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Abstract

We present a model for the oxidation of titanium combining non-equilibrium statistical

mechanics and Density Functional Theory (DFT). We find that oxygen is more strongly bound

as an interstitial in Ti than in TiO2 oxide, the energy difference being around 1.6 eV. There-

fore, a binary phase structure TiO2/Ti, like the commonly-observed oxide scale, which protects

titanium alloy against corrosion, is thermodynamically unstable. Likewise, various DFT func-

tionals all show several TiO2−x compounds, have lower energy than the weighted average of Ti

and TiO2. Thus the scale is a non-equilibrium structure and diffusion is the controlling process.

We find that the barrier for O-vacancy migration in TiO2 is Erutile = 0.9 eV, much lower than

the interface migration barriers (1.0-1.9 eV). We introduce a particle-based diffusion model

which captures this feature, and explains the long-lived nature of the observed thin oxide layer.

Due to low density, high strength, and excellent corrosion resistance, Ti and its alloys are

widely used in many fields. However, above 600◦C, the surface loses its corrosion protection due

to continuous growth.1 Improving oxidation resistance is essential to extend Ti-alloy use to high

temperature, and a better understanding of the process of Ti oxidation will optimize the methods

to design such alloys.

Experimentally, a rutile (TiO2 tetragonal, P42/mnm) scale forms on oxidized titanium,2–5 with

a sharp boundary (see TOC image) of well defined crystallographic orientation relationship (COR).2

By contrast, the Ti-O phase diagram6 shows a series of solution/compounds forming at inter-

mediate oxygen concentration, like Ti2O (space group: P3m1),7 TiO (C12/m1, low temperature

structure),8 Ti2O3 (R3c),9 etc.. Other different stoichiometric and structures have been found in

ultrathin TiOx films.10–12 These structures correspond to filling the interstices in a hexagonal Ti

lattice, so although there is some tendency for the O interstitials to order in layers, the experimental

phase diagram can be viewed as a solid solution for compositions from Ti to TiO2.

Resolving the conflict between the observed sharp interface, and the thermodynamic prediction

of continuous solid solution is the subject of this paper.

Atomic-level investigation of oxidation is experimentally difficult, and so theoretical study,

using DFT, has become the method of choice to obtain a detailed understanding. Previous work
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showed that the change in chemical bonding from ionic to metallic is extremely abrupt, occurring

across a few Angstroms at the interface.13 Further, the Ti-TiO2 interface has a negative formation

energy, consistent with the continuous solid solution inferred from the phase diagram. However

the dynamics of atomic migration have not been reported, and are examined here by DFT.

The most commonly observed, near-epitaxial Ti(1010)[0001] // TiO2(100)[010] interface,13

allows numerous different stackings, with the oxide terminated with either a single-oxygen in-

terface (one layer of oxygen on the interface, i.e., the TiO2 part is terminated with O-Ti-O) or a

double-oxygen interface (two layers of oxygen on the interface). Both must be present as oxida-

tion proceeds. This gives rise to many possible transition paths, so here, we concentrate on oxygen

diffusion from the most stable structures in these two categories. Our calculations use supercells

containing metal and oxide regions.

To calculate the energetics of oxidation, we removed one oxygen atom from the interface (or

from the oxide), creating a vacancy, and replace it in interstitial site in the metal. Surprisingly, in

all cases, this lowers the total energy (Figure 2), by 1.6eV (O from bulk); 1.0eV (O from single-

oxygen interface); or 0.6eV (double-oxygen interface). These energies converge quickly as the

oxygen interstitial is moved deeper into the bulk metal, due to effective metallic screening.

Further investigation shows that, the system consisting of Ti, TiO2 and a sharp interface, is

energetically unfavourable compared to having oxygen mixed homogeneously. Indeed, the Ti-

O phase diagram,6 shows various stable compounds (Ti2O, TiO) with sub-stoichiometric oxygen

concentrations. Figure 1 shows that the calculated energies of several TiO2−x compounds agrees

with the phase diagram. For example, for the ordered compound TiO, the energy of one TiO unit

is 0.5-0.6 eV lower than the average of the Ti and TiO2. As seen from Figure 1, when the ratio of

oxygen and titanium is between 0 and 2, Ti-O solution or other compounds are more stable than

the binary system TiO2/Ti.

