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CYCLIC EXTENSIONS OF FUSION CATEGORIES VIA THE

BRAUER-PICARD GROUPOID

PINHAS GROSSMAN, DAVID JORDAN, NOAH SNYDER

Abstract. We construct a long exact sequence computing the obstruction
space, π1BrPic(C0), to G-graded extensions of a fusion category C0. The other

terms in the sequence can be computed directly from the fusion ring of C0.
We apply our result to several examples coming from small index subfactors,
thereby constructing several new fusion categories as G-extensions. The most
striking of these is a Z/2Z-extension of one of the Asaeda-Haagerup fusion
categories, which is one of only two known 3-supertransitive fusion categories
outside the ADE series.

In another direction, we show that our long exact sequence appears in
exactly the way one expects: it is part of a long exact sequence of homo-
topy groups associated to a naturally occuring fibration. This motivates our
constructions, and gives another example of the increasing interplay between
fusion categories and algebraic topology.

1. Introduction

In this paper we construct several new fusion categories related to the Asaeda-
Haagerup subfactor [AH99] and the related AH +1 and AH +2 subfactors [AG11,
GS12a]. These constructions require the calculation of certain obstruction groups
which appear in the theory of G-extensions of fusion categories, and we construct a
long exact sequence which allows us to do this calculation. This long exact sequence
is in turn a consequence of a certain homotopy fibration of higher groups, as we
explain.

Let us begin by specifying more precisely the concrete problem we wish to solve.
Consider a finite index, finite depth subfactor pair N ⊂ M , which is self-dual, i.e.
is equipped with an equivalence of fusion categories between the principal even
part C0 = 〈NMN〉 ⊆ N -mod-N and its dual (C0)∗C1

with respect to the C0-module
category C1 = 〈NMM 〉 ⊆ N -mod-M . Examples include the Izumi-Xu and AH + 2
subfactors. In this situation C1 is a C0-bimodule category, and it is natural to ask
whether we can combine the common even part and the odd part to form a new
fusion category C = C0 ⊕ C1.

The theory of G-graded extensions of a fusion category, introduced in [ENO05]
and developed in [ENO10], provides answers to precisely such questions. A fusion
category C is graded by G if we have a decomposition C = ⊕g∈GCg, compatible with
tensor product. Thus the categories considered above are instances of Z/2Z-graded
extensions of the even part C0.

The paper [ENO10] constructs an equivalence between G-graded extensions of
a fixed category C0, and homomorphisms ρ : G → BrPic(C0) to the categorical

2-group BrPic(C0) of C0-bimodule categories. Standard arguments in algebraic

topology then reduce the existence of such extensions to vanishing of obstruction
1
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classes ok ∈ Hk(G, πk−2BrPic(C0)), for k = 3, 4. When G = Z/2Z, or more gener-

ally when G is cyclic, o4 is automatically trivial, so that we need only contend with
o3 ∈ H3(G, π1BrPic(C0)).

The main technical tool we develop in this paper is an exact sequence,

(1) ∗ → Hom(U(C0),C
×) → π1BrPic(C0) → Inv(C0),

which realizes π1BrPic(C0) as an extension of a subgroup of the group Inv(C0)

of invertible objects of C0, by the group Hom(U(C0),C×) of characters of the
universal grading group of C0 . The virtue of (1) is the other two groups can
be read off directly from the fusion data of C0; we leverage this to show that
H3(Z/2Z, π1BrPic(C0)) is trivial in our examples, so that the obstruction o3 van-

ishes automatically.
In Section 3, we give an ad hoc construction of the sequence (1), which relies on

an identification π1BrPic(C0) ∼= Inv(Z(C0)), from [ENO10]. However, (1) may be

more properly understood a consequence of the following:

Theorem 3.4. We have a homotopy fiber sequence,

Inv(C0)
F−

−−→ Eq(C0)
M−

−−→ Out(C0),

Here Inv and Eq denote categorical 1-groups of invertible objects and tensor
automorphisms, respectively, and Out is a certain full subgroup of BrPic with the

same π1 and π2. In Corollary 3.7, we deduce the sequence (1) as a fragment of the
long exact sequence in homotopy groups induced by Theorem 3.4. The proof of
Theorem 3.4 is delayed until Section 5.

