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Hitting Buneman Circles

Michael Paul Fourmanh
Michael.Fourman@ed.ac.uk

School of Informatics, The University of Edinburgh

Abstract. We discuss Peter Buneman’s suggestion that a fibre connec-
tion to the internet — a hub — should be available within every circle
enclosing a population of at least 2,000 people (a b-circle). This poses
the problem of finding a small set, H, of hubs, such that every b-circle
contains a hub. We show that a greedy algorithm does not lead to an
optimal set of hubs. Instead it models market forces, which are naturally
greedy. An unfettered market will exploit the most profitable communi-
ties and, just like a greedy algorithm, leave gaps that it is uneconomic to
fill. We describe a geometric heuristic for the discovery of efficient hub
placements satisfying a purely combinatorial analogue of Buneman’s cri-
terion, and apply it to illustrate the inherent inefficiency of gap-funding
in a market-led broadband policy.

Key words: hitting set, approximation algorithm, facilities location,
broadband, market forces, gap funding.

Introduction

In Scotland, as elsewhere, many communi-
ties are too far from an optical connection
to the internet to allow them to benefit from
the low-latency, high-bandwidth, symmet-
ric internet connections that will soon be
routine in metropolitan areas.

This work arose from the Royal Society
of Edinburgh’s Digital Scotland inquiry [8].
It was easy for the inquiry to decide that
Scotland should have enough “fibred points
of presence” (FPOPs, or hubs) to provide
every community in the country with ade-
quate backhaul.

Quantifying where these should be and
where the fibre should be laid, without em-
barking on detailed infrastructure planning,
was more difficult. Our diagram shows the
areas served by a collection of hubs satisfy-
ing a simple, but ingenious criterion, sug-
gested by Peter Buneman. Such provision



would allow every substantial community in Scotland to access next generation
broadband.

The population of Scotland, and other countries, is not randomly distributed.
Most people live in relatively dense clusters, many of which are widely separated.
Because communities are hard to identify objectively, it is difficult to specify an
equitable policy for the provision of a fibre backhaul connection — a hub — to
every community.

Buneman’s criterion,

“Draw any circle (I mean any) on a map of Scotland. If that circle contains
more than 2000 people, then the circle must also contain a fibre point-of-
presence.”1

was adopted as the key recommendation of the Digital Scotland report, intended
to ensure that every community will have access to Scotland’s digital infrastruc-
ture. The rationale for this recommendation is that the aggregate bandwidth
demand from a population of this size will, at peak times, exceed the capacity
of a copper or wireless backhaul connection2.

The Digital Scotland report assumes that a population of 2,000 corresponds
to approximately 800 premises, and that a copper or wireless backhaul connec-
tion is limited to ∼ 512 Mb/s. With these assumptions, the available bandwidth
per subscriber is at most ∼ 16 Mb/s, at a contention ratio3 of 25 : 1.

To a first approximation, the bandwidth available for a communication chan-
nel is proportional to the frequency of the carrier signal. Since the electromag-
netic frequencies used for optical signals are around 105 times those used for
electrical or wireless communications, fibre can carry correspondingly higher
bandwidths. Thus, a single fibre could provide the entire population of the UK
with more bandwidth per caput than a wireless or copper channel can deliver to
a community of 2,000.

Once a community has access to backhaul there are many technologies avail-
able for the creation of a local access network — striking examples are given by
the Tegola network developed by Peter and colleagues [1], and other projects it
has inspired.

The Buneman criterion provides a novel approach to facilities location, in
that it analyses the infrastructure requirements for distribution of a utility good,
rather than the more usual focus on placement for profit.

The methods introduced here should also have application in areas other
than backhaul provision. For example, to find solutions to the wireless base-
station placement problem that, unlike much earlier work (see e.g. [5]), impose
limits on the number of clients served by each base station. Such constraints are
increasingly relevant as contention for spectrum increases.

1 Personal communication, 2010.
2 A backhaul connection is the essential link from a local access network to the internet.
3 Backhaul is typically provisioned on the assumption that most subscribers will be

idle most of the time. Contention is the ratio of the total number of subscribers to
the number that can be served concurrently, at the advertised bandwidth.