Thus our static DFT calculations agree with the experimental Ti-O phase diagram6 which is

consistent with the interface result that the total energy drops when one oxygen in the oxide moved

to the interstice of the Ti. Therefore, with composition TiO2−x, TiO2+Ti is not the most stable
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arrangement, and should not be formed at equilibrium.
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Figure 1: Energy of the Ti-O systems. Black squares are obtained using 525 eV plane wave cutoff
and PW91-GGA. Red circles used 300 eV and PW91-GGA. Blue triangles used HSE06 with 300
eV cutoff. Ti32O has one octahedral oxygen interstitial in a 32-atom Ti supercell. Other phases
taken from Massalski.6 Further details under ’Calculational Methods’.

Both the Ti-O phase diagram and our calculation above suggest that the bulk Ti with thin TiO2

layer on top is actually a thermodynamically unstable system. However, experiments invariably

observe rutile on top of Ti, and oxygen seems unable to go deeply into the metal. To explain this,

data about the diffusion process of oxygen in the oxide/metal system is needed.

The energy barrier for O-diffusion from the interface into the metal was calculated using

Climb Image-Nudged Elastic Band (CI-NEB) method.14,15 The energy profile and transition state

structures are shown (Figure 2). The energy barrier depends on the interface structure: for the

single-oxygen interface the barrier EBOIS = 1.9eV and for the double-oxygen one the barrier

EBOID = 1.0eV . This is in reasonable agreement with the measured barrier 1.5 eV for the dif-
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fusion of oxygen across the interface between amorphous TiO2 and Ti.16

Natural rutile is usually reduced, i.e., TiO2−x (0 <x <2), so oxygen vacancies or titanium in-

terstitial occur naturally. Consequently, we used a 2×2×3 supercell with k-point mesh 3×3×3

to study the diffusion of oxygen via vacancy mechanism in TiO2. There are three inequivalent

pathways, which are shown in the unit cell in Figure 3 and denoted as ’A’, ’B’ and ’C’. CI-NEB

calculation showed that the energy barrier for these three pathways are 1.2 eV, 0.9 eV, and 2.1 eV,

respectively. Diffusion pathway ’C’ has no component in the direction [100], so cannot contribute

to the diffusion in this direction. Both ’A’ and ’B’ contribute to the diffusion across the interface

studied here. Iddir et.al.17 reported the migration barrier for a charged oxygen vacancy (V2+
o ) is

1.1 eV, 0.69 eV, and 1.77 eV, for path ’A’, ’B’ and ’C’, respectively. Thus, the neutral and the

charged oxygen vacancy share the easier diffusion pathway (’A’ and ’B’). We assume that there is

a smaller barrier for the charged ion because fewer electrons leave a larger ’space’ for diffusion.

The diffusion barrier of oxygen in bulk Ti is around 2 eV, with similar values for various

diffusion paths. This agrees with previous work performed by Wu et.al..18 Based on the low

diffusion barrier in rutile (TiO2) and high value in Ti and across the interface, we conclude that the

growth of the scale in the oxidation is be controlled by the diffusion of oxygen into the titanium

matrix.

In principle, the outward movement of titanium may also contribute to the oxidation. We

calculated the energy change when Ti atoms on the interface (or in the center of the metal) moved

into the interstices of the oxide (Table 1). This shows that it is favourable for interfacial Ti to go

into the oxide, but overall movement from the center of the metal increases the system energy.

Thus the diffusion of oxygen vacancies is the dominant process in oxidation.

The picture which emerges from the calculations above is as follows. When the oxidation starts,

oxygen can easily dissolve in the surface of the Ti, but it is trapped there by the high barrier against

diffusion into the metal. As the interface moves slowly against this barrier, there is plenty of time

for further oxygen to arrive from the surface to saturate the oxide at the TiO2 composition. Thus,

the formation of TiO2 becomes possible, despite the thermodynamics. Since oxygen beyond the
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Figure 2: Energy variation when one oxygen atom is relocated to an octahedral interstice in layer
X of the metal leaving a vacancy in the interface (squares) or bulk (circle). X=0 corresponds to
perfect interface structure. The dashed line is the CI-NEB energy profile for oxygen hopping from
interface to metal. The (partial) atomic structures of the perfect interface, transition states (TS),
and that with oxygen in the nearest octahedral interstice are shown for (a) single-oxygen interface,
(b) double-oxygen interface. Red (silver) balls represent oxygen (titanium) atoms.
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Figure 3: Diffusion path of neutral oxygen vacancy in rutile. Red balls are oxygen, unshaded red
circle is the vacancy site. Blue balls are titanium.

