{L^{q}} .
\end{gathered}
$$

However, the bilinear commutators obey a "smoothing effect" and are, in fact, even better behaved if we allow the symbols b to be slightly smoother. The following theorem of Bényi and Torres [5], should be regarded as the bilinear counterpart of the result of Uchiyama [28] mentioned before.

Theorem E. Let T be a bilinear Calderón-Zygmund operator. If $b \in C M O, 1 / p+$ $1 / q=1 / r, 1<p, q<\infty$ and $1 \leq r<\infty$, then $[T, b]_{1}: L^{p} \times L^{q} \rightarrow L^{r}$ is a bilinear compact operator. Similarly, if $b_{1}, b_{2} \in C M O$, then $\left[T, b_{2}\right]_{2}$ and $\left[\left[T, b_{1}\right]_{1}, b_{2}\right]_{2}$ are bilinear compact operators for the same range of exponents.

Interestingly, the notion of compactness in the multilinear setting alluded to in Theorem E can be traced back to the foundational article of Calderón [9]. Given three normed spaces X, Y, Z, a bilinear operator $T: X \times Y \rightarrow Z$ is called (jointly) compact if the set $\{T(x, y):\|x\|,\|y\| \leq 1\}$ is precompact in Z. Clearly, any compact bilinear operator T is continuous; for further connections between this and other notions of compactness, see again [5]. An immediate consequence of Theorems D and E is the following compactness result for commutators of bilinear pseudodifferential operators.

Corollary F. Let $\sigma \in B S_{1, \delta}^{0}, 0 \leq \delta<1$, and $b, b_{1}, b_{2} \in C M O$. Then, $\left[T_{\sigma}, b\right]_{i}, i=1,2$, and $\left[\left[T_{\sigma}, b_{1}\right]_{1}, b_{2}\right]_{2}$ are bilinear compact operators from $L^{p} \times L^{q} \rightarrow L^{r}$ for $1 / p+1 / q=$ $1 / r, 1<p, q<\infty$ and $1 \leq r<\infty$.

Varying the parameters ρ, δ and m in the definition of the bilinear Hörmander classes $B S_{\rho, \delta}^{m}$ is a way of escaping the realm of bilinear Calderón-Zygmund theory. In this context, it is useful to recall the following statement from [2].

Theorem G. Let $0 \leq \delta \leq \rho \leq 1, \delta<1,1 \leq p, q \leq \infty, 0<r<\infty$ be such that $1 / p+1 / q=1 / r$,

$$
m<m(p, q):=n(\rho-1)\left(\max \left(\frac{1}{2}, \frac{1}{p}, \frac{1}{q}, 1-\frac{1}{r}\right)+\max \left(\frac{1}{r}-1,0\right)\right)
$$

and $\sigma \in B S_{\rho, \delta}^{m}\left(\mathbb{R}^{n}\right)$. Then, T_{σ} extends to a bounded operator from $L^{p} \times L^{q} \rightarrow L^{r}$.
See also Miyachi and Tomita [23] for the optimality of the order m and the extension of the result in [2] below $r=1$.

Clearly, the class $B S_{1,0}^{1}$ falls outside the scope of Theorem F; since $\rho=1$, the only way to make the class $B S_{1, \delta}^{m}, 0 \leq \delta<1$, to produce operators that are bounded is to require the order $m<0$. However, guided by the experience we gained in the linear case, it is natural to hope that the phenomenon of smoothing of bilinear commutators manifests itself again in the bilinear context of pseudodifferential operators. This is confirmed by our main results, Theorem 1 and Theorem 2, which we now state.
Theorem 1. Let $T_{\sigma} \in \mathcal{O} p B S_{1,0}^{1}$ and a be a Lipschitz function such that $\nabla a \in$ L^{∞}. Then, $\left[T_{\sigma}, a\right]_{i}, i=1,2$, are bilinear Calderón-Zygmund operators. In particular, $\left[T_{\sigma}, a\right]_{i}, i=1,2$, are bounded from $L^{p} \times L^{q} \rightarrow L^{r}$ for $1 / p+1 / q=1 / r, 1<p, q<\infty$ and $1 \leq r<\infty$.
Once we prove that the commutators $\left[T_{\sigma}, a\right]_{i}, i=1,2$, are bilinear Calderón-Zygmund operators, the end-point boundedness results directly follow from Theorem B. Theorem 1 also admits a natural converse, see the remark at the end of this paper; thus making Theorem 1 the natural bilinear extension of Theorem A.

Combining Theorem 1 with Theorem E, we immediately obtain the following compactness result for the iteration of commutators.
Theorem 2. Let $T_{\sigma} \in \mathcal{O} p B S_{1,0}^{1}$, a be a Lipschitz function such that $\nabla a \in L^{\infty}$, and $b, b_{1}, b_{2} \in C M O$. Then, $\left[\left[T_{\sigma}, a\right]_{i}, b\right]_{j}, i, j=1,2$, and $\left[\left[\left[T_{\sigma}, a\right]_{i}, b_{1}\right]_{1}, b_{2}\right]_{2}, i=1,2$, are bilinear compact operators from $L^{p} \times L^{q} \rightarrow L^{r}$ for $1 / p+1 / q=1 / r, 1<p, q<\infty$ and $1 \leq r<\infty$.

The remainder of our paper is devoted to the proof of Theorem 1. While the argument we present is influenced by Coifman and Meyer's exposition of the linear case, see [22, Theorem 4, Chapter 9], there are several technical obstacles in the bilinear setting that must be overcome.

2. Proof of Theorem 1

The proof can be summarized in the following statement: the kernels of the commutators are indeed bilinear Calderón-Zygmund and the commutators verify the conditions (i) and (ii) in the $T(1)$ theorem (Theorem C) from the bilinear CalderónZygmund theory.

