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Statistical Modeling of the 1997–1998 Colfiorito Earthquake

Sequence: Locating a Stationary Solution within

Parameter Uncertainty

by Sarah Touati, Mark Naylor, and Ian G. Main

Abstract The Umbria–Marche region of Italy is a seismically active region that
experienced a strong sequence of earthquakes during 1997–1998, with a cluster of
magnitude M ≥5 events, during which the average event rate increased from the
long-term level by several orders of magnitude. Using maximum-likelihood (ML) in-
version of the epidemic-type aftershock sequences model to characterize the seismic-
ity of this region over 22 years, we find, in agreement with previous studies, the event
rate during the sequence is underpredicted, based on simulations with the largeM ≥5
events fixed. However, by sampling the parameter space around the ML solution
within the inversion uncertainty and comparing the simulated event rate with that
of the real data, we are able to find near-maximum-likelihood parameters that provide
a reasonable match to both the long-term average event rate and the rate during the
sequence. We use the shape of the interevent time histogram to infer that the events in
the sequence are probably mostly aftershocks of the large events, rather than an in-
creased occurrence of background events. We suggest that event rate comparisons can
be useful as an additional constraint on the selection of parameters from within the
95% confidence interval of the ML fit. Our results demonstrate the extra constraint can
greatly improve the match between a stationary model and finite catalog data and that
care is needed before adding further parameters to ascribe nonstationarity to time-
dependent event rate changes.

Introduction

The Umbria–Marche region of Italy is a seismically
active area that experienced a particularly strong sequence
of earthquakes during 1997–1998, during which the event
rate peaked to several orders of magnitude higher than the
long-term average. Following the work of Lombardi et al.
(2010), our questions concern the nature of this sequence
and to what extent it needs to be considered as a statistical
deviation from the usual seismicity pattern of the region or,
instead, whether it may be viewed as a chance fluctuation
that is still consistent with the long-term activity. Essentially,
we seek to determine whether the seismicity of this period is
consistent with a stationary long-term activity, produced
mostly by tectonic loading, or is nonstationary, for example
due to episodic fluid movement (CO2 degassing from lime-
stone, or volcanic activity; e.g., Miller et al., 2004; Traversa
and Grasso, 2010).

Like Lombardi et al. (2010), we use the epidemic-type
aftershock sequences (ETAS) model in our analysis (Ogata,
1988, 1998). ETAS is a benchmark statistical model for earth-
quake occurrence and, as such, is widely used to represent
regional tectonic seismicity through maximum-likelihood

(ML) estimated parameter values (Zhuang et al., 2012). It
accounts for several known sources of rate fluctuations: a
basic Poisson process of independent events, representing
the effect of stationary tectonic loading; potential aftershock
triggering from every event in the catalog (including after-
shocks of other events), with a time-decaying rate defined
by the Omori law, and at an absolute rate that increases ex-
ponentially with the magnitude of the triggering event; and
independent selection of the magnitudes of all events from,
usually, the Gutenberg–Richter distribution. A variant of the
model, including spatial coordinates of events, additionally
takes into account the aftershock clustering in space, with a
variety of empirical distribution functions in use. The ETAS
model is thus capable of accounting for event rates that fluc-
tuate in time and space according to its conditional intensity
function:

λ�tjHt� � μ� A
X
i:t<ti

exp�α�Mi −M0��
�
1� t − ti

c

�−p
�1�

or, for a spatial ETAS model using Zhuang et al.’s spatial
aftershock distribution (Zhuang et al., 2002; Harte, 2012),
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λ�t; x; yjHt� � μ′ � A
X
i:t<ti

exp�α�Mi −Mi��
�
1� t − ti

c

�−p

×
1

2πd exp�α�Mi −Mi��

× exp
�
−
1

2

x2 � y2

d exp�α�Mi −Mi��

�
; �2�

in which ti are the times of the past events and Mi are
their magnitudes; μ is the independent or background
event rate; A, c, and p are parameters of the Omori law;
and α is the productivity parameter. The spatial aftershock
distribution thus described is a 2D Gaussian with variance
σ2 � deα�Mi−M0�, giving d as a further parameter for the
spatial ETAS model. (Note that μ′ in the spatial model is the
background rate per unit area as well as per unit time, so
integration of the model over all space recovers the tempo-
ral-only model.)

Lombardi et al. (2010) try to fit the stationary ETAS
model to earthquakes in the Colfiorito region, both for the
full catalog duration of 22 years and for a 15-month period
containing the sequence, and use statistical tests and analytic
prediction to assess the goodness of fit. They find that in both
cases the optimal ML solution does not adequately account
for the event rate rise during the sequence. They then include
a background rate that varies in time with a moving window
of 10 days during the sequence and find a significantly im-
proved fit to the data that is approved by statistical tests. They
interpret this result in terms of a fluid signal from within the
crust: fluid signals usually show up as swarms and are mod-
eled as an elevated background rate.