In Section 4.1, we turn to applications of the sequence (1) to subfactors. Our
primary application is the construction of a new fusion category AH+2, built from
the even and odd parts of the self-dual subfactor AH+2. This new fusion category
AH + 2 is particularly notable because it is, along with Morrison-Penneys’s 4442
fusion category [MP12], one of the first 3-supertransitive fusion category outside of

the ADE families. It is generated by an object of dimension 1+
√
17

2 .
In fact, AH + 2 is just one of eighteen new examples of fusion categories we

build as Z/2Z-extensions of Asaeda-Haagerup type categotries. By [GS12a], the
principal even parts AH1, AH2, AH3 of AH,AH + 1, AH + 2, respectively, each
have three non-trivial bimodule categories up to equivalence. We have:

Theorem 4.4. Each of the three non-trivial bimodule categories over each AHi,
i = 1, 2, 3, is the odd component of exactly two Z/2Z-graded extensions of AHi .

These techniques work well more generally when applied to any fusion category
coming from a 2-supertransitive subfactor. In Section 4.2, we give one other source
of such examples, the near group categories Cp associated to Z/pZ. These are
fusion categories of the form V ec(Z/pZ) ⊕ V ec, which are not necessarily Z/2Z-
graded. The group algebra C[Z/pZ] is an algebra in Cp, and we we let Mp denote
its category of modules. We say that Cp is self-dual if Cp ∼= (Cp)∗Mp

. We have:

Theorem 4.9. Suppose that p > 2, that Cp is a self-dual Z/pZ near-group cate-
gory with trivial outer automorphism group. Then there exist exactly two Z/2Z-
extensions of Cp by Mp.
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Applying Theorem 4.9 and Han’s thesis [Han11], we give a third proof of a
result first proved by Ostrik [CMS11, Appendix] and second by Morrison-Penneys
[MP12], establishing the existence of a certain Z/2Z-graded extension of the Izumi-
Xu category IX . It is our hope that Theorem 4.9 will find application in more
near-group examples; however this will require developing techniques to establish
self-duality and to calculate outer automorphism groups.

1.1. Acknowledments. It is our pleasure to thank Andrew Blumberg, Pavel Etingof,
and Aaron Royer for helpful conversations about homotopy theoretic techniques.
This collaboration began at the 2011 Subfactors in Maui conference supported by
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at IMPA and by NSF grant DMS-0801235. David Jordan was supported by NSF
postdoctoral fellowship 1103778. Noah Snyder was supported by an NSF postdoc-
toral fellowship, DARPA grant HR0011-12-1-0009, and as a visiting scientist at
MPIM.

2. Preliminaries

2.1. Categorical n-groups. In order to state the results of [ENO10] on extensions
of fusion categories we will need to use the notions of higher groupoids and higher
categorical groups. We will need only the notion of a categorical 0-group (i.e. a
group), 1-group, and 2-group in this paper.

By an n-groupoid, we will mean an n-category C, all of whose morphisms at all
levels are invertible. Recall from [ENO10] that a categorical n-group G is a monoidal
n-groupoid, in which all objects are invertible, or equivalently, an (n+1)-groupoid
with a single object. A homomorphism of categorical n-groups is a monoidal functor
of n-groupoids or a functor of connected (n+ 1)-groupoids in that formulation.

For m > k, we can regard any categorical k-group as a categorical m-group,
with trivial morphisms in degree k + 1, . . . ,m. Thus we will often speak of a
homorphism from, say, a categorical 0-group to a categorical 2-group, and that will
mean a homomorphism regarding both as categorical 2-groups.

Remark 2.1. The classifying space construction C 7→ BC defines an equivalence be-
tween the category of n-groupoids and homotopy n-types; for this reason (more
precisely, invertibility of morphisms at all levels), the well-known subtleties in
the foundations of higher categories are largely absent from the theory of higher
groupoids and higher categorical groups. In particular, a categorical n-group may
be regarded as a connected homotopy n+1-type, just as a group may be identified
with the connected homotopy 1-type of its classifying space. This identification
shifts dimensions: we have πkC = πk+1BC, canonically.

Remark 2.2. Categorical n-groups are often called (n+ 1)-groups in the literature
(e.g. [BL04]). Both indexings are reasonable, depending on whether you think of a
group as a set with an operation or as a 1-category with only one object.

2.2. Fusion categories and their extensions. In this subsection we recall the
extension theory of fusion categories developed in [ENO10].

Definition 2.3. [ENO05] A fusion category over C is a finite C-linear semisimple
rigid monoidal category with simple identity object.
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For definitions of module categories, bimodule categories, tensor products of
bimodule categories, and invertibility, see [ENO10]; in this paper we assume all
module categories are semisimple.

Definition 2.4. [ENO10] The Brauer-Picard groupoid of a fusion category C is a
3-groupoid whose:

• objects are fusion categories which are Morita equivalent to C
• 1-morphisms are invertible bimodule categories between such fusion cate-
gories

• 2-morphisms are equivalences of such bimodule categories
• 3-morphisms are isomorphisms of such equivalences.