We divide the proof of Theorem 1 into several subsections. In Subsection 2.1, we show that the kernels of the commutators $\left[T_{\sigma}, a\right]_{i}, i=1,2$, are Calderón-Zygmund.

Sections 2.2-2.4 are devoted to proving that the commutators satisfy the cancelation condition (ii) in Theorem C. Finally, in Subsection 2.5, we prove that the commutators verify the bilinear weak boundedness property.

In the following, a denotes a Lipschitz function such that $\nabla a \in L^{\infty}$ and $T=T_{\sigma}$ is the bilinear pseudodifferential operator associated to a symbol $\sigma \in B S_{1,0}^{1}$, that is, σ satisfies

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma(x, \xi, \eta)\right| \lesssim(1+|\xi|+|\eta|)^{1-|\beta|-|\gamma|} \tag{2.8}
\end{equation*}
$$

for all $x, \xi, \eta \in \mathbb{R}^{n}$ and all multi-indices α, β, γ.
2.1. Bilinear Calderón-Zygmund kernels. Let K_{j} be the kernel of $[T, a]_{j}, j=$ 1,2. Then, we have

$$
\begin{aligned}
& K_{1}(x, y, z)=(a(y)-a(x)) K(x, y, z), \\
& K_{2}(x, y, z)=(a(z)-a(x)) K(x, y, z),
\end{aligned}
$$

where K is the kernel of T. Note that K can be written (up to a multiplicative constant) as

$$
\begin{equation*}
K(x, y, z)=\iint e^{i \xi \cdot(x-y)} e^{i \eta \cdot(x-z)} \sigma(x, \xi, \eta) d \xi d \eta \tag{2.9}
\end{equation*}
$$

There are certain decay estimates on $\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} K(x, y, z)$, when $x \neq y$ or $x \neq z$.
Lemma 3. The kernel K satisfies

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} K(x, y, z)\right| \leq C(\alpha, \beta, \gamma)(|x-y|+|x-z|)^{-2 n-1-|\alpha|-|\beta|-|\gamma|}
$$

when $x \neq y$ or $x \neq z$.
Assuming Lemma 3, we can show the desired result about the kernels K_{1} and K_{2}.
Lemma 4. K_{1} and K_{2} are bilinear Calderón-Zygmund kernels.
Proof. By Lemma 3 and noting that $|x-y|+|x-z|+|y-z| \sim|x-y|+|x-z|$, we have

$$
\begin{aligned}
\left|K_{1}(x, y, z)\right|,\left|K_{2}(x, y, z)\right| & \lesssim\|\nabla a\|_{L^{\infty}}(|x-y|+|x-z|+|y-z|)^{-2 n} \\
\left|\nabla K_{1}(x, y, z)\right|,\left|\nabla K_{2}(x, y, z)\right| & \lesssim\|\nabla a\|_{L^{\infty}}(|x-y|+|x-z|+|y-z|)^{-2 n-1}
\end{aligned}
$$

on $\mathbb{R}^{3 n} \backslash \Omega$, where $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3 n}: x=y=z\right\}$.
The remainder of this subsection is devoted to the proof of Lemma 3.
Proof of Lemma 3. Let ψ be a smooth cutoff function supported on $\left\{\xi \in \mathbb{R}^{n}:|\xi| \leq 2\right\}$ such that $\psi(\xi)=1$ for $|\xi| \leq 1$. For $N \in \mathbb{N}$, let $\psi_{N}(\xi, \eta)=\psi\left(\frac{\xi}{N}\right) \psi\left(\frac{\eta}{N}\right)$. Note that

$$
\left|\partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \psi_{N}(\xi, \eta)\right|= \begin{cases}O\left(N^{-|\beta|-|\gamma|}\right)=O\left((|\xi|+|\eta|)^{-|\beta|-|\gamma|}\right), & N \leq|\xi|,|\eta| \leq 2 N \tag{2.10}\\ 0, & \text { otherwise }\end{cases}
$$

for $(\beta, \gamma) \neq(0,0)$. Moreover, for $\beta \neq 0$, we have

$$
\left|\partial_{\xi}^{\beta} \psi_{N}(\xi, \eta)\right|= \begin{cases}O\left(N^{-|\beta|}\right)=O\left((|\xi|+|\eta|)^{-|\beta|-|\gamma|}\right), & N \leq|\xi| \leq 2 N \tag{2.11}\\ 0, & \text { otherwise }\end{cases}
$$

since ψ_{N} is non-trivial only if $|\eta| \leq 2 N$. A similar estimate holds for $\left|\partial_{\eta}^{\gamma} \psi_{N}(\xi, \eta)\right|$, $\gamma \neq 0$. Hence, we have

$$
\begin{equation*}
\sigma_{N}(x, \xi, \eta):=\sigma(x, \xi, \eta) \psi_{N}(\xi, \eta) \in B S_{1,0}^{1} \tag{2.12}
\end{equation*}
$$

and, moreover, we have $\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma_{N}(x, \xi, \eta)\right| \lesssim(1+|\xi|+|\eta|)^{1-|\beta|-|\gamma|}$, where the implicit constant is independent of N. Now, let

$$
K_{N}(x, y, z)=\iint e^{i \xi \cdot(x-y)} e^{i \eta \cdot(x-z)} \sigma_{N}(x, \xi, \eta) d \xi d \eta
$$

In the following, we show that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} K_{N}(x, y, z)\right| \leq C(\alpha, \beta, \gamma)(|x-y|+|x-z|)^{-2 n-1-|\alpha|-|\beta|-|\gamma|} \tag{2.13}
\end{equation*}
$$

uniformly in N. Since $\sigma_{N}(x, \xi, \eta)$ converges pointwise to $\sigma(x, \xi, \eta)$, it follows that K_{N} converges to K in the sense of distributions. This in turn shows that the estimates in (2.13) hold for $K(x, y, z)$ as well, yielding our lemma. The remainder of the proof is therefore concerned with (2.13).