Table 1: Energy of the interface containing defects compared with perfect interface struc-
ture. Iv +Ci means structures with one Ti vacancy on the interface and one interstitial Ti in
the center of the oxide, while Cv+Ci represents one Ti vacancy in the center of the metal and
one interstitial Ti in the center of the oxide. Ti interstitials have several inequivalent positions
with respect to the TiO2, and the energy scatter is shown below.

single-oxygen interface double-oxygen interface
Iv +Ci -1.0/-1.2 -0.5/-0.6
Cv +Ci +0.0/+0.2 +0.2/+0.3
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TiO2/Ti interface can move within the metal by overcoming a relatively smaller barrier, a diffuse,

but oxygen rich region exists under the scale. This region is narrow at relatively low temperature,

but when the temperature rises, oxygen diffuses faster in the metal, and the system moves towards

thermodynamic equilibrium, stable vacancy defects are produced, the more porous oxide layer

grows faster and corrosion resistance is lost.

As the dissolution energy of oxygen in Ti is very high, and heat conduction in Ti is poor, a

large amount of heat might be generated during oxidation, which in then causes still faster ox-

idation. Since no protective scale can be formed, if sufficient temperature can be reached, the

high-temperature reaction becomes self-sustaining and the titanium burns.

We have shown that oxidation must be regarded as a non-equilibrium process, and we now cast

the preceding verbal argument into a precise model.

The large barrier for lateral motion, process ’C’ in Figure 3, suggests considering diffusion

as a 1D process. An appropriate simple non-equilibrium model is the 1D hopping model with

extension, shown in Figure 4. This model considers a line of ’oxide’ sites which may be occupied

by an oxygen atom (state 1), or not (state 0). An oxygen atom can hop from one site to an adjacent

open site. One end represents the free surface, where oxygen is supplied but not removed, the other

end represents the TiO2/Ti interface, where movement of an oxygen extends the oxide region, and

hence the length of the line.

This is based on a model well-known in statistical physics, the symmetric simple exclusion

process. The novel feature of line-extension has not been solved to our knowledge, although a

similar extending process has been solved for the asymmetric exclusion process applied to fungal

growth19 and our simulations show similar behaviour, a slowly extending jammed phase for high

β/γ (the oxide scale) (see Figure 4 for definition) and a free flowing phase for β/γ < 1.

The behavior of this model depends on the ratios between α , β and γ . It is reasonable to assume

a high value of α: that surface vacancies are quickly filled. In fact only this regime can produce

a surface oxide layer. At high β/γ = exp(−Erutile +EBOIS/kT ) the system can be analytically

solved: it jams. Our simulations of this system confirm its equivalence to the fungal model; in
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the mean field solution the oxide has the surface site occupied, the interface site occupied with

probability 1− γ/β , and a linear profile between.19

In this regime, appropriate for describing the scale, the growth rate decreases sharply with layer

thickness L, being proportional to the rate of producing O vacancies (γ ∝ exp(−EBOIS/kT ) at the

interface times the probability that the vacancy will diffuse to the surface rather than returning

to the interface (1/L). The first term is constant, at given temperature, the second is essentially

temperature independent. External temperature increase reduces β/γ , meaning increased oxidation

rate, but cannot reach β/γ < 1 which would correspond to a dynamical phase transition where the

oxide collapses (more vacancies than atoms). This transition is equivalent to burning, and could

be achieved when the energy release at the interface leads to a higher temperature there than in the

environment.

This hopping model gives a direct connection to the calculated barrier heights, and is more

easily applied than, e.g., the Deal-Grove20 diffusion model which is more applicable to interstitial

mediated diffusion, but even there has been strongly criticized.21 Our model predicts a squart root

relationship between thickness and time at low temperature, switching to faster growth when the

O vacancies are no longer independent. This is consistent with data from Kofstad et.al..22

β γ

AlloyAir

α

...Oxide...