The Brauer-Picard categorical 2-group BrPic(C) is the full subgroupoid of the

Brauer-Picard groupoid whose only object is C.

An extension of a fusion category C by a finite group G is a G-graded fusion
category whose 0-graded part is equivalent to C. There is a natural notion of
equivalence of G-extensions.

Theorem 2.5. [ENO10] (a) Equivalence classes of G-extensions of C are given by
categorical 2-group homomorphisms from G to BrPic(C).

(b) Such homomorphisms (and hence, G-extensions) are parameterized by triples
(c,M, α), where c is a group homomorphism c : G→ BrPic(C), M belongs to a cer-
tain H2(G, π1BrPic(C))-torsor T 2

c , and α belongs to a certain H3(G, π1BrPic(C))-

torsor T 3
c,M .

(c) Certain obstruction classes o3(c) ∈ H3(G, π1BrPic(C)) and o4(c,M) ∈ H4(G, π2BrPic(C))

must vanish for (c,M, α) to determine an extension.

2.3. Subfactors. A subfactor is a unital inclusion N ⊆M of II1 factors. A subfac-
tor N ⊆ M has finite index if M is a finitely-generated projective module over N
[Jon83, PP86]. In this case, the N−N bimodule NMN tensor generates a semisim-
ple unitary rigid monoidal category of N −N bimodules, called the principal even
part of the subfactor. The N −M bimodule NMM generates a module category
over the principal even part; the dual category of this module category, which is the
category of M −M bimodules tensor generated by MMN ⊗N NMM , is called the
dual even part. The subfactor is said to have finite depth if the even parts are fusion
categories, i.e. if they each have finitely many simple objects, up to isomorphism.

If a subfactor has the same principal and dual principal parts, it is natural to
ask whether there is a Z/2Z-extension whose 0-graded part is the even part of the
subfactor, and whose 1-graded part is the odd part of this subfactor. In particularly
nice situations (where the generator of the odd part C1 becomes self-dual in C) this
can be understood directly in terms of subfactors or planar algebras. In terms of
the factors, you get such an extension when you can realize N ⊂M as coming from
a self-dual bimodule over N . In terms of planar algebras, such an extension tells
you that the shaded planar algebra comes from an unshaded planar algebra.

Note that although we are studying examples coming from subfactors, we do not
explicitly address unitarity of the extension here. In particular, the Z/2Z-extensions
come in pairs, and it does not seem reasonable to expect that they would both be
unitary.
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3. Computing π1 of the Brauer-Picard group

The group π1BrPic(C) ∼= Inv(Z(C)) houses the primary obstruction in the ex-

tension theory of C. In this section, we use techniques from elementary homotopy
theory to compute this group. In addition to the categorical 2-group BrPic(C), the

main examples we consider are as follows.

Definition 3.1. The categorical 2-group Out(C), of outer equivalences of C, is the

full 2-subgroup of invertible bi-module categories that are equivalent to C as left
C-module categories.

Definition 3.2. The categorical 1-group Inv(C) is the subcategory of invertible
objects in C and their isomorphisms:

• Objects are the invertible objects (g, h, . . .) in C,
• Hom(g, h) are the isomorphisms (φ, ψ,. . . ) of such.

Definition 3.3. The categorical 1-group Eq(C) is the category of tensor auto-
equivalences of C:

• Objects are tensor auto-equivalences (F,G, . . .) of C,
• Hom(F,G) are monoidal natural isomorphisms of such.

The assignments F− : Inv(C) → Eq(C), sending g to the functor,

Fg(X) := g ⊗X ⊗ g∗,

and M− : Eq(C) → Out(C), sending F to the outer bimodule category MF := C,

with tensor product defined, for X,Y ∈ C, and m ∈MF , by:

X ⊗MF
m⊗MF

Y := X ⊗m⊗ F (Y ).

can each be upgraded to functors of categorical 2-groups (see §5). Our main result
follows; its proof is deferred until the final section.

Theorem 3.4. We have a homotopy fiber sequence,

Inv(C)
F−

−−→ Eq(C)
M−

−−→ Out(C).

Corollary 3.5. We have the long exact sequence of homotopy groups,

0 // π2Out(C) =<BC
F

���⑧⑧⑧
⑧⑧
⑧

// π1Inv(C) // π1Eq(C) // π1Out(C) =<BC
F

���⑧⑧⑧
⑧⑧
⑧

// π0Inv(C) // π0Eq(C) // π0Out(C) // 0.

Proposition 3.6. We have the following isomorphisms:

• π2Out(C) ∼= π1Inv(C) ∼= C×.