First, we consider the case $\alpha=\beta=\gamma=0$, that is, we estimate $K_{N}(x, y, z)$. Without loss of generality, let us assume that $|x-y| \geq|x-z|$; in particular, we have $|x-y| \sim|x-y|+|x-z|$.
Case (i): $|x-y| \geq 1$.
Note that $e^{i \xi \cdot(x-y)}=-\frac{1}{|x-y|^{2}} \Delta_{\xi} e^{i \xi \cdot(x-y)}$. Let $m \in \mathbb{N}$ be such that $2 m-1>2 n$. Then, integrating by parts, we have

$$
\begin{aligned}
\left|K_{N}(x, y, z)\right| & =\frac{1}{|x-y|^{2 m}}\left|\iint e^{i \xi \cdot(x-y)} e^{i \eta \cdot(x-y)} \Delta_{\xi}^{m} \sigma_{N}(x, \xi, \eta) d \xi d \eta\right| \\
& \lesssim \frac{1}{|x-y|^{2 m}} \iint \frac{1}{(1+|\xi|+|\eta|)^{2 m-1}} d \xi d \eta \\
& \leq \frac{1}{|x-y|^{2 m}} \int \frac{1}{(1+|\xi|)^{m-\frac{1}{2}}} d \xi \int \frac{1}{(1+|\eta|)^{m-\frac{1}{2}}} d \eta \\
& \lesssim|x-y|^{-2 m} \leq|x-y|^{-2 n-1}
\end{aligned}
$$

Hence, (2.13) holds in this case.
Case (ii): $|x-y|<1$.
Fix x, y with $x \neq y$ and let $r=|x-y| \sim|x-y|+|x-z|$. Then, write $x-y$ as

$$
x-y=r u
$$

for some unit vector u. With the smooth cutoff function ψ supported on $\left\{\xi \in \mathbb{R}^{n}\right.$: $|\xi| \leq 2\}$ as above, define $\widetilde{\psi}=1-\psi$. Then, by a change of variables, we have

$$
\begin{align*}
K_{N}(x, y, z)= & \frac{1}{r^{2 n}} \iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) d \xi d \eta \\
= & \frac{1}{r^{2 n}} \iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) \psi(\eta) d \xi d \eta \\
& \quad+\frac{1}{r^{2 n}} \iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) \widetilde{\psi}(\eta) d \xi d \eta \\
= & K_{N}^{0}(x, y, z)+K_{N}^{1}(x, y, z) \tag{2.14}
\end{align*}
$$

Then, by inserting another cutoff in ξ, we write K_{N}^{0} as

$$
\begin{align*}
K_{N}^{0}(x, y, z)= & \frac{1}{r^{2 n}} \iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) \psi(\xi) \psi(\eta) d \xi d \eta \\
& +\frac{1}{r^{2 n}} \iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) \widetilde{\psi}(\xi) \psi(\eta) d \xi d \eta \\
= & K_{N}^{2}(x, y, z)+K_{N}^{3}(x, y, z) . \tag{2.15}
\end{align*}
$$

We begin by estimating K_{N}^{2}. Since $\left|\sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right| \lesssim r^{-1}$ on $\{|\xi|,|\eta| \leq 2\}$, we have

$$
\begin{equation*}
\left|K_{N}^{2}(x, y, z)\right| \lesssim r^{-2 n-1} \sim(|x-y|+|x-z|)^{-2 n-1} \tag{2.16}
\end{equation*}
$$

Note now that

$$
\begin{align*}
\left|\partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right| & =r^{-|\beta|-|\gamma|}\left|\partial_{2}^{\beta} \partial_{3}^{\gamma} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right| \\
& \lesssim r^{-1}(r+|\xi|+|\eta|)^{1-|\beta|-|\gamma|} \\
& \lesssim r^{-1}(1+|\xi|+|\eta|)^{1-|\beta|-|\gamma|}, \tag{2.17}
\end{align*}
$$

where the last inequality holds if $|\xi| \geq 1$ or $|\eta| \geq 1$. Then, proceeding as before with integration by parts and using (2.17), we have

$$
\begin{align*}
\left|K_{N}^{1}(x, y, z)\right| & =\frac{1}{r^{2 n}}\left|\iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \Delta_{\xi}^{m} \sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) \widetilde{\psi}(\eta) d \xi d \eta\right| \\
& \lesssim r^{-2 n-1} \iint \frac{1}{(1+|\xi|+|\eta|)^{2 m-1}} d \xi d \eta \\
& \lesssim r^{-2 n-1} \tag{2.18}
\end{align*}
$$

as long as $2 m-1>2 n$. Similarly, integrating by parts with (2.17) and noting that, for $\beta \neq 0$, we have $\partial_{\xi}^{\beta} \widetilde{\psi}(\xi)=0$ unless $|\xi| \in[1,2]$, we have

$$
\begin{align*}
\left|K_{N}^{3}(x, y, z)\right| & =\frac{1}{r^{2 n}}\left|\iint e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \Delta_{\xi}^{m}\left(\sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right) \widetilde{\psi}(\xi)\right) \psi(\eta) d \xi d \eta\right| \\
& \lesssim r^{-2 n-1}+\frac{1}{r^{2 n}}\left|\iint_{|\xi| \geq 1,|\eta| \leq 2} e^{i \xi \cdot u} e^{i r^{-1} \eta \cdot(x-z)} \Delta_{\xi}^{m}\left(\sigma_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right) \widetilde{\psi}(\xi) \psi(\eta) d \xi\right| \\
& \lesssim r^{-2 n-1} \tag{2.19}
\end{align*}
$$

as long as $2 m-1>n$ in this case. Finally, combining the estimates (2.16), (2.18), and (2.19) yields (2.13).