In this paper, we use a forward-modeling (simulation)
approach to retest the null hypothesis that the sequence is

mostly aftershocks that follow the same statistical pattern as
that inferred for the rest of the data but which are especially
prolific here due to the presence of several large events
(which may be a chance outcome of a single realization).
We begin by examining the data, inverting ML ETAS param-
eters on a variety of subsets of the data, and simulating the
catalog with the largest events added in to compare the event
rate throughout. We then explore whether the fit can be
improved by sampling around the ML solution within the un-
certainty. Finally, we consider whether the large events that
we have transplanted from the catalog are likely to have
arisen in our model or require additional explanation.

Properties of the Colfiorito Data

We consider the same data analyzed in Lombardi et al.
(2010), a subset of the Catalogo della Sismicità Italiana—
CSI 1.1 (Castello et al., 2005, 2007) comprising events occur-
ring in the Umbria–Marche region. The data are 1527 events
of M ≥2:5, derived from the timespan of the CSI (the years
1981–2002, inclusive) and occurring between 12° and 13.5°
longitude and 42° and 44° latitude. We will call this the Col-
fiorito dataset. Lombardi et al. (2010) analyzed the complete-
ness threshold for this data; they found that it varies with time
but is not higher than M 2.5 at any point in this period. The
Bollettino Sismico Italiano catalog takes over the recording of
Italian earthquakes from2002 onward, but, because the period
2002–2005 is unofficial and only consistent with CSI data
above magnitude 3.5 (Romashkova and Peresan, 2013), we
do not use it.

The data contain nine events of magnitude M ≥5: the
first occurs on 29 April 1984, and the rest occur in two clus-
ters, with six events recorded within 19 days between 26
September 1997 and 14 October 1997 and a further two
on 26 March and 3 April 1998. Figure 1 highlights these
events on a map of the Colfiorito dataset, and Table 1 lists
the event details. The sequence period defined in Lombardi
et al. (2010) runs for a 15-month period from 3 May 1997 to
17 August 1998, encompassing both of these clusters.
Figure 2a shows the month-by-month mean event rate for
the Colfiorito dataset (1981–2002), along with the positions
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Figure 1. The locations of the Colfiorito dataset events (open
circles), with large filled circles indicating the M ≥5 events. A
dashed line shows the geographical boundaries of the dataset.

Table 1
Details of the Largest Events (M ≥5) in the Colfiorito

Dataset

Date (yyyy/mm/dd)
Time

(hh:mm:ss)
Latitude

(°)
Longitude

(°) Magnitude

1984/04/29 05:03:00 43.21 12.57 5.2
1997/09/26 00:33:13 43.02 12.89 5.6
1997/09/26 09:40:27 43.01 12.85 5.8
1997/10/03 08:55:22 43.04 12.82 5.0
1997/10/06 23:24:53 43.03 12.85 5.4
1997/10/12 11:08:37 42.91 12.92 5.1
1997/10/14 15:23:11 42.90 12.90 5.5
1998/03/26 16:26:17 43.15 12.81 5.4
1998/04/03 07:26:37 43.19 12.76 5.3
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of the M ≥5 events; the sequence of 1997–1998 is clearly
visible as a large temporary peak in the event rate.

The distribution of interevent times, in both the ETAS
model and in real tectonic earthquakes, is generally bimodal
(Lindman et al., 2005; Touati et al., 2009, 2011), a super-
position of a gamma distribution component arising from
aftershock sequences and an exponential component that re-
sults from the consecutive occurrence of unrelated events
(i.e., either independent background or aftershocks belong-
ing to separate sequences) (Touati et al., 2009). When after-
shock sequences moderately overlap in time, as for a
regional-scale catalog, this bimodality can result in an overall
distribution that resembles a gamma distribution (Molchan,
2005; Saichev and Sornette, 2006, 2007; Touati et al., 2009),
as the crossover between the two peaks forms an approxi-
mate power-law segment (a straight line in a log–log plot).
Figure 2b and 2c shows the interevent intervals for the whole
Colfiorito dataset and the 15-month sequence period, respec-
tively, in logarithmic histograms. (Unlike probability density

estimates, the counts are not normalized by either bin width
or total count; we prefer simple histograms for clearly show-
ing the structure of the data.) The whole-data histogram is
consistent with a regional case, showing the typical broad-
band plateau between the two components, which, if they
could be plotted separately, would be expected to have peaks
in this plot at roughly the positions of the two arrows: at the
start of the plateau for the aftershocks component, and just
before the exponential decay for the independent events
component. In contrast, the histogram for the sequence
period is single peaked, with a peak that coincides with the
short-term (aftershock) component of the whole-data plot,
and exhibits a possible power-law decay toward longer inter-
event times, as expected for an aftershock sequence. This is
an early indication that the sequence may consist mostly of
aftershocks with little background or temporal overlapping to
interrupt the Omori signature.