• π1Eq(C) ∼= Aut(idC) ∼= Hom(U(C),C×).
• π1Out(C) ∼= π1(BrPic(C)) ∼= Inv(Z(C)), the group of iso-classes of invertible

objects in Z(C).
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• π0Inv(C) ∼= Inv(C), the group of iso-classes of invertible objects in C.
• π0Eq(C) ∼= Eq(C), the group of tensor auto-equivalences of C.
• π0Out(C) ∼= Out(C), the group of tensor auto-equivalences, modulo inner

equivalences.

Combining these identities with Theorem 3.4, and computing the connecting
homomorphisms, yields:

Corollary 3.7. We have a long exact sequence:

∗ → Hom(U(C),C×) → π1BrPic(C)
δ
−→ Inv(C)

F−

−−→ Eq(C)
M−

−−→ Out(C) → ∗.

The corollary allows us to compute π1BrPic(C) ∼= Inv(Z(C)) in terms of its

neighbors Inv(C) and Hom(U(C),C×), which may be read from the fusion rules of
C, and do not require us to comprehend the entire center Z(C).

Since Corollary 3.7 is what we will use in applications, we give an independent,
and elementary proof of it below. While Theorem 3.4 gives a more conceptual
explanation, it is not strictly necessary for applications, and so we postpone its
proof, and the consequent derivation of Corollary 3.7.

3.1. Independent proof of Corollary 3.7. The homomorphism M− assigns to
a tensor automorphism φ of C the bimodule Mφ = C, with regular left action,
and with right action twisted by φ (see Section 5 for a precise definition). The
homomorphism F− assigns to an invertible object g ∈ C the tensor automorphism
Fg : X 7→ g ⊗ X ⊗ g∗. The homomorphism δ is induced by the forgetful functor
Z(C) → C.

Exactness at Out(C) and Eq(C) are the facts that all outer bimodules come from
equivalences and that such a bimodule is trivial if, and only if, the equivalence is
inner [ENO10, §4.3]. Exactness at Inv(C) is the fact that an isomorphism Fg

∼= idC
yields a half-braiding on g.

Thus it remains only to identify Hom(U(C),C×)) with the kernel of δ. Thus,
we consider half-braidings σ1,− of the tensor unit. Since we have canonical isomor-
phisms 1⊗X ∼= X ∼= X⊗1, the data of such a half-braiding is a scalar cX ∈ C× for
each simple object X ∈ C. The Yang-Baxter equation and naturality condition for
σ1,− imply that, for every simple object Z in the decomposition of X ⊗Y , we have
cZ = cXcY . Thus the level sets of c determine a grading of C by a subgroup of C×,
yielding the required element of Hom(U(C),C×) via the universal property of U(C).
Finally, only a trivial such homomorphism can give rise to the trivial half-braiding.

4. Applications to subfactors

The results of the last section, combined with the obstruction theory of [ENO10],
allow us to construct several new fusion categories, starting with a fusion category
and its invertible bimodule category.

A finite-index subfactor N ⊂ M is called 2-supertransitive if M ∼= 1 + X as
N − N bimodules, where 1 is the trivial N − N bimodule (N itself) and X is a
simple object in the principal even part of N ⊂M .

Lemma 4.1. Let N ⊂ M be a 2-supertransitive finite depth subfactor. Then the
grading group of each of the even parts of N ⊂M is trivial.
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Proof. Let A = 1+X be the algebra object in the principal even part N of N ⊂M .
Since the subfactor is 2-supertransitive, X is simple. Since 1+X is an algebra, we
have that X ∼= X∗ and that X ⊂ X ⊗X ∼= X ⊗X∗. Thus X lies in the 0-graded
part of the principal even part N for any grading of N ; since X tensor generates
the principal even part this means that the even principal part has no non-trivial
gradings. Applying the same argument to the dual subfactor yields that the dual
principal part has trivial grading group as well. �

Corollary 4.2. Let N ⊂M be a 2-supertransitive finite depth subfactor such that
the principal even part N has no invertible objects except for 1. Then π1(BrPic(C)) ∼=

Inv(Z(C)) is trivial.

4.1. The Asaeda-Haagerup categories. We now turn to our main application,
constructing several fusion categories which are extensions of fusion categories re-
lated to the Asaeda-Haagerup subfactor [AH99].

The Asaeda-Haagerup subfactor, which we will call AH, is a finite depth sub-

factor with index 5+
√
17

2 . The subfactors AH+1 and AH+2, constructed in [AG11,

GS12a], have indices 7+
√
17

2 and 9+
√
17

2 , respectively. The three subfactors AH,
AH+1, and AH+2 all have the same dual even part but the principal even parts
are three distinct fusion categories, which we call AH1 , AH2, and AH3, respec-
tively.