Next, we consider the case $(\alpha, \beta, \gamma) \neq(0,0,0)$. Note that $\xi^{\widetilde{\beta}} \eta^{\tilde{\gamma}} \partial_{x}^{\theta} \sigma_{N} \in B S_{1,0}^{1+|\widetilde{\beta}|+|\widetilde{\gamma}|}$, where the implicit constant on the bounds of the derivatives of $\xi^{\widetilde{\beta}} \eta^{\widetilde{\gamma}} \partial_{x}^{\theta} \sigma_{N}$ is independent of N and θ. Then, we have

$$
\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} K_{N}(x, y, z)=\iint e^{i \xi \cdot(x-y)} e^{i \eta \cdot(x-z)} \widetilde{\sigma}_{N}(x, \xi, \eta) d \xi d \eta,
$$

for some $\widetilde{\sigma}_{N} \in B S_{1,0}^{1+|\alpha|+|\beta|+|\gamma|}$.
When $|x-y| \geq 1$, we can repeat the computation in Case (i) and obtain (2.13) by choosing $2 m-1-|\alpha|-|\beta|-|\gamma|>2 n$. Now, assume $|x-y|<1$. For K_{N}^{2}, it suffices to note that $\left|\widetilde{\sigma}_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right| \lesssim r^{-1-|\alpha|-|\beta|-|\gamma|}$ on $\{|\xi|,|\eta| \leq 2\}$. For K_{N}^{1} and K_{N}^{3}, we note that

$$
\begin{aligned}
\left|\partial_{\xi}^{\widetilde{\beta}} \partial_{\eta}^{\tilde{\gamma}} \widetilde{\sigma}_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right| & =r^{-|\widetilde{\beta}|-|\widetilde{\gamma}|}\left|\partial_{2}^{\widetilde{\beta}} \partial_{3}^{\tilde{\gamma}} \widetilde{\sigma}_{N}\left(x, r^{-1} \xi, r^{-1} \eta\right)\right| \\
& \lesssim r^{-1-|\alpha|-|\beta|-|\gamma|}(r+|\xi|+|\eta|)^{1+|\alpha|+|\beta|+|\gamma|-|\widetilde{\beta}|-|\widetilde{\gamma}|} \\
& \lesssim r^{-1-|\alpha|-|\beta|-|\gamma|}(1+|\xi|+|\eta|)^{1+|\alpha|+|\beta|+|\gamma|-|\widetilde{\beta}|-|\widetilde{\gamma}|}
\end{aligned}
$$

where the last inequality holds if $|\xi| \geq 1$ or $|\eta| \geq 1$. The rest follows as in Case (ii).
2.2. A representation of the class $B S_{1,0}^{1}$ via $B S_{1,0}^{0}$. Without loss of generality, we will assume that $\sigma(x, 0,0)=0$. This is possible because even if we replace σ by σ_{0}, where $\sigma_{0}(x, \xi, \eta)=\sigma(x, \xi, \eta)-\sigma(x, 0,0)$, the commutators are unchanged. Namely, $\left[T_{\sigma}, a\right]_{j}=\left[T_{\sigma_{0}}, a\right]_{j}$ for $j=1,2$. Note that $\sigma_{0}(x, 0,0)=0$ and $\sigma_{0} \in B S_{1,0}^{1}$. We can further assume that σ has compact support; this justifies the manipulations in the following. A standard limiting argument then removes this additional assumption; see, for example, the discussion about loosely convergent sequences of $B S_{\rho, \delta}^{m}$ symbols in [4], also Stein [26, pp. 232-233].

Lemma 5. The symbol $\sigma \in B S_{1,0}^{1}$ has the representation $\sigma=\sum_{j=1}^{n}\left(\xi_{j} \sigma_{j}+\eta_{j} \widetilde{\sigma}_{j}\right)$, where $\sigma_{j}, \widetilde{\sigma}_{j} \in B S_{1,0}^{0}$. In particular, if T_{j} and \widetilde{T}_{j} are the bilinear pseudodifferential
operators corresponding to σ_{j} and $\widetilde{\sigma}_{j}$, respectively, then we have

$$
T(f, g)=\sum_{j=1}^{n}\left[T_{j}\left(D_{j} f, g\right)+\widetilde{T}_{j}\left(f, D_{j} g\right)\right]
$$

where $T=T_{\sigma} \in \mathcal{O} p B S_{1,0}^{1}$.
Proof. By the Fundamental Theorem of Calculus with $\zeta=(\xi, \eta)$, we have

$$
\begin{aligned}
\sigma(x, \xi, \eta) & =\sigma(x, \xi, \eta)-\sigma(x, 0,0)=\left.\zeta \cdot \int_{0}^{1} \nabla_{\zeta^{\prime}} \sigma\left(x, \zeta^{\prime}\right)\right|_{\zeta^{\prime}=t \zeta} d t \\
& =\sum_{j=1}^{n}\left[\xi_{j} \sigma_{j}(x, \xi, \eta)+\eta_{j} \widetilde{\sigma}_{j}(x, \xi, \eta)\right]
\end{aligned}
$$

where the symbols σ_{j} and $\widetilde{\sigma}_{j}$ are given by

$$
\sigma_{j}(x, \xi, \eta)=\left.\int_{0}^{1} \partial_{\xi_{j}^{\prime}} \sigma\left(x, \xi^{\prime}, t \eta\right)\right|_{\xi^{\prime}=t \xi} d t \quad \text { and } \quad \widetilde{\sigma}_{j}(x, \xi, \eta)=\left.\int_{0}^{1} \partial_{\eta_{j}^{\prime}} \sigma\left(x, t \xi, \eta^{\prime}\right)\right|_{\eta^{\prime}=t \eta} d t
$$