Finally, in Figure 2d and 2e, a point is plotted for each
event, indicating its nearest neighbor based on a combined
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Figure 2. The Colfiorito dataset: (a) month-by-month mean event rate, with stars indicating the occurrence times of the large M ≥5
events; interevent time histogram for (b) the whole dataset and (c) the sequence period only (3 May 1997–17 August 1998); space–time
nearest-neighbor for each event in (d) the whole dataset and (e) the sequence period only (3 May 1997–17 August 1998). In (d) and (e), the
straight line represents an approximate divide between the two clusters observed in (d), described more fully in the text.
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space–time distance of rτ, in which r is the spatial distance
between the events and τ is the time interval separating them.
This type of analysis is based on the work by Zaliapin et al.
(2008). The distribution of points in such a plot has also been
shown to be bimodal, due to the same duality of types of
neighbor events: siblings within a common sequence, which
are clustered at short scales in time and distance, and unre-
lated events, which are more spatially and temporally distrib-
uted (Touati et al., 2011). A straight line in Figure 2d
indicates an approximate visual divide between the two dis-
tributions. This line has been reproduced in Figure 2e for
comparison, which reveals that for the 15-month sequence
period, the vast majority of points fall in the cluster relating
to the aftershocks. (The position or even presence of the line
is not crucial to make this observation; it merely facilitates
comparison between the two plots.) Thus, these simple plots
also support the possibility of viewing the sequence as con-
sisting mostly of aftershocks.

Maximum-Likelihood ETAS Inversion

We start by fitting the ETAS model to three selections of
data: the whole Colfiorito dataset, the 15-month sequence
period selected by Lombardi et al. (2010) (from 3 May
1997 to 17 August 1998), and a shorter six-month subset
of the sequence period containing the main peak in event rate
(from 17 September 1997 to 17 March 1998), which we refer
to as the subsequence. We use the Newton-based gradient
descent algorithm nlm in R to minimize the negative of
the log likelihood (LL), which for a point process is given by

LL �
X
i

log λ�tijHti� −
Z

T2

T1

λ�tjHt�dt; �3�

in which T1 and T2 delimit the temporal range of the events.
The results of this inversion are presented in Table 2,

along with the branching ratio n, which is the average
number of aftershocks produced per event, calculated as

n � Ac
p − 1

β

β − α
; �4�

in which β � b ln 10. Lombardi et al. (2010) found that ML
values for the stationary ETAS model did not sufficiently ex-
plain the sequence. For comparison, they obtained n � 0:68
and μ � 0:055 for the whole dataset and n � 0:79 and
μ � 0:13 for the 15-month sequence period when fitting the
stationary ETAS model to the Colfiorito dataset. Our results
are thus somewhat similar, although not identical. Their
paper states that they gathered 1586 events from the CSI; we
only found 1527 events using the same selection criteria as
stated in their paper, so perhaps this discrepancy, along with
possible differences in the inversion algorithm, explains the
difference in the result. However, it appears to be nonsignifi-
cant, as our result similarly underpredicts the event rate dur-
ing the Colfiorito sequence, as we show next.

We check the fit using simulation modeling. We use our
parameters for thewhole dataset and theb-value calculated for
thewhole dataset (b � 1:02) to simulate the Colfiorito dataset
repeatedly. To enable comparison with the real data, we add
in the eight M ≥5 events as part of the background process,
because they affect the observed seismicity so greatly and we
could not possibly obtain this exact pattern from random
simulation. We suppress creation of other M ≥5 events in
the simulation to compensate for this addition. (We defer the
question of how compatible this pattern of large events is with
our model until the later section, Cluster of Large Events.)We
can measure the average event rate in each of the three time
periods considered in this study (over 100 realizations) and
also calculate a standard deviation as a starting point to see
how well we have matched the data. The results are shown
in Table 3. We observe a systematic increase in average simu-
lated event rate as we increasingly isolate the sequence in
time, due to the larger number of aftershocks triggered by
the M ≥5 events. Additionally, the rates seem generally to
be larger when the inversion of parameters has been carried

Table 2
Results of ETAS Inversions on the Colfiorito Data

Inversion Case μ (Per Day) A α c (Days) p n

Colfiorito dataset (1981–2002) 0.043±0.003 1.455±0.302 1.679±0.068 0.037±0.008 1.230±0.028 0.824
Sequence (15 months) 0.117±0.032 2.538±0.694 1.418±0.096 0.042±0.012 1.317±0.050 0.861
Subsequence (6 months) 0.087±0.055 0.913±0.378 1.819±0.129 0.074±0.023 1.336±0.060 0.894