Discussion

Buneman circles (b-circles) are those circles on the map of Scotland that include
a settled population of at least 2,000 individuals. Every b-circle should include a
hub. The beauty of Buneman’s criterion is that any collection of 2,000 or more
individuals (we call such a collection substantial) may be viewed as a community,
and thus every substantial community is guaranteed at least one fibre hub within
any circumscribing circle. Each individual will belong to many such communities.

We now set out a mathematical context for discussion of this criterion. To
begin, let S (Scotland) be a bounded subset of the plane, R2.

Definition 1. A population distribution is a finite measure, π on S.
We identify two special cases:

A population is the counting measure on a finite set of points P ⊆ S.
A census is a discrete measure, given by a finite set of census points, A ⊆ S,

together with a count π(a) > 0 of the population ascribed to each a ∈ A.

It is often helpful to think of a population as a sample from the probability
distribution associated with a more abstract population distribution, and a cen-
sus as the result of aggregating a population to a (relatively) small number of
census points. Throughout this paper, we assume a given population distribu-
tion, π, and speak of π(C) as the population of C ⊆ S.

The data used for the Digital Scotland analysis of backhaul requirements is
a census, derived from postcode data by multiplying the number of residential
addresses for each postcode by a factor of 2.5 inhabitants per household.

Definition 2. A Buneman circle is a disc, D, with population π(D) > k (here-
inafter, a b-circle).4

We write Bx for the minimal-radius b-circle centred at x, and β(x) for the
radius of this circle — the b-radius of x.

Buneman computed the b-circle Bp for every one of the 196,273 postcodes, p,
in Scotland. The calculated b-radii range from 84 metres (AB25 1FE, a high-rise
in Aberdeen) to 55 kilometres (ZE2 9JU, the Fair Isle). Buneman’s computation
places the data in a k-d tree, and then uses standard k-nearest neighbour queries
and binary search to determine β(x) for any point x. For UK postcode data, k-d
trees provide adequate performance on standard hardware. See [4] for a recent
review of other methods, suitable for massive data sets.

Recall that any set which includes least one element in every set in a collection
X is called a hitting set for X. The Digital Scotland recommendation stipulates
that the hubs should form a hitting set for the collection of all b-circles. Dually,
for each potential hub location, h we can consider its client set Ch = {x | h ∈ Bx}.
Clearly,

H is a hitting set for {Bx | x ∈ R2} iff {Ch | h ∈ H} covers R2.

4 For the purposes of this note, k can be considered to be a fixed integer, substantially
smaller than the total population, π(S).



Properties and anomalies

Lemma 1. β is uniformly continuous. Ch is star-convex.

Proof. Given two points, x, y, we claim that |β(x) − β(y)| 6 |x − y|. It suffices
to show that β(y) > β(x)− |x− y|.

The result then follows by symmetry.

x

y
s

β(x)
|x-y|

Observe that ∀r, z. π(Dr,z) < k iff r < β(z) (where
Dr,z is the disc of radius r centred at z).

For y ∈ Bx, suppose s < β(x)− |x− y|, then,

s+ |x− y| < β(x), and

Ds,y ⊆ Ds+|x−y|,x
so π(Ds,y) 6 π(Ds+|x−y|,x) < k.

Thus, s < β(y).

The same construction also shows that Ch is star-convex. If x ∈ Ch (equivalently, if
h ∈ Bx) and y lies on the radius (of length β(x)) from x through h, then |y−h| 6 β(y),
so y ∈ Ch. ut

Buneman’s intention [personal communication] was universal provision: that a “cir-
cle drawn on the map of Scotland” really should include any circle — “even one centred
in Newfoundland” — on an infinitely extended map. We call this the strong Buneman
criterion.

Interactions between the geometry of circles and a discrete population can be sur-
prising. One consequence of the strong criterion is that there must be hubs near the
boundaries of S. For any ε > 0 and any half-plane H with π(H) > k we must place
a hub within ε of H — since b-circles with arbitrarily distant centres must be hit. In
specially coincidental cases, Bx may have an arbitrarily large population — for exam-
ple, if P contains a large number of individuals all on a circle, such as the shores of
a circular loch. In general, a population will be in general position — a sample from
a distribution almost certainly will — but a census is certainly not. If we take a com-
munity, C ⊆ S, even one of the form Bx, then the circumcircle of the population of C
may contain many more individuals than does C.

Clearly, the Buneman criterion is satisfied if every disc Bx contains a hub. However,
this set of discs is infinite, and so is the set of possible hub locations.