The subfactors AH, AH+1, and AH+2 are all 2-supertransitive. The categories
AH2 and AH3 have non-trivial invertible objects but AH1 does not. Therefore by
Corollary 4.2 we have that Inv(Z(AHi)) is trivial for i = 1, 2, 3 (since the Drinfeld
center is a Morita invariant [Ost03b, Cor. 2.1]).

We recall the following result from [GS12a]:

Theorem 4.3. The Brauer-Picard group of each of the Asaeda-Haagerup fusion
categories is Z/2Z⊕ Z/2Z.

Therefore we have three order 2 invertible bimodule categories over each AHi,
for i = 1, 2, 3. Full fusion rules for each of these bimodule categories were given in
the ArXiv data supplement to [GS12a]. We now show that each of these 9 bimodule
categories admits two fusion category structures.

Theorem 4.4. Each of the three non-trivial bimodule categories over each AHi,
i = 1, 2, 3, is the odd component of exactly two Z/2Z-graded extensions of AHi .

Proof. Each non-trivial bimodule over AHi gives a map from Z/2Z to the Brauer-
Picard group of AHi. We want to show that this extends to a map of categorical
2-groups; that is, we want to show that the obstructions o3 and o4 from 2.5 van-
ish. It is enough to show that the groups that these obstructions lie in, namely
H3(Z/2Z, Inv(Z(C))) and H4(Z/2Z,C×), vanish. As observed above, Inv(Z(AHi))
is trivial, so the first obstruction group vanishes. Finally H4(Z/2Z,C×) vanishes
since Z/2Z is cyclic. There are two categories extending each bimodule, owing to
the choice of α in Theorem 2.5. �
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Among these new fusion categories is one with an object of dimension

√

9+
√
17

2 .

The fusion graph of this small object is ([GS12a] ):

 
  

.

This graph is 3-supertransitive (that is, it begins with a string of three edges).
Outside the ADE series this is one of only two known fusion categories which is more
than 2-supertransitive. The current record is the 4-supertransitive fusion category
4442 announced in [MP12].

Remark 4.5. It is easy to see that the Grothendieck ring of a Z/2Z-extension of a
fusion category is determined by the following data: (a) The Grothendieck ring of
the 0-graded part; (b) the bimodule fusion rules for the 1-graded part considered
as a bimodule category over the 0-graded part; (c) the dual data of the 1-graded
part.

The full multiplication rules for each of the three non-trivial bimodule categories
over each AHi, i = 1, 2, 3 were given in the data supplement to [GS12a], available
on the arxiv, so (a) and (b) are known for all of the corresponding extensions.

Thus the only unknown information in the Grothendieck rings are the dual data
of the 1-graded parts, which is given by an involution on the set of simple objects
in the bimodule category which preserves Frobenius-Perron dimension. There are
not very many possibilities, but we do not know how to compute these involutions
at this time.

Remark 4.6. It is natural to wonder what extensions there are of AHi by the Klein
4-group. This is somewhat more subtle as the obstruction group containing o4 does
not vanish.

4.2. The Izumi 2p1 subfactors. Let p be a prime, and let Rp be the fusion ring
generated by g and X with the relations gX = X = Xg, gp = 1, and X2 =
∑

i g
i + pX (all sums here go from 0 to p − 1). There is a left fusion module

for Rp, which we will call M left
p , with basis a, b, gb, g2b, . . . , gp−1b where ga = a,

Xa =
∑

i g
ib, and Xgib = a +

∑

i g
ib. Since Rp is commutative, there is also a

right fusion module M right
p with the analogous fusion rules, and an Rp bimodule

M bim
p .
We will call Ip a Z/pZ Izumi near-group category if its fusion ring is Rp. The

study of these fusion categories was initiated by Izumi [Izu01] and has been con-
tinued recently by Evans-Gannon [EG12].

Since giX ∼= X , the subcategory of Ip generated by g has Vec as a module
category, so this subcategory is Vec(Z/pZ). In particular, there is an algebra object
C[Z/pZ] in Ip.

The category of left modules for this algebra is a right module category over
Ip which we will call Mright

p . It is easy to see that the fusion rules for Mright
p

give the fusion module M right
p . Similarly we have a left module category Mleft

p .
Furthermore, any (left or right) module category with fusion rules Mp must be
equivalent to Mp, because the internal endomorphisms of a must be C[Z/pZ].