Table 3
Comparison of Real and Simulated Average Event Rate (Per Day)

Case
Whole Dataset Event Rate
(1981–2002), Per Day

Sequence Event Rate
(15 Months), Per Day

Subsequence Event Rate
(6 Months), Per Day

Colfiorito data 0.190 1.828 3.861
ETAS fitted to Colfiorito dataset (1981–2002) 0.197±0.018 1.288±0.162 2.420±0.347
ETAS fitted to sequence (15 months) 0.572±0.041 1.754±0.248 2.968±0.520
ETAS fitted to sub-sequence (6 months) 0.358±0.028 1.948±0.218 3.635±0.513
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out on the sequence period. However, none of the parameter-
izations provides a good match to both the overall (22-year)
event rate and the rate during the sequence.

As an illustrative example, Figure 3a and 3b shows how
one realization of the ML solution for the whole dataset (with
the M ≥5 events fixed as in the real data) compares with the
real data, whereas Figure 3c shows details of themeanmonth-
by-month event rates for both during the 15-month sequence
period. A mean and standard deviation across all 100 realiza-
tions allows error bars representing 95% confidence limits to
be plotted, which demonstrates that the real data falls outside
of those limits around the time of peak rate. Thus, despite
minor differences in the best-fit inverted parameters, we con-
cur with Lombardi et al. (2010) that it seems difficult to fit the
ETAS model to this sequence, regardless of whether we invert
parameters for the whole dataset or for the sequence in isola-
tion. However, before concluding that we must consider a
time-varying background rate, we will consider the fact that
there is an uncertainty associated with ML inversion and
explore the possibility of finding a better, near-maximum-
likelihood solution for the stationary ETAS model.

Improving the Fit by Exploring the Uncertainty

Motivated by the observation that small changes in the
ETAS parameter values—well within the uncertainty of the
inversion—can have comparatively large effects on the over-
all seismicity generated by the model, we explore the param-
eter space around the ML solution, using forward-modeling
to assess the fit. It may be that, within the parameter uncer-
tainty, there exists a stationary solution that describes the
data adequately well, including both the sequence and the
overall event rate. We use the whole-dataset case in this
analysis because it is based on the largest amount of data,
and we wish to model the whole dataset.

We assume the likelihood surface close to the solution
may be approximated by a Gaussian distribution. Our pro-
cedure for this exploration is therefore to sample all param-
eter values from a multivariate Gaussian distribution with
mean equal to the ML solution and standard deviation equal
to the covariance matrix, obtained by solving the Hessian
matrix output from the inversion. This gives a candidate al-
ternative solution, which we reject immediately if any of the
parameters have negative values or the branching ratio does
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Figure 3. Comparison of Colfiorito data with simulations, using the temporal ETAS ML solution for the whole dataset, and with theM ≥5
events included in the simulation as part of the background. Parts (a) and (b) show the magnitude time series for the Colfiorito data and for
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deviations (95% confidence limits). The color version of this figure is available only in the electronic edition.

Statistical Modeling of the 1997–1998 Colfiorito Earthquake Sequence 889



not lie in the range 0 ≤ n < 1. We then analytically test the
total event rate r using the formula r � μ

1−n (Helmstetter and
Sornette, 2003a). If this is greater or smaller than the Colfior-
ito dataset’s mean event rate by a factor of more than 0.1, we
reject it also. (This is just a guide, as it is a theoretical mean,
taking into account extreme events; in practice, the observed
event rate is likely to be lower, assuming a finite time period.)
Assuming it passes these tests, we then simulate the Colfior-
ito dataset using these parameters. The final check is then to
compare the simulated event rate with the real rate during the
periods of elevated rate around the big events. We look at two
specific time periods corresponding to the two clusters of
M ≥5 events (and the elevated-rate periods that follow
them): 26 September 1997–25 March 1998 and 26

March–22 September 1998. We now reject the parameteriza-
tion if the rate during either of these periods is greater or
smaller than that of the real data by a factor of more than
0.2. If the parameterization is ultimately accepted, we record
the parameter values and their log likelihood. This is then
repeated until we have accepted 500 sets of parameter values.