We have not attempted to produce hub sets satisying the strong criterion. Instead,
we weaken the condition, by interpreting a “circle drawn on the map of Scotland” to
mean a disc Dr,x whose centre, x ∈ supp(π), belongs to the support of π — we call this
the egocentric interpretation. For a discrete population, or census, this simply means
that x ranges over the sample points, so we now have only finitely many (O(n)) circles
to hit.

This replaces universal provision with egocentric guarantees. Wherever you live
in Scotland, your nearest hub should be among your 800 nearest neighbours. It is
also natural to strengthen the criterion by requiring that hubs should be built only in
habitable regions — so we look for a hitting set that is also contained in supp(π).

A more appealing, but less tractable, community-focussed guarantee would stipu-
late that for every substantial community C ⊆ S the circumcircle of C should contain
a hub. A substantial community distributed around the shores of a circular loch would



then be guaranteed a loch-side hub — or a floating one — whereas the egocentric
criterion might only place hubs well inland.

Nevertheless, in the interest of tractability, and because we are not aware of a need
for a community-centric guarantee arising in practice, we use the egocentric version,
with hubs located in populated sites. Let P = supp(π). For p ∈ P we define

Np = Bp ∩ P Kp = Cp ∩ P

H ⊆ P is a hitting set for {Np | p ∈ P} iff {Kh | h ∈ H} covers P.

We want to find small hitting sets, H, such that {Kh | h ∈ H} covers P . For a discrete
population distribution, this is a purely combinatorial problem.

Selecting hubs

Standard approaches to the hitting-set problem include a näıve greedy algorithm and
linear programming relaxation (LPR) (see [10], Ch. 1). We tried both on Buneman’s
postcode data. They did not perform well. A geometrically-motivated heuristic pro-
duces much better results.

We used various types of synthetic data, as well as the postcode data, to under-
stand why these approaches fail and to evaluate alternative methods. These data sets
included:

– a uniform lattice of n2 points in the unit square,
– samples of size n2 drawn from the uniform distribution on the unit square,
– samples of size n2 drawn from the bivariate normal distribution N2(0,1).

The randomised examples are chosen to model the kinds of local variation (and
in some areas local uniformity) that we see in our population data. Uniform density
across a region with a sharp boundary is often seen near a coastline, and a unimodal
peak characterises many isolated communities.

Consider covering a uniform n × n square lattice with discs containing k lattice
points.. Take k = n and let n → ∞, then, away from the boundary, we approach the
well-known geometric problem of covering the plane with uniform discs. The familiar
regular hexagonal cover always gives a baseline solution (which may sometimes be
improved upon by exploiting quantisation gaps in the lattice).

The greedy algorithm first chooses a maximal disjoint set of circles, and then fills in
the gaps, normally producing a sub-baseline solution. LPR uses randomised rounding to
derive a cover from a non-integral solution to an integer linear program (ILP) expressing
the constraints. Away from the boundary, our problem is regular. Solution of the LP
relaxation gives equal weight to indistinguishable candidates, and so provides no useful
information — randomised rounding amounts to random selection.

A geometric heuristic: Our heuristic is initially designed to produce good solutions
for the uniform lattice, where we are guided by a clear geometric picture. We find that,
with a minor modification described below, it also performs well on randomised and
real-life data.

Consider the continuous limiting case of a uniform population distribution extend-
ing infinitely. The b-radius is uniform. Without loss, assume that β(x) = 1. We write
Bx for the b-circle D1,x of x, and note that each client set is also a unit disc Ch = D1,h.
For this idealised setting, we want to produce a regular hexagonal covering of the plane



by discs Ch, using an algorithm that only has access to the combinatorial relationship
x ∈ Ch or, equivalently, h ∈ Bx.

Suppose we have already placed two hubs, a, b, which are (by magic)
√

3 apart.
What discs might we add to extend our cover?

a b

h

It is clear that we need to cover the uncovered points
near the intersections of our two circles. We identify these
as points that are hard to cover.

We write U for the set of uncovered points. In general,
a point p can be covered by any disc Ch centred at h ∈ Bp,
but we can characterise the particular points we want to
identify if we only consider discs with uncovered centres,
h ∈ Bp∩U . For p near a covering circle, many points in Bp
are already covered by that circle. For uncovered points,
p ∈ U , near to both circles few points in Bp remain uncovered.