It remains to show that $\sigma_{j}, \widetilde{\sigma}_{j} \in B S_{1,0}^{0}$. First, note that, for $t \in[0,1]$, we have

$$
\begin{equation*}
t(1+t(|\xi|+|\eta|))^{-1} \lesssim(1+|\xi|+|\eta|)^{-1} \tag{2.20}
\end{equation*}
$$

By exchanging the differentiation with integration and applying (2.20), we have

$$
\begin{aligned}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \sigma_{j}(x, \xi, \eta)\right| & =\left|\int_{0}^{1} t^{|\beta|+|\gamma|} \partial_{x}^{\alpha} \partial_{\xi^{\prime}}^{\beta} \partial_{\eta^{\prime}}^{\gamma} \partial_{\xi^{\prime}} \sigma\left(x, \xi^{\prime}, \eta^{\prime}\right)\right|_{\left(\xi^{\prime}, \eta^{\prime}\right)=t(\xi, \eta)} d t \mid \\
& \lesssim \int_{0}^{1} t^{|\beta|+|\gamma|}(1+t(|\xi|+|\eta|))^{-(|\beta|+|\gamma|)} d t \\
& \lesssim(1+|\xi|+|\eta|)^{-(|\beta|+|\gamma|)},
\end{aligned}
$$

Therefore, $\sigma_{j} \in B S_{1,0}^{0}$. A similar argument shows that $\widetilde{\sigma}_{j} \in B S_{1,0}^{0}$.
2.3. Transposes of bilinear commutators. Recall that the commutators $[T, a]_{1}$ and $[T, a]_{2}$ are defined as

$$
\begin{align*}
& {[T, a]_{1}(f, g)=T(a f, g)-a T(f, g)} \tag{2.21}\\
& {[T, a]_{2}(f, g)=T(f, a g)-a T(f, g)} \tag{2.22}
\end{align*}
$$

Given a bilinear operator T, the transposes $T^{* 1}$ and $T^{* 2}$ are defined by

$$
\langle T(f, g), h\rangle=\left\langle T^{* 1}(h, g), f\right\rangle=\left\langle T^{* 2}(f, h), g\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ denotes the dual pairing.
Lemma 6. We have the following identities:

$$
\begin{align*}
& \left([T, a]_{1}\right)^{* 1}=-\left[T^{* 1}, a\right]_{1} \tag{2.23}\\
& \left([T, a]_{1}\right)^{* 2}=\left[T^{* 2}, a\right]_{1}-\left[T^{* 2}, a\right]_{2} \tag{2.24}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \left([T, a]_{2}\right)^{* 1}=\left[T^{* 1}, a\right]_{2}-\left[T^{* 1}, a\right]_{1}, \tag{2.25}\\
& \left([T, a]_{2}\right)^{* 2}=-\left[T^{* 2}, a\right]_{2} . \tag{2.26}
\end{align*}
$$

Proof. We briefly indicate the calculations that give (2.23) and (2.24). The following sequence of equalities yields (2.23):

$$
\begin{aligned}
\left\langle[T, a]_{1}(f, g), h\right\rangle & =\langle T(a f, g), h\rangle-\langle a T(f, g), h\rangle=\left\langle T^{* 1}(h, g), a f\right\rangle-\langle T(f, g), a h\rangle \\
& =\left\langle a T^{* 1}(h, g), f\right\rangle-\left\langle T^{* 1}(a h, g), f\right\rangle=\left\langle-\left[T^{* 1}, a\right]_{1}(h, g), f\right\rangle .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\left\langle[T, a]_{1}(f, g), h\right\rangle & =\left\langle T^{* 2}(a f, h), g\right\rangle-\left\langle T^{* 2}(f, a h), g\right\rangle \\
& =\left\langle T^{* 2}(a f, h), g\right\rangle-\left\langle a T^{* 2}(f, h), g\right\rangle-\left(\left\langle T^{* 2}(f, a h), g\right\rangle-\left\langle a T^{* 2}(f, h), g\right\rangle\right) \\
& =\left\langle\left[T^{* 2}, a\right]_{1}(f, h), g\right\rangle-\left\langle\left[T^{* 2}, a\right]_{2}(f, h), g\right\rangle,
\end{aligned}
$$

thus proving (2.24). The identities (2.25) and (2.26) follow in a similar manner.
2.4. Cancelation conditions for bilinear commutators. We will prove here that the commutators satisfy the $B M O$ bounds in the bilinear $T(1)$ theorem (Theorem C).

Lemma 7. Let $T \in \mathcal{O} p B S_{1,0}^{1}$ and a be a Lipschitz function. Then, we have $[T, a]_{j} \in$ $B M O, j=1,2$.

Proof. By Lemma 5, we have

$$
\begin{aligned}
{[T, a]_{1}(1,1) } & =T(a, 1)-\underbrace{a T(1,1)}_{=0}=\sum_{j=1}^{n}[T_{j}\left(D_{j} a, 1\right)+\underbrace{\widetilde{T}_{j}\left(a, D_{j} 1\right)}_{=0}] \\
& =\sum_{j=1}^{n} T_{j}\left(D_{j} a, 1\right) .
\end{aligned}
$$

It follows from Theorem D that $T_{j} \in \mathcal{O} p B S_{1,0}^{0}$ are bilinear Calderón-Zygmund operators. Then, by Theorem B, we obtain that $T_{j}\left(D_{j} a, 1\right) \in B M O$, since $D_{j} a \in L^{\infty}$. Therefore, we conclude that $[T, a]_{1}(1,1) \in B M O$.