Figure 4a–e shows histograms of the parameter values
accepted using this procedure, whereas Figure 4f shows a
histogram of the log likelihood of those parameterizations.
Some of the parameter histograms are significantly nonsym-
metrical and do not peak on the ML solution. This shows that
our selection criteria relating to event rates have effectively
altered the likelihood surface slightly. The log likelihood is
more commonly close to the maximum than further away;
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Figure 4. (a)–(e) Histograms of parameter values accepted from Gaussian sampling around the ML temporal solution, using the covari-
ance matrix from the inversion; acceptance is based on an adequate fit in forward modeling, as described in the text. In each plot, the dotted
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vertical dashed line and the log likelihood for the selected alternative parameters shown as a solid line. The color version of this figure is
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this reassures us that we are tending to find high-likelihood
alternatives.

We choose a single alternative solution by looking at the
parameter values with the highest counts. Rather than simply
choose the peak values, we try a few combinations from the
highest-count values and make the final selection based on a
balance between the visual match to the data in forward mod-
eling (performing the same simulation analysis as we showed
in Fig. 3 for the ML solution) and the value of the log like-
lihood. This is a somewhat subjective step, but, having
shown in Figure 4a–4e that alternative sets of parameter val-
ues (close enough to the ML solution to be within the allow-
able error range) can easily be found that appear to better
explain the data, we now simply wish to select a represen-
tative single set for further forward-modeling analysis.

Solid vertical lines in Figure 4a–e show the values we
selected as our alternative parameterization. These values
are μ � 0:042, A � 1:395, α � 1:717, c � 0:043, and
p � 1:251, giving a branching ratio of n � 0:886. Similarly,
in Figure 4f, a solid vertical line indicates the log likelihood
of this selection. The likelihood value is high enough to be
able to say that this is not an extreme selection, even within
the limited space that is sampled around the peak likelihood.

Figure 5 shows the month-by-month event rate for 100
ETAS simulations performed with these alternative values.
Visually, they provide a significantly better match to the data
than the ML solution; indeed, the real event rate comes within
the 95% confidence intervals of the simulations at the peak,
even in Figure 5b, which shows the evolution of the event
rate over much narrower time windows around the biggest

peak. The fit to the long-term rate outside of the sequence
is also excellent.

Figure 6 replots the interevent time histograms of
Figure 2b and 2c, along with their synthetic counterparts
from simulation of the ETAS ML solution and the alternative
parameters obtained through the sampling procedure. Both
of these options produce histograms that agree very well with
the Colfiorito data; agreement is slightly greater for the alter-
native parameters in Figure 6b, in which the counts during
the highest-rate (shortest interevent times) portion of the
sequence are systematically lower using the ML parameters.

We can also look at the relative proportions of correlated
interevent times (arising from aftershocks in the same se-
quence) and uncorrelated intervals (arising from unrelated event
pairs) for the simulations. Figure 7 shows these two compo-
nents superposed for one realization of ETAS using the alterna-
tive solution. The two components each have a peak in the
histogram in the expected places for the whole dataset. Also,
we can see that the 15-month sequence period in Figure 7b
is dominated by correlated aftershock pairs (the correlated peak
is nearly an order of magnitude higher than the uncorrelated
peak). This further supports our hypothesis that aftershocks
are mostly responsible for the raised event rate in this period.
If the background rates instead were elevated over the sequence
period, we would expect to see a more exponential distribution
(Touati et al., 2009). This is because, even though the time
series itself would be dominated by the aftershocks of these
background events, the aftershocks would take the form of nu-
merous distinct sequences overlapped in time. Thus, successive
events in the catalog would most often be independent from
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each other, and so the distribution of intervals between succes-
sive events would be dominated by the exponential, indepen-
dent component. What we are seeing here is more consistent
with few aftershock sequences that, although they contain many
events, are sufficiently isolated in time that the power-law sig-
nature of their occurrence intervals shows in the histogram.

To test whether the interevent time distribution can dis-
tinguish between our stationary ETAS model and a model
with a varying background rate such as that used by Lom-
bardi et al. (2010), we simulate the latter, and plot the histo-
grams. We do not know the specific values of μ obtained in
the moving-window analysis of Lombardi et al. (2010), but
we can approximate it by looking at their figure 5a. We use
our ML value, μ � 0:043, until 1 October 1997, at which
point we increase it to μ � 1:75. We then decrease to
μ � 1 on 1 November 1997, decrease again to μ � 0:75
on 1 December 1997, and finally revert to the ML value

on 1 September 1998. The other parameters are kept at their
ML values throughout, and the nine large M ≥5 events are
added to the background, as with the stationary model.

A plot equivalent to Figure 3 for this simulation (not
shown) reveals that the overall event rate indeed is more
comparable to the real data than the stationary ML model,
although our alternative model still performs better by this
measure. The interevent time histogram for the varying-back-
ground simulation is shown in Figure 8. The resemblance to
the Colfiorito data is not as good as for the stationary model;
in particular, during the sequence period (Fig. 8b), the vary-
ing-background histogram is more broadly rounded and less
gamma-like in shape. This is the result of effectively mixing
several distributions by varying μ.