For uncovered points, p, near a cusp where the two circles meet Bp ∩ U is smaller
than it is for uncovered points further from the cusp — the points nearer the cusp are
harder to cover. So, we say that, ‘covering p is hard’, if p is not yet covered and there
are few uncovered h such that h ∈ Bp (or, equivalently, p ∈ Ch) (the fewer, the harder).
Then we restrict our attention, temporarily, to those h that cover the hardest p, and
from these select, greedily, an h such that Ch covers as many uncovered q as possible.

The diagram shows our two original discs, with centres a, b, together with a few
of the potential Ch we have to consider — with their centres, h, sized to indicate the
relative size of Ch∩U . The candidate covering circles, Ch, shown all cover all uncovered
points in a neighbourhood of the upper cusp. Choosing greedily from among these
candidates selects the central one, because it includes the largest uncovered area.

θ

h

a b

θʹ2π/3

If we start from our magical initial configuration and
repeat this procedure indefinitely we will incrementally
generate the regular covering of the plane. If we start in-
stead from a pair of discs that overlap, but have less than
the magic separation, what then? Our new circle, centred
at h, includes the hard to reach points and passes through
one intersection of the original two circles. It is placed
symmetrically with respect to the originals. If the angle
between the two original radii is θ, then the angle between
the new radius and either original is

θ′ = θ + (2π/3− θ)/2.

The same formula applies if we start with two discs marginally too far apart. So, as
we iterate our construction, successive values of θ approach the ideal value, 2π/3. This
explains how our algorithm adapts to variations in population density, and why it
produces reasonable solutions for our synthetic data.

In the next section we transfer this idea to our discrete setting and report on our
real-world application.

An algorithm

We use the heuristic introduced above to select new hubs, while keeping track of the
set U of uncovered sites.



Iteration: One step of the algorithm consists of choosing a site, p, to cover; choosing
a hub, h ∈ Np, so that Kh will cover p (we will say, ‘h covers p’) ; then updating U .
We take such steps until U is empty.

First, for each uncovered p, the set of uncovered candidates that would cover it is
given by N(p) = U ∩ Np. The difficulty of covering p ∈ U is given by the reciprocal
of the number of uncovered sites potentially available to cover it d(p) = 1/|N(p)|. For
q 6∈ U set d(q) = 0. We will cover some p of maximal difficulty, chosen from the set
M =

{
p|d(p) = maxq∈U d(q)

}
.

Second, we must choose h from
⋃
p∈M Np. For the purely geometric version of

our problem described in the previous section, a greedy selection, based solely on
maximising the number of newly covered sites, will choose the ’correct’ hub for each p.
For the discrete version of the problem, we find that quantisation introduces enough
noise to perturb this effect: a purely greedy choice will often leave a hard-to-cover site
that can only be inefficiently covered. To overcome this effect, we again favour choices
that cover difficult sites, using d(q)2 as a measure of the value of covering q.5 So, we
choose a hub, h ∈

⋃
p∈M Np, to maximize

∑
q∈Kh

d(q)2. Finally, we remove Kh from
U .

Initialisation: We can start our procedure with an empty collection of hubs, and every
site uncovered, or with an arbitrary collection of hubs, with the sites already covered
computed accordingly. In the geometric setting, starting from an empty set of hubs,
the initial moves introduce two tangential circles, then a third circle centred at their
meeting point. To produce a uniform cover we could use a few iterations to produce a
pair with near-perfect separation, and only then start to produce our cover. In practice,
we have found that this does not give perceptibly improved results on noisy data.

Completion: Once all sites are covered, we may find that a handful (typically � 1%)
of client sets in our chosen covering are double-covered: some chosen hubs have been
rendered redundant by later choices. As long as any such remain, we prune one, and
so eventually arrive at an irredundant cover.

Results

The picture illustrates a covering, H, of a sample of 40,000 points drawn from a 2D
Gaussian, with k = 200, by showing the convex hull of each Kh for h ∈ H.

First, we used synthetic data to develop and tune
our heuristic. The uniform hexagonal cover of the
plane by discs has a multiplicity of 2π

3
√
3
≈ 1.21. We

take this as a baseline against which we compare the
efficiency of our coverings.