Similarly, we have

$$
\begin{aligned}
{[T, a]_{2}(1,1) } & =T(1, a)-\underbrace{a T(1,1)}_{=0}=\sum_{j=1}^{n}[\underbrace{T_{j}\left(D_{j} 1, a\right)}_{=0}+\widetilde{T}_{j}\left(1, D_{j} a\right)] \\
& =\sum_{j=1}^{n} \widetilde{T}_{j}\left(1, D_{j} a\right) \in B M O
\end{aligned}
$$

since $D_{j} a \in L^{\infty}$ and $\widetilde{T}_{j} \in \mathcal{O} p B S_{1,0}^{0}$.
Lemma 8. Let T and a be as in Lemma 7. Then, we have $[T, a]_{j}^{* i} \in B M O, i, j=1,2$.

Proof. From Theorem 2.1 in [1], we know that if $T \in \mathcal{O} p B S_{1,0}^{1}$, then $T^{* 1}, T^{* 2} \in$ $\mathcal{O} p B S_{1,0}^{1}$ as well. By Lemma 6 , for $i=1,2$, the transposes $[T, a]_{1}^{* i}$ and $[T, a]_{2}^{* i}$ consist of commutators of $T^{* 1}$ and $T^{* 2}$ with the Lipschitz function a. The conclusion now follows from Lemma 7.
2.5. The weak boundedness property for bilinear commutators. A function $\phi \in \mathcal{D}$ is called a normalized bump function of order M if $\operatorname{supp} \phi \subset B_{0}(1)$ and $\left\|\partial^{\alpha} \phi\right\|_{L^{\infty}} \leq 1$ for all multi-indices α with $|\alpha| \leq M$. Here, $B_{x}(r)$ denotes the ball of radius r centered at x.

We say that a bilinear singular integral operator $T: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ has the (bilinear) weak boundedness property if there exists $M \in \mathbb{N} \cup\{0\}$ such that for all normalized bump functions ϕ_{1}, ϕ_{2}, and ϕ_{3} of order $M, x_{1}, x_{2}, x_{3} \in \mathbb{R}^{n}$ and $t>0$, we have

$$
\begin{equation*}
\left|\left\langle T\left(\phi_{1}^{x_{1}, t}, \phi_{2}^{x_{2}, t}\right), \phi_{3}^{x_{3}, t}\right)\right\rangle \mid \lesssim t^{n}, \tag{2.27}
\end{equation*}
$$

where $\phi_{j}^{x_{j}, t}(x)=\phi_{j}\left(\frac{x-x_{j}}{t}\right)$. Note that

$$
\begin{equation*}
\left\|\partial_{x}^{\alpha} \phi_{j}^{x_{j}, t}\right\|_{L^{p}} \lesssim t^{\frac{n}{p}-|\alpha|} \tag{2.28}
\end{equation*}
$$

The following lemma provides a simplification of the condition (2.27).
Lemma 9. Let T be a bilinear operator defined by (1.2) with a bilinear CalderónZygmund kernel K, satisfying (1.3). Then, the weak boundedness property holds if there exists $M \in \mathbb{N} \cup\{0\}$ such that

$$
\begin{equation*}
\left|\left\langle T\left(\phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right), \phi_{3}^{x_{0}, t}\right)\right\rangle \mid \lesssim t^{n} \tag{2.29}
\end{equation*}
$$

for all normalized bump functions ϕ_{1}, ϕ_{2}, and ϕ_{3} of order $M, x_{0} \in \mathbb{R}^{n}$ and $t>0$.
Proof. Suppose that T satisfies (2.29) for some fixed M. Fix $t>0$ and normalized bump functions ϕ_{1}, ϕ_{2} and ϕ_{3} of order M in the following.
Case (i) Suppose that $\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right| \leq 3 t$. For $j=1,2$, we define ψ_{j} by setting

$$
\psi_{j}^{x_{3}, 4 t}(x)=\psi_{j}\left(\frac{x-x_{3}}{4 t}\right):= \begin{cases}4^{-M} \phi_{j}^{x_{j}, t}(x), & \text { if } x \in B_{x_{j}}(t) \\ 0, & \text { otherwise }\end{cases}
$$

Note that ψ_{j} is a normalized bump function of order M. For $j=3$, let $\psi_{3}(x)=$ $4^{-M} \phi_{3}(4 x)$. Note that ψ_{3} is also a normalized bump function of order M. Then, by (2.29), we have

$$
\left.\left|\left\langle T\left(\phi_{1}^{x_{1}, t}, \phi_{2}^{x_{2}, t}\right), \phi_{3}^{x_{3}, t}\right)\right\rangle\left|=4^{3 M}\right|\left\langle T\left(\psi_{1}^{x_{3}, 4 t}, \psi_{2}^{x_{3}, 4 t}\right), \psi_{3}^{x_{3}, 4 t}\right)\right\rangle \mid \lesssim 4^{3 M+n} t^{n} \sim t^{n} .
$$

Case (ii) Suppose that max $\left(\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right)>3 t$. For the sake of the argument, suppose that $\left|x_{1}-x_{3}\right|>3 t$. Then, by the triangle inequality, we have $|x-y|>$ $\left|x_{1}-x_{3}\right|-\left|x-x_{3}\right|-\left|y-x_{1}\right|>t$ for for all $x \in B_{x_{3}}(t)$ and $y \in B_{x_{1}}(t)$. A similar calculation shows that if $\left|x_{2}-x_{3}\right|>3 t$, then we have $|x-z|>t$ for all $x \in B_{x_{3}}(t)$ and $z \in B_{x_{2}}(t)$. Hence, we have

$$
\max (|x-y|,|x-z|)>t
$$

for all $x \in B_{x_{3}}(t), y \in B_{x_{1}}(t)$ and $z \in B_{x_{2}}(t)$ in this case. Then, by (1.2), (1.3) and (2.28), we have

$$
\begin{aligned}
\left|\left\langle T\left(\phi_{1}^{x_{1}, t}, \phi_{2}^{x_{2}, t}\right), \phi_{3}^{x_{3}, t}\right)\right\rangle \mid & \lesssim t^{-2 n} \iiint\left|\phi_{1}^{x_{1}, t}(y) \phi_{2}^{x_{2}, t}(z) \phi_{3}^{x_{3}, t}(x)\right| d y d z d x \\
& \lesssim t^{-2 n} \prod_{j=1}^{3}\left\|\phi_{j}^{x_{j}, t}\right\|_{L^{1}} \lesssim t^{n}
\end{aligned}
$$

Hence, (2.27) holds in both cases, thus completing the proof of the lemma.