A nearest-neighbor analysis is shown in Figure 9, analo-
gous to that shown in Figure 2d and 2e, with the Colfiorito
data in the top left and bottom left plots and stationary ETAS
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simulations in the other plots. The simulations here were per-
formed using a spatiotemporal ETAS model (equation 2) with
d � 0:000062, which was obtained by fitting the spatiotem-
poral model to the whole dataset while keeping the temporal
parameters (μ, A, α, c, and p) fixed at the ML values obtained
in Table 2. This value of d nominally characterizes the spatial
distribution of aftershocks around parent events, allowing a
simple way to simulate a catalog of spatial as well as tem-
poral data; we do not attempt to spatially model the back-
ground process in a realistic way but merely simulate this
uniformly in space.

For the ETAS simulations, we superpose the straight di-
viding line from the nearest-neighbor plot of the real data
(Fig. 9a,d, also shown and explained in Fig. 2d,e), and find
that it separates the synthetic clusters very well also. Overall,
there is visual similarity between the real and synthetic data

in these plots, even though the spatial aspect of the modeling
is overly simplistic; the simulations have produced some
short distances that are below the spatial resolution limits of
the real data, but the clusters occur in the same regions of the
plot with similar relative populations of points. This adds to
the support for our alternative parameters.

For comparison with Lombardi et al. (2010), we show
two types of residual analysis for our ML and alternative
ETAS models: the residual point process (RPP) and an
inferred cumulative background (Fig. 10). The RPP in
Figure 10a consists of transformed event times, obtained by
integrating the conditional intensity (equation 1) from the
start up to each event time in the real data, using the specified
model parameters. This should transform the event times to
approximately a Poisson process of unit rate if the model is a
good fit to the data (Ogata, 1988). The inferred background
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in Figure 10b is obtained by thinning the catalog based on the
stochastic identification of aftershocks (Schoenberg, 2003;
Zhuang et al., 2005). The thinned process is then taken to
represent the background and can be plotted as a cumulative
function of time to check for stationarity. This technique
comes from the stochastic declustering of Zhuang et al.
(2002), in which, after ETAS parameters for the catalog have

been determined, each event may be assigned a probability of
being triggered by any of the previous events and (con-
versely) a probability pbg of being background:

pbg �
μ

λ�tjHt�
� μ

μ� AS
; �5�

in which AS refers to the aftershocks term of ETAS, evaluated
with the current event history. Deviations from linearity in
the cumulative background probability as a function of time
may be taken to indicate that the stationary ETAS model in
question does not match the data well.

In Figure 10a, the residual point process of the alternative
parameterization is noticeably more stationary than that of the
ML solution and, after the second and third large event, stays
closer to the ideal (indicated by a straight line). Figure 10b
shows the inferred background over the same range of dates
used in figure 4b of Lombardi et al. (2010), and vertical
dashed lines indicate the change points identified visually
by Lombardi et al. It is interesting to note that the two curves
lie on top of each other initially, start to diverge at the first
change point, and become even more so at the second. The
apparent change points are markedly less noticeable with
the alternative parameters in terms of an event rate increase.
The inferred background rate does still appear to increase at
the first change point, butwe note that there is a similar or even
greater visible fluctuation around the beginning of 1996,
which does not correspond to a marked increase in the event
rate in Figure 2a. Thus, whether real or not, these apparent
changes in background do not appear to be tightly correlated
with the type of activity seen in the Colfiorito sequence.

Cluster of Large Events

We now turn our attention to the question of the likeli-
hood of seeing clusters of largeM ≥5 events in ETAS similar
to the ones in the Colfiorito data, which we have so far simply
transplanted into our simulationmodeling. One obvious place
to start is to check whether these events violate the
Gutenberg–Richter law. The b-value for the 15-month se-
quence period is 0.955, slightly smaller than that for thewhole
dataset (b � 1:02), which reflects a greater proportion of
larger events during this time; it is not abnormally low, how-
ever. We can plot a histogram and compute 95% confidence
intervals from a Poisson distribution around theML frequency
at each magnitude bin. We can also place counting error bars
on the measured frequencies: the 95% confidence limits of a
binomial error distribution happen to be equal to the inverse of
the cumulative beta distribution, evaluated at 0.975 and 0.025,
multiplied by the total count. Figure 11 shows examples of
this for the 15-month sequence period. None of the data sec-
tions or sections of simulations exhibit a significant deviation
from Gutenberg–Richter in terms of measured frequencies
falling outside of the confidence intervals at largemagnitudes.