Picking an object in a module category gives a subfactor. The subfactor corre-
sponding to gib has principal and dual-principal graphs which are 2p1 spoke graphs
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(that is, they have p spokes of length 2 and one spoke of length 1). Using [GS12a,
§3.3] it is not difficult to see that the resulting subfactor is independent of i, since
the objects agree up to tensoring with an invertible in the dual graph. For general
p, these 2p1 subfactors were first studied by Izumi. When p = 2 this is just the E6

subfactor, and when p = 3 there’s an independent unpublished conformal inclusion
construction due to Xu. We will call this series the 2p1 subfactors, rather than
Izumi subfactors, to avoid confusion with another series of subfactors generalizing
the Haagerup subfactor also constructed by Izumi in the same paper (sometimes
called Izumi-Haagerup subfactors).

From looking at the dual graph of the 2p1 subfactor, we see that the dual category
to Ip over Mp is another Z/pZ near-group category I ′

p. The fusion rules for Mp

as a Ip–I ′
p bimodule are M bim

p .
It is natural to wonder whether Ip ∼= I ′

p, and if so whether there’s a Z/2Z-
extension of Ip by Mp. To that end, we call Ip self-dual if the dual even part is
equivalent to the principal even part. In such a circumstance, choosing an isomor-
phism between the two even parts endows Mp with the structure of a bimodule
over Ip. In general there may be several such choices, and there is no guarantee
that any of them have order 2 in the Brauer-Picard group of Ip. However, we have
the following lemma.

Lemma 4.7. Suppose that Ip is self-dual and that its outer automorphism group
is trivial. Then the unique Ip bimodule structure on Mp has order 2 in the Brauer-
Picard group.

Proof. Consider M−1
p as a Ip-bimodule. Since this has fusion rules Mp, it must be

equivalent to Mp as a left (or as a right) module category. Since both bimodules are
invertible, this implies that Mp

∼= M−1
p ⊠Ip

F as bimodules where F is an outer

automorphism. Since the outer automorphism group is trivial, we have M2
p
∼=

id. �

Remark 4.8. In general, this argument shows that for any choice of identification
of Ip with I ′

p the resulting bimodule Mp squares to an outer automorphism.

Theorem 4.9. Suppose that p > 2 and that Ip is a self-dual Z/pZ near-group
category with trivial outer automorphism group. Then there exist exactly two Z/2Z-
extensions of Ip by Mp.

Proof. We have only to show that the homomorphism, c : Z/2Z → BrPic(Ip),
corresponding to Mp is unobstructed, i.e. that o3 and o4 in Theorem 2.5 vanish.
The obstruction o4 vanishes because H4(G,C×) = 0 whenever G is cyclic.

By Corollary 3.7, we have the exact sequence:

∗ → Hom(U(Ip),C
×) → Inv(Z(Ip)) → Inv(Ip).

However, the categories Ip admit no non-trivial gradings, as is evident from the
fusion rules. So we have that Inv(Z(Ip)) includes into Inv(Ip) = Z/pZ. Thus the
only remaining obstruction o3 lies in H3(Z/2Z, Inv(Z(Ip)). This obstruction group
vanishes since Inv(Z(I)) is either Z/pZ or trivial (here we use that p is odd, since
H3(Z/2Z,Z/2Z) is nontrivial). Thus there exists a Z/2Z-extension of Ip by Mp.

There are exactly two distinct such extensions, owing to the choice of α in
Theorem 2.5. �
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Remark 4.10. It is not difficult to work out the fusion rules for this extension of
Ip. Since p is odd, at least one of the gib is self-dual, so without loss of generality
b is self-dual. The rest is easy to work out.

The simplest near group categories with p odd are the Izumi-Xu examples where
p = 3; there are two inequivalent such fusion categories corresponding to a choice of
complex conjugation in the structure constants for the monoidal structure. In the
following we will fix a choice of conjugation and refer to “the” Izumi-Xu category
for p = 3, but everything holds equally true for either choice.

In this case there are already two constructions of Z/2Z-extensions, first by
Ostrik in the appendix to [CMS11], using constructions from affine Lie algebras
and conformal embeddings, and second by Morrison-Penneys [MP12] using planar
algebras. In order to recover their results we need to know that the Izumi-Xu cat-
egory is self-dual and has no outer automorphisms. Both of these facts follow from
Han’s thesis [Han11]. Self-duality follows from uniqueness of the 2221 subfactor
up to complex conjugacy, and no outer automorphisms follows from the explicit
quadratic relations satisfied by Han’s generators (as in [GS12b, Lemma 5.3] and
[GS12a, Thm. 4.9]).

Remark 4.11. In fact, the Brauer-Picard 1-groupoid of the Izumi-Xu fusion category
I3 is a single point with automorphism group Z/2Z. Following the approach in
[GS12b], the only possible minimal algebra objects in the Izumi-Xu fusion category
are 1 and 1+ g+ g2, and those each have unique algebra structures. Thus, the only
simple module categories are I3 and M3. Since I3 is self-dual and has no outer
automorphisms, the only nontrivial I3–D bimodule is M3 where D ∼= I3.