Now, we are ready to prove the weak boundedness property of the commutators.
Lemma 10. Let $T \in \mathcal{O} p B S_{1,0}^{1}$ and a be a Lipschitz function. Then, the bilinear commutators $[T, a]_{j}, j=1,2$, satisfy the weak boundedness property.

Proof. We only show that the weak boundedness property holds for $[T, a]_{1}$. A similar argument holds for $[T, a]_{2}$. By Lemma 9, it suffices to prove (2.29). First, note that we can assume that $a\left(x_{0}\right)=0$, since replacing a by $a-a\left(x_{0}\right)$ does not change the commutator. Then, by the Fundamental Theorem of Calculus, we have

$$
\begin{equation*}
\|a\|_{L^{\infty}\left(B_{x_{0}}(t)\right)} \lesssim t\|\nabla a\|_{L^{\infty}} . \tag{2.30}
\end{equation*}
$$

By writing

$$
\begin{aligned}
& \left|\left\langle[T, a]_{1}\left(\phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right), \phi_{3}^{x_{0}, t}\right)\right\rangle \mid \\
& \left.\quad \leq\left|\left\langle T\left(a \phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right), \phi_{3}^{x_{0}, t}\right)\right\rangle|+|\left\langle a T\left(\phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right), \phi_{3}^{x_{0}, t}\right)\right\rangle \mid=: \mathrm{I}+\mathrm{II},
\end{aligned}
$$

it suffices to estimate I and II separately.
First, we estimate II. By (2.28), (2.30) and Lemma 5, we have

$$
\begin{aligned}
\mathrm{II} & \leq\left\|a T\left(\phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right)\right\|_{L^{2}\left(B_{x_{0}}(t)\right)}\left\|\phi_{3}^{x_{0}, t}\right\|_{L^{2}} \\
& \lesssim t^{\frac{n}{2}}\|a\|_{L^{\infty}\left(B_{x_{0}}(t)\right)}\left\|T\left(\phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right)\right\|_{L^{2}\left(B_{x_{0}}(t)\right)} \\
& \lesssim t^{\frac{n}{2}+1}\|\nabla a\|_{L^{\infty}}\left\|\sum_{j=1}^{n}\left[T_{j}\left(D_{j} \phi_{1}^{x_{0}, t}, \phi_{2}^{x_{0}, t}\right)+\widetilde{T}_{j}\left(\phi_{1}^{x_{0}, t}, D_{j} \phi_{2}^{x_{0}, t}\right)\right]\right\|_{L^{2}}
\end{aligned}
$$

By the fact that $T_{j}, \widetilde{T}_{j} \in \mathcal{O} p B S_{1,0}^{0}$ and (2.28), we have

$$
\begin{aligned}
\mathrm{II} & \lesssim t^{\frac{n}{2}+1}\|\nabla a\|_{L^{\infty}} \sum_{j=1}^{n}\left[\left\|D_{j} \phi_{1}^{x_{0}, t}\right\|_{L^{4}}\left\|\phi_{2}^{x_{0}, t}\right\|_{L^{4}}+\left\|\phi_{1}^{x_{0}, t}\right\|_{L^{4}}\left\|D_{j} \phi_{2}^{x_{0}, t}\right\|_{L^{4}}\right] \\
& \lesssim t^{n}\|\nabla a\|_{L^{\infty}} .
\end{aligned}
$$

Next, we estimate I. As before, by Lemma 5, (2.28) and (2.30), we have

$$
\begin{aligned}
& \mathrm{I} \lesssim \lesssim t^{\frac{n}{2}}\left\|\sum_{j=1}^{n}\left[T_{j}\left(D_{j}\left(a \phi_{1}^{x_{0}, t}\right), \phi_{2}^{x_{0}, t}\right)+\widetilde{T}_{j}\left(a \phi_{1}^{x_{0}, t}, D_{j} \phi_{2}^{x_{0}, t}\right)\right]\right\|_{L^{2}} \\
& \lesssim t^{\frac{n}{2}} \sum_{j=1}^{n}\left[\left\|D_{j}\left(a \phi_{1}^{x_{0}, t}\right)\right\|_{L^{4}}\left\|\phi_{2}^{x_{0}, t}\right\|_{L^{4}}+\left\|a \phi_{1}^{x_{0}, t}\right\|_{L^{4}}\left\|D_{j} \phi_{2}^{x_{0}, t}\right\|_{L^{4}}\right] \\
& \lesssim t^{\frac{n}{2}} \sum_{j=1}^{n}\left[\left\|D_{j}(a) \phi_{1}^{x_{0}, t}\right\|_{L^{4}}\left\|\phi_{2}^{x_{0}, t}\right\|_{L^{4}}+\left\|a D_{j} \phi_{1}^{x_{0}, t}\right\|_{L^{4}}\left\|\phi_{2}^{x_{0}, t}\right\|_{L^{4}}\right. \\
&\left.\quad+\left\|a \phi_{1}^{x_{0}, t}\right\|_{L^{4}}\left\|D_{j} \phi_{2}^{x_{0}, t}\right\|_{L^{4}}\right] \\
& \lesssim t^{\frac{n}{2}} \sum_{j=1}^{n}\left[t^{\frac{n}{2}}\|\nabla a\|_{L^{\infty}}+t^{\frac{n}{2}-1}\|a\|_{L^{\infty}\left(B_{x_{0}}(t)\right)}\right] \lesssim t^{n}\|\nabla a\|_{L^{\infty}} .
\end{aligned}
$$