Next, we can look at the average spontaneous occurrence
rates of these clusters in ETAS simulations, using both the ML
parameters for the whole dataset and the alternative parame-
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ters. Although magnitudes in ETAS simulations are each
selected independently from the Gutenberg–Richter distribu-
tion, there are small but significant temporal correlations
between the magnitudes. This is due to the fact that, when the
event rate during a time period δt is elevated (as is the case
following a large event), the probability of seeing a large event
within δt is also elevated (Helmstetter and Sornette, 2003b).
Thus a cluster of large events in an ETAS simulation is more
likely than in a stationary Poisson process without aftershocks
(and its likelihood also varies with the parameter values).
Looking for such a cluster emerging in an ETAS simulation
also does not force the large events to be independent, as they
were in our forward-modeling, but allows the possibility of
them arising as part of a triggered sequence.

We run simulations for 22 years each (the duration of the
CSI), producing 100,000 realizations of each model, and then
look for the occurrence of clusters of six M ≥5 events within
19 days, as seen in the Colfiorito data between 29 September
and 14 October 1997. We observe at least one such cluster in
4.54% of the 22-year simulations for the alternative parameters
and in 2.29% of simulations with ML parameters. We notice
that the frequency increases with the number of realizations.
Convergence of rates of extreme events, such as this cluster,
toward their true long-termmean value, is very slow and occurs
in an upward direction (Naylor et al., 2008); these estimates are
therefore lower limits. The mean number of occurrences of
such a pattern is 0.064 times per 22-year simulation in the
alternative model, compared with 0.027 times for the ML
parameters. The standard deviations are 0.493 and 0.225, re-
spectively; these are an order of magnitude greater than the

mean, showing how uncertain the estimates of mean rates for
such extreme events can be. We note also that in defining the
cluster, we have selected a time window (19 days) that max-
imizes the apparent anomaly: we could have used a wider win-
dow and included more than six events, but this would have
given us a lower event rate of M ≥5 events. Alternatively, we
could have used a smaller window and made the cluster smaller
in size, and thus easier to match. Of all the possible ways of
expressing our cluster, we have used the form that gives us the
most anomalous-looking set of events. Shearer and Stark
(2012) point out that such selection procedures are subjective
and warn against defining apparent anomalies too specifically,
because any highly specific pattern, interesting or otherwise,
will inherently be a highly unlikely event.

A cluster of sixM ≥5 events in 19 days occurred roughly
twice as frequently in our simulations of the alternative param-
eterization than in the ML solution. This must be due to the
very small difference in branching ratio between these two
(0.886 compared with 0.824); their background or indepen-
dent event rates are almost equal. The approximate doubling
of the cluster occurrence rate with the alternative parameters
again shows how uncertain this rate is and how sensitive it
is to such a difference in an important parameter (which in
itself is rather uncertain). The origin of the cluster here re-
mains a question open for further investigation, especially
given that there is a proposed physical mechanism of fluid-
driven triggering; however, in our analysis we cannot reject
that it may be a chance outcome of the normal stationary seis-
micity of the region. We also note that even with a varying
background rate as utilized by Lombardi et al. (2010), the
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large events still need to be included in order to see compa-
rable event rates during the sequence from a simulation. Thus,
the question of the origin of this cluster of large events re-
mains, regardless of whether a stationary or nonstationary
ETAS model is used to represent the Colfiorito dataset.

Discussion

We have shown in our Gaussian sampling of ETAS
parameters (Improving the Fit by Exploring the Uncertainty
section) that if we specify that the average event rate for the
model must match that of the data (within some particular
range), we may obtain an alternative solution that visually
matches the data better than the ML fit. This at first glance
seems controversial; ML, after all, obtains the set of param-
eter values that give the highest likelihood of observing the
data. Why, then, do the simulations of the ML fit look so
different from the data?

To say that a set of parameters give the highest likelihood
of observing a specific set of data does not imply that the data
represent the most likely outcome of that parameterization.
This may not be the case. Thus when we simulate the model,
the synthetic data, which will be closer to the most likely out-
come of the model, may be quite different in terms of readily
observable attributes, such as the event rate. As an obvious ex-
ample, it is possible to fit ETAS with ML and obtain a branching
ratio (equation 4) of greater than 1, which leads to the unphys-
ical situation of an unbounded event rate when simulated.

Reasons for this mismatch can include the fact that the
data are a finite sample of the underlying process, covariances
in themodel parameters, relative flatness of the likelihood sur-
face, and limitations of the model in representing real data.

ML parameter inversion for the ETAS model is not con-
strained by the overall event rate or total number of events.
The likelihood is formed by simply taking the probability
density for the occurrence time of the next event (given
the history at that time, and specified by the model), evalu-
ating it at the time at which the next event actually occurred,
and multiplying this together for all events in the dataset.
Thus it tries to match patterns of event occurrence in time,
rather than overall event rates.