We used random samples of 40,000 points, from
normal and uniform distributions, to compare the
use of different exponents, w, in our measure, d(q)w,
of the value of covering q. The table below shows the
multiplicities of typical covers.

w 0 1 2 3 4

2D Gaussian 1.48 1.45 1.36 1.35 1.4
Uniform 1.45 1.375 1.315 1.35 1.35

5 We have no principled justification for the quadratic exponent used here. It was
chosen following the experimentation described in our results.



As discussed earlier our population data can be modelled informally as a mix of
synthetic data from these two distributions. This justifies the choice of a quadratic
exponent for our hardness measure. Pragmatically, we find that it gives lower multi-
plicities (smaller covers), on our data, than other small integer values.

Applying the same algorithm to Buneman’s circles for Scotland, we obtain a cover
with 4,224 hubs. However, a further relaxation of the Buneman criterion, to guarantee
that every b-circle includes some site with a hub within 500 metres of it, dramatically
reduces the number of hubs we require. We implement this relaxation by simply adding
any site within 500m of a site in Nx to Nx. This clearly has the greatest effect in the
most densely populated areas. The diagram on our title page of this article depicts the
convex hull of Kh for each of the resulting collection of 1,652 hubs.

A näıve greedy algorithm, applied to this relaxed problem, produces a cover with
1,803 hubs. For the sake of comparison, we have run a less näıve greedy algorithm
on the same data. For this, we modified the code to omit the first part of each step
(restricting our choice to hubs that cover the hardest sites), so at each step we consider
every site not yet used as a potential hubs, then make a greedy choice favouring hubs
that cover difficult sites. With a quadratic weighting, this gave a cover with 1,734 hubs.

We have shown that a greedy algorithm does not lead to an optimal cover. Market
forces, however, are greedy. An unfettered market will exploit the most profitable com-
munities and, just like the greedy algorithm, leave gaps that it is uneconomic to fill. Our
next experiment suggests that market-led greed, which will focus initial investment on
the most compact communities, is even less efficient than näıve greed, which looks for
hubs that serve as many premises as possible, even if these premises are thinly spread.

Scotland’s current broadband policy, developed in consultation with the incumbent
supplier, is to provide next generation access to over 80% of the population by 2015.
Roughly 72% of Scotland’s postcodes have b-radii 6 700m. We call these compact
communities. They account for just over 80% of Scotland’s residential addresses.

We have run our algorithm to find a set of hubs that will serve just these compact
communities, to try to model the likely impact of government policy. Our algorithm
produces 1,092 hubs that cover these communities. If we then rerun the algorithm to
cover all the communities not served by these 1,092 hubs, we find we need a further
707 hubs to complete the job. So, in toto this two-step approach would require over
10% more than the 1,652 hubs in our one-step plan for universal provision; and public
support would be required for 707 hubs — over 25% more than the gap of 560 between
our 1,652 requirement and the 1,092 financed by the market.

Clearly, what we have just sketched is a very simplistic, indeed over-simplistic,
model of the complex planning and investment decisions negotiated between govern-
ment and incumbent. Nevertheless, we believe that even this simple model captures
a key challenge that policy-makers face in trying to ensure universal provision while
being committed to a gap-funding policy that waits for gaps in market-driven provision
to appear, before intervening to fill them.

Market-led provision is, by definition and design, greedy, and thus becomes inef-
ficient beyond a certain point. Where it will not deliver universal provision, post hoc
gap-filling will be inefficient.

Related work

The idea of using distance to nearest neighbours to study the spatial distribution of
populations is not new. Clark and Evans [2] use distance to nearest neighbour to study



how the distributions exhibited by populations of living organisms differ from a Poisson
ideal. Loftsgaarden and Quesenberry ([6]) introduce the key idea of using distance to
kth-nearest event for density estimation. In Smoothed Particle Hydrodynamics (SPH)
[7] “the mass of each point is distributed according to a smoothing function W whose
size adapts to the local value of the density of points.” For the visualisation of galaxies
Colberg ([3]) uses a grid-based adaptation of SPH. The Delaunay Triangulation Field
Estimator (DTFE) introduced by Schaap and van der Weygaert ([9]), takes a Delau-
nay triangulation, and then considers the n-simplices incident at a point as a natural
neighbourhood of that point. These examples are not exhaustive, but this brief list
gives some idea of the range of applications where related ideas have been considered.

Buneman’s insight that we could use this estimator of local density as a basis for
the provisioning of a rate-limited resource appears to be novel. We hope his ideas may
find further application in some of these other domains.
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