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Abstract

We present a fast, high-throughput method for characterizing the motility
of microorganisms in 3D based on standard imaging microscopy. Instead of
tracking individual cells, we analyse the spatio-temporal fluctuations of the
intensity in the sample from time-lapse images and obtain the intermediate
scattering function (ISF) of the system. We demonstrate our method on two
different types of microorganisms: bacteria, both smooth swimming (run
only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate
alga Chlamydomonas reinhardtii. We validate the methodology using com-
puter simulations and particle tracking. From the ISF, we are able to extract
(i) for E. coli: the swimming speed distribution, the fraction of motile cells
and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribu-
tion, the amplitude and frequency of the oscillatory dynamics. In both cases,
the motility parameters are averaged over ∼ 104 cells and obtained in a few
minutes.

Key words: Particle Tracking; Bacteria; Algae; Microswimmer
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Introduction

The motility of micro-organisms, both prokaryotes and eukaryotes, is impor-
tant in biology and medicine. For example, the virulence of the bacterial
pathogen Helicobacter pylori depends on its locomotion through host epithe-
lial mucosa (1); the phototaxis of Chlamydomonas reinhardtii and similar
algae, and therefore their photosynthesis, is predicated on motility. Animal
reproduction relies on motile spermatozoa. In all cases, organisms with typ-
ical linear dimension R in the range 0.5 µm . R . 10 µm swim with speeds
of v ∼ 10− 100 µm/s, so that the Reynolds number, Re = ρvR/η (ρ and η
are the density and viscosity of the liquid medium) are vanishingly small: in
aqueous media, Re . 10−3. In this ‘creeping flow’ regime, micro-organisms
have evolved a variety of strategies for generating the non-reciprocating mo-
tion necessary for propulsion, e.g. by rotating or beating one or more flagella.
The resulting motility phenotypes are hugely varied. Amongst these, the
motility of the enteric bacterium Escherichia coli is perhaps best understood
(2).

In wild type (WT) E. coli, a single cell (roughly a 1 µm × 2 µm sphe-
rocylinder) is equipped with six to ten helical flagella (each 6 − 10 µm
long). When these rotate counterclockwise (CCW, viewed from flagella to cell
body), the individual flagella bundle together and propel the cell forward in
a straight line (known as a ‘run’), with directional deviations brought about
by orientational Brownian motion. Every second or so, one or more of the
flagella reverse to clockwise (CW) rotation briefly, unbundle, and the cell
undergoes large-angle re-orientation known as ‘tumble’. When all motors
rotate CCW again, the cell begins a new run in an essentially random direc-
tion. Such ‘run and tumble’ gives rise to a random walk, which the cell can
bias by decreasing the tumble frequency when running in the direction of a
favorable chemical gradient (chemotaxis).

Such detailed information in E. coli or other micro-organisms can only
be obtained by single-cell tracking. On the other side, tracking is laborious,
and seldom averages over more than a few hundred cells, limiting the sta-
tistical accuracy. Moreover, since three-dimensional (3D) tracking requires
specialized equipment (3–5), the usual practice is to rely on measuring 2D
projections in a single imaging plane, which further limits statistical accuracy
because of cells moving out of the plane.

We recently proposed (6) that differential dynamic microscopy (DDM)
can be used for characterizing the motility of micro-organisms. DDM is fast,
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fully 3D and provides statistics from much larger samples than tracking,
allowing averaging over ∼ 104 cells in a few minutes, using standard mi-
croscopy imaging. We demonstrated DDM for swimming wild-type E. coli,
and validated the method using simulations.

In this paper, we explain the full details of our method, discuss its limita-
tions, and provide in-depth justification for the approximations made using
computer simulation and tracking. We applied the method to a smooth-
swimming (run only) mutant of E. coli, investigated its use on the WT (run
and tumble) in more detail, and extended it for the first-time to study the
swimming of bi-flagellate WT alga C. reinhardtii, a completely different mi-
croorganism in terms of time scale, length scale, and swimming dynamics.
Our results should give the basis for generalizing DDM to many other bio-
logically and medically important micro-swimmers, including spermatozoa.

1 Differential Dynamic Microscopy

The key idea of DDM (6–8) is to characterize the motility of a population of
particles (colloids or micro-organisms) by studying the temporal fluctuations
of the local number density of particles over different length scales via image
analysis. It yields the same quantity accessed in dynamic light scattering
(DLS), the ‘intermediate scattering function’ (ISF). The advantage of DDM
is that the required range of length scale to study microorganism motility,
such as bacteria or algae, is easily accessible in contrast to DLS (9).

In DDM, one takes time-lapse images of particles, described by the inten-
sity I(~r, t) in