We are optimistic that the other near group categories coming from Izumi and
Evans-Gannon also give Z/2Z-extensions. In theory, it should be possible to work
out whether these categories are self-dual and what their outer automorphism
groups are from the detailed descriptions given by Izumi and Evans-Gannon, but
in practice this may be somewhat difficult to extract.

5. The homotopy fiber sequence

We begin by recalling the definitions of tensor functor and natural transformation
of tensor functors, primarily to fix notation.

A tensor functor (F, JF ) : C → D is a functor F of abelian categories, together
with a natural isomorphism,

JF : F ◦ ⊗C
∼
−→ ⊗D ◦ F ⊠ F,

satisfying a certain cocycle condition1. More precisely, JF consists of a family of
isomorphisms,

JF : F (X ⊗ Y )
∼
−→ F (X)⊗ F (Y ),

natural in X,Y ∈ C, and such that the following diagram commutes:

1To ease notation, we adopt the usual convention of refering to tuples (F, · · · ), consisting of a
functor with structural isomorphisms (such as tensor or module functor structure) simply by “F”.
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F ((X ⊗ Y )⊗ Z)
F (αC)

//

JF

��

F (X ⊗ (Y ⊗ Z))

JF

��

F (X ⊗ Y )⊗ F (Z)

JF

��

F (X)⊗ F (Y ⊗ Z)

JF

��

(F (X)⊗ F (Y ))⊗ F (Z)
αD

// F (X)⊗ (F (Y )⊗ F (Z))

where αC and αD are the associators of C and D respectively. In particular, we
note that the tensor structure JF is additional data packaged with F .

A tensor functor (F, JF ) is an equivalence if F is an equivalence of abelian
categories.

Definition 5.1. A natural transformation θ : F → G between tensor functors
F,G : C → D is monoidal if for all X,Y ∈ C, the following diagram commutes:

F (X ⊗ Y )
θX⊗Y

//

JF

��

G(X ⊗ Y )

JG

��

F (X)⊗ F (Y )
θX⊗θY

// G(X)⊗G(Y )

Morphisms between module categories and bimodule categories are defined in
an analagous way; namely, they are functors of abelian categories along with cer-
tain natural transformations making certain diagrams commute. An equivalence of
module categories is a module functor whose underlying functor is an equivalence
of abelian categories. See [Ost03a] for details.

We now construct the functors F− and M− from Section 3. For clarity of expo-
sition, we suppress associators for the remainder of this section.

5.1. Construction of F−. Given g ∈ Inv(C), we define Fg ∈ Eq(C) as follows. For
X,Y ∈ C, and ρ : X → Y , we set:

Fg(X) := g ⊗X ⊗ g−1, Fg(ρ) := idg ⊗ρ⊗ idg−1 .

We equip Fg with the tensor structure:

Fg(X)⊗ Fg(Y ) = g ⊗X ⊗ g
−1

⊗ g ⊗ Y ⊗ g
−1 ∼

−−→
evg

g ⊗X ⊗ Y ⊗ g
−1 = Fg(X ⊗ Y ).

The assignment g 7→ Fg, extends to a functor,

F− : Inv(C) → Eq(C),

by assigning to any φ : g
∼
−→ h the natural isomorphism,

Fg = g ⊗−⊗ g−1 ∼
−−−−−−−−−→
φ⊗id⊗(φ−1)∗

h⊗−⊗ h−1 = Fh.

The obvious natural isomorphisms, Fg⊗h
∼= Fg ◦ Fh, endow F− with a monoidal

structure.
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5.2. Construction of M−. For every F ∈ Eq(C), we define an invertible C-C-
bimodule categoryM =MF , by lettingM = C as an abelian category, and defining,
for X,Y ∈ C, m ∈M :

X ⊗MF
m⊗MF

Y := X ⊗m⊗ F (Y ).

Here, unadorned tensor products denote the tensor product in C. For every natural
isomorphism θ : F → G, we have a C-C-bimodule auto-equivalence (idC , Jθ) : MF →
MG, which is the identity functor of C, and where Jθ : F (Y ) → G(Y ) is applied
before tensoring on the right.

This gives a functor,
M− : Eq(C) → Out(C),

F 7→MF

of 2-categories, where we regard Eq(C) as a categorical 2-group with strict associa-
tivity of 1-morphisms.