This completes the proof of Lemma 10 and thus the proof of Theorem 1.
Remark. We wish to end this work by observing that the converse of Theorem 1 also holds. Let $T_{j} \in \mathcal{O} p B S_{1,0}^{1}, j=1, \ldots, n$, be defined by $T_{j}(f, g)=\left(D_{j} f\right) g$. Suppose that $\left[T_{j}, a\right]_{1}$ is bounded from $L^{4} \times L^{4}$ into $L^{2}, j=1, \ldots, n$. Then, a is a Lipschitz function. See Theorem A for the converse statement in the linear setting.

The proof is immediate. Noting that $\left[T_{j}, a\right]_{1}(f, g)=\left(D_{j} a\right) f g$, the boundedness of $\left[T_{j}, a\right]_{1}$ then forces $D_{j} a \in L^{\infty}$ (say, by taking $f=g$ to be a bump function localized near the maximum of $D_{j} a$). Since this is true for all $1 \leq j \leq n$, a must be Lipschitz.

In particular, if we assume that $[T, a]_{1}$ is bounded from $L^{4} \times L^{4}$ into L^{2} for all $T \in \mathcal{O} p B S_{1,0}^{1}$, then a must be a Lipschitz function. Of course, the boundedness $[T, a]_{1}: L^{4} \times L^{4} \rightarrow L^{2}$ can be exchanged with a more general one $L^{p} \times L^{q} \rightarrow L^{r}$ for some Hölder triple $(p, q, r) \in[1, \infty)^{3}$. An analogous statement applies to the second commutator $[T, a]_{2}$.

References

[1] Á. Bényi, D. Maldonado, V. Naibo, and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, Integral Equations Operator Theory 67 (2010), no. 3, 341-364.
[2] Á. Bényi, F. Bernicot, D. Maldonado, V. Naibo, and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, II, Indiana Univ. Math. J., to appear; preprint at arXiv:1112.0486 [math.CA].
[3] Á. Bényi, A. R. Nahmod, and R. H. Torres, Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators, J. Geom. Anal. 16 (2006), no. 3, 431-453.
[4] Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Comm. P.D.E. 28 (2003), 1161-1181.
[5] Á. Bényi and R. H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc., to appear.
[6] F. Bernicot, D. Maldonado, K. Moen, and V. Naibo, Bilinear Sobolev-Poincaré inequalities and Leibniz-type rules, J. Geom. Anal., to appear; preprint at arXiv:1104.3942 [math.CA].
[7] A. P. Calderón, Algebras of singular integral operators, AMS Proc. Symp. Math. 10 (1966), 18-55.
[8] A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. 53 (1965), 1092-1099.
[9] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
[10] R. R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286.
[11] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[12] R. R. Coifman and Y. Meyer, Au-delà des Opérateurs Pseudo-differentiels, Astérisque 57, Société Math. de France, 1978.
[13] R. Coifman and G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
[14] G. David and J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
[15] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), 124-164.
[16] L. Grafakos and R. H. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), no. 5, 1261-1276.
[17] J. Hart, A new proof of the bilinear $T(1)$ theorem, Proc. Amer. Math. Soc., to appear.
[18] T. Iwaniec, Nonlinear commutators and Jacobians, J. Fourier Anal. Appl. 3 (1997), 775-796.
[19] T. Iwaniec and C. Sbordone, Riesz transform and elliptic PDEs with VMO coefficients, J. Anal. Math. 74 (1998), 183-212.
[20] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907.
[21] C. Kenig, G. Ponce and L. Vega, On unique continuation for nonlinear Schrödinger equations, Comm. Pure Appl. Math. 56 (2003), 1247-1262.
[22] Y. Meyer and R. R. Coifman, Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge University Press, Cambridge, United Kingdom, 1997.
[23] A. Miyachi and N. Tomita, Calderón-Vaillancourt type theorem for bilinear pseudo-differential operators, Indiana Univ. Math. J., to appear.
[24] C. Pérez and R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Contemp. Math. 320 (2003), 323-331.
[25] C. Pérez, G. Pradolini, R. H. Torres, and R. Trujillo-González, End-points estimates for iterated commutators of multilinear singular integrals, Bull. Lond. Math. Soc., to appear; preprint at arXiv:1004.4976 [math.CA].
[26] E. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, New Jersey, 1993; 695 pp.
[27] L. Tang, Weighted estimates for vector-valued commutators of multilinear operators, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 897-922.
[28] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. 30 (1978), no. 1, 163-171.

Árpád Bényi, Department of Mathematics, 516 High St, Western Washington University, Bellingham, WA 98225, USA

E-mail address: arpad.benyi@wwu.edu
Tadahiro Oh, Department of Mathematics, Princeton University, Fine Hall, Washington Rd, Princeton, NJ 08544-1000, USA

E-mail address: hirooh@math.princeton.edu

[^0]: 2010 Mathematics Subject Classification. Primary 35S05, 47G30; Secondary 42B15, 42B20, 42B25, 47B07, 47G99.

 Key words and phrases. Bilinear pseudodifferential operators, bilinear Hörmander classes, compact bilinear operators, singular integrals, Calderón-Zygmund theory, commutators.

 The first author is partially supported by Simons Foundation Grant No. 246024. The second author acknowledges support from an AMS-Simons Travel Grant.