Figure 4: Hopping model for Ti oxidation. α is the absorption rate, taken as 1, β the barrier cross-
ing rate in the oxide, dependent on the barrier Erutile and γ the interface crossing rate, dominated
by the barrier for oxygen migration in the interface with single O-layer EBOIS and in the Ti matrix.
When the interface is crossed, the length of oxide extends, if the final site is empty, it retreats.

In summary, our DFT calculation showed that the normally observed system: a thin TiO2 layer

on bulk Ti, is thermodynamically unstable, and the more stable state involves oxygen penetrating

into the bulk. The outward diffusion of oxygen vacancies is the key mechanism in TiO2. However,

migration of oxygen is kinetically blocked by the high diffusion barriers to bulk Ti, and this is

the controlling process in oxidation. Oxygen moves more easily from the surface when partial

oxidation has occurred, and this leads to saturation and formation of TiO2.
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We map this process onto a hopping diffusion model with extension. This model shows that the

non-equilibrium diffusion process does lead to a sharp phase boundary between oxide and metal.

Furthermore it correctly predicts that the oxide growth rate becomes significantly slower as the

thickness increases, but shows Arrhenius behavior with temperature.

From this model, we deduce that burning will arise when the rate of oxygen-hopping into the

metal becomes higher than in rutile. Although the barrier is always higher, the release of energy at

the interface means that the local temperature is always higher. The controlling parameter for the

rate is E/T, and at β/γ = 1 the hopping model exhibits a dynamical phase transition to free-flowing

oxygen: burning.

Calculational Methods

All calculations are performed using the Vienna Ab initio Simulation Package (VASP).23–25 The

electronic exchange-correlation interactions are described by generalized gradient approximation

(GGA) parameterized by Perdew and Wang (PW91).26 The 3p3d4s and 2s2p electrons are treated

explicitly for Ti and O: our systems containing up to 3000 electrons. 3× 2× 1 supercells were

used, and the dimensions on the interface plane are 8.9 Å× 9.1 Å, which is large enough to elim-

inate interaction between defects (interstitial atom or vacancy) and their images. For the interface

structure calculation, we use Γ k-point sampling. The cutoff energy is set as 300 eV. Structural

optimizations use fixed supercells, with atomic forces relaxed to below 0.05 eV/Å. The metal is

slightly expanded to achieve epitaxy, but we found this has negligible effects on the defect energies.

For the bulk Ti-O solution/compound, we used two sets of k-point sampling. With cutoff energy

525 eV, for Ti, Ti2O, TiO, Ti2O3, and TiO2, k-point mesh are 11×11×7, 11×11×7, 7×7×5,

7×7×7, and 5×5×8, respectively. To be consistent with the interface structure calculation, we

recalculate the energy with cutoff energy 300 eV. To use the hybride functional HSE06,27 coarser

k-point meshes were needed. They are 3× 3× 2, 3× 3× 2, 2× 2× 2, 3× 3× 3, and 3× 3× 5.

During these simulations, both cell shape and position of atoms are relaxed to forces smaller than
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0.01 eV/Å.

The Bader charge28 of oxygen is -1.10e in the centre of the oxide, but increases to -1.44e for the

oxygen in the interstice of the metal. This may account for the stability of the ’defective’ system

compared to the perfect interface structure.

A common dilemma in studying diffusion in oxides is whether the defect should be charged.

This is not a problem in our calculations, since the presence of the metal in the supercell enables

the oxygen ions to change its charge state at will, always adopting the lowest energy state. The

exchange correlation functional can have major effects on TiO2.29 Problems may occur with soft

modes and the band gap, so we cross-check our results with the hybrid functional HSE0627 in

addition to the standard exchange-correlation functional GGA.26 HSE06 gives a band gap of 2.7

eV, close to previous work,30 and the experimental value 3.0 eV.31

All our conclusions are independent of the exchange-correlation functional, although it is no-

table that a higher cutoff is required to converge the energy of the lower symmetry Ti2O and TiO

structures than the pure Ti and TiO2. This is probably on account of the polarization of the oxygen

ion, which is only fully described by including the higher energy plane waves.
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