We have a bi-additive functor of C-C-bimodules,

⊗̂ :MF ⊠MG → MF◦G

m⊠ n 7→ m⊗ F (n),

and isomorhpisms,

M⊗̂(A⊗N) =M ⊗ φ(A⊗N)
JF−−→M ⊗ φ(A) ⊗ φ(N) = (M ⊗A)⊗̂N.

natural in M,A and N . Thus ⊗̂ defines a functor,

ιF,G :MF ⊗C MG →MF◦G,

of abelian categories, which is clearly an equivalence. Moreover, we have an iso-
morphism of functors,

JF,G : ⊗MF◦G
◦ ιF,G → ιF,G ◦ ⊗MF⊗CMG

,

X ⊗m⊗ F (n)⊗ F (G(Y ))
J−1

F−−→ X ⊗m⊗ F (n⊗G(Y )).

Thus, M− induces a homomorphism of categorical 2-groups, which we also denote
M−.

5.3. The homotopy fiber of M . Let p : G → H be a homomorphism of cate-
gorical n-groups. The homotopy fiber, p−1(X), of X ∈ H has as its objects pairs

(Y ∈ G, φ : X
∼
−→ p(Y )). Morphisms are those inherited from H; that is:

Homp−1(X)((Y1, φ1), (Y2, φ2) := HomH(φ1, φ2).

Because all objects and morphisms in H are invertible, Quillen’s Theorem B [Qui73]
asserts p−1(X) → G → H is a homotopy fiber sequence, for any object X ∈ H.

In this section, we construct an equivalence between the full subcategory Inv(C)
of invertible objects in C, and the homotopy fiber M−1(C) over the trivial C-C-
bimodule C.

We have equivalences of bimodule categories,

Φg : C →MFg

X 7→ X ⊗ g−1,

equipped with tensor structure,

X⊗Φg(Y )⊗Fg(Z) = X⊗Y ⊗g
−1

⊗g⊗Z⊗g
−1 ∼

−−→
evg

X⊗Y ⊗Z⊗g
−1 = Φg(X⊗Y ⊗Z).
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We thus construct a functor:

MF−
: Inv(C) →M−1(C).

MF−
(g) := (MFg

,Φg).

Theorem 5.2. The functor MF−
is an equivalence.

Proof. Let (F, JF ) ∈ Eq(C), and suppose we have an equivalence,

(φ, Jφ) : C → MF ,

of bimodule categories. Clearly, φ induces an auto-equivalence of C as a left-module
category (recall that MF = C canonically, as a left C-module category). It is then
routine to see that φ = −⊗ g−1, where g−1 = φ(1) ∈ Inv(C).

The tensor data Jφ therefore consists of a family of isomorphisms,

X ⊗ Y ⊗ Z ⊗ g = φ(X ⊗ Y ⊗ Z)
∼
−→
Jφ

X ⊗ φ(Y )⊗ F (Z) = X ⊗ Y ⊗ g ⊗ F (Z),

which is natural in X,Y, Z ∈ C. In particular, taking X,Y = 1, we obtain a natural
isomorphism,

F ∼= g ⊗−⊗ g−1 = Fg.

We thus have a canonical isomorphism (MF , φ) ∼= (MFg
,Φg) in the homotopy

fiber, so that the induced functor F− : Inv(C) → MC is essentially surjective. It
remains to show that it is fully faithful. We need to show that every equivalence,
θ :MFg

∼
−→ MFh

, of bimodule categories making the diagram:

MFg

Φ−1

g
!!
❇❇

❇❇
❇❇

❇❇

θ
// MFh

Φ−1

h}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

C

commutative is in fact induced by a unique isomorphism g ∼= h. The isomorphism

required for fullness is g = Fg(1)
θ1−→ Fh(1) = h. The bimodule compatibility

condition for θ implies that all the θX are determined by θ1, thus implying faith-
fulness. �

Theorem 5.2 now implies 3.4, as it allows us to identify Inv(C) with a homotopy
fiber of the functor M−. Corollary 3.5 follows from the long exact sequence in
homotopy groups for a fibration.

Proof of Corollary 3.7. All that remains is to compute the connecting homomor-
phisms δ2 : π2Out(C) → π1Inv(C), and δ1 : π1Out(C) → π0Inv(C).

To this end, we identify π1Out(C) with the automorphisms of the unit object

of Out(C), namely the C-C-bimodule auto-equivalences of the regular bimodule C.

Every such auto-equivalence, φ, is isomorphic to the functor of tensoring by a
central object g. Thus in Eq(C), we have an isomorphism φ ∼= − ⊗ g, and thus
the connecting homomorphism δ1 : π1Out(C) → π0Inv(C) is simply the forgetful

functor For : Inv(Z(C)) → Inv(C). Similarly, δ2 is the induced homomorphism
For : AutZ(C)(1,1) → Aut(1,1). In particular, δ2 is an isomorphism, so that the
first two terms of the sequence split off, yielding Corollary 3.7. �
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