Under some conditions, it consistently arrives at the
wrong answer. For example, we previously showed (using
simulations) that in datasets that span a very large geographi-
cal area, the high degree of temporal overlapping of aftershock
sequences can mask the triggering pattern, leading to system-
atic overestimation of the background rate and underestima-
tion of the branching ratio by the ML technique (Touati et al.,
2011). In that case, essentially there are many possibilities to
match the seismicity pattern, which resembles a Poisson proc-
ess in time. In light of our present study, we would interpret
such a result in terms of a large parameter uncertainty, as well
as a bias in the position of the peak likelihood. In our simu-
lation with μ � 10 events per day (Touati et al., 2011), the true
solution was not even within the 95% confidence interval of
the inversion; thus, exploring within the confidence interval as

we have done in this paper may even be considered
conservative, as it can be an underestimation of the true error.

In the case of the Colfiorito data, we have found that
observable attributes such as the event rate can vary consid-
erably within the vicinity of the ML solution. In the case of
strongly overlapping aftershock sequences, perhaps explor-
ing the uncertainty would similarly give rise to significant
changes in the branching ratio and background rate, even
if the overall event rate was more stable in that case. The
sensitivity of the average simulation outcome to changes
in the parameters is demonstrably much greater than the sen-
sitivity of the likelihood to changes in those parameters, for a
particular set of data. This is the key observation underpin-
ning our sampling around the peak likelihood.

The results of this paper suggest that it may be useful to
think of ML as being not simply the peak in likelihood, but a
subset of model space around the peak, defined by the con-
fidence interval. The event rate can also be a useful further
constraint for selecting model parameters from within that
space. The results also demonstrate that the inversion uncer-
tainty should be taken into account and explored before
assigning significance to apparent rate changes.

Conclusions

We have analyzed the Colfiorito earthquakes over 22
years and attempted to model the seismicity using ETAS
by ML fitting combined with forward modeling and compari-
son on various metrics. Despite slight differences in pro-
cedure, we agree with Lombardi et al. (2010) that the ML
parameters for the whole dataset tend to lead to insufficient
earthquake productivity during the sequence of 1997–1998.
We have explored the parameter space around the ML solu-
tion, within the uncertainty inherent in the inversion pro-
cedure, and found that we can significantly change the
result using just a small change in the parameter values. With
the nine M ≥5 events transferred from the Colfiorito dataset
into the simulation background, we see event rates that com-
pare (within error) with the real seismicity throughout the
catalog, better than for a model with a varying background
as used by Lombardi et al. (2010). We also find a convincing
visual match to the data when looking at interevent time his-
tograms and space–time nearest-neighbor plots. These plots
reveal the triggering structure of the simulated data for
M <5, and the similarities with the real data strongly indi-
cate that the sequence consists largely of aftershocks gener-
ated by some few large events. In particular, the histogram of
interevent times during the sequence period resembles that of
a gamma distribution, which is more consistent with after-
shocks occurring successively (Touati et al., 2009) than with
a varying background rate (as shown in Fig. 8b).

By sampling the parameter space, we have essentially
imposed an additional constraint on the parameter selection:
that the average event rate of the model must match that of
the data, a constraint that is absent from the ML inversion.
This has allowed us to find a parameterization of the ETAS
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model that matches the aftershock production during the
sequence within the 95% confidence intervals, reducing or
removing the need to increase the background rate during
this period while still matching the data in the long term. This
suggests that the seismicity over the 22 years can be consid-
ered to be generally stationary.

We have also looked at the likelihood of obtaining the
clusters of large events from our ETAS models. It is not trivial
to set an expectation on how infrequently a particular pattern
should arise by chance for it to be deemed anomalous when it
does appear within a 22-year catalog. Any highly specific
pattern is, inherently, highly unlikely. However, we found
that a cluster of six M ≥5 events in 19 days occurred more
frequently by chance in our simulations of the alternative pa-
rameterization than in the ML solution. It occurred in 4.54%
of our 22-year simulations; due to slow upward convergence,
this can be deemed a lower limit on the true frequency. We do
not think this is rare enough to reject that the cluster of events
triggering the Colfiorito sequence may be part of the normal
long-term seismicity of the region as captured by ETAS.

Data and Resources

We used data from the Catalogo della Sismicità Italiana
—CSI 1.1, downloaded from http://csi.rm.ingv.it/versione
_inglese/index_eng.htm (last accessed 4 October 2013).

We made use of some of the R functions in Statistical Seis-
mology Library (SSLib), available at http://homepages.maxnet
.co.nz/davidharte/SSLib/ (last accessed 4 October 2013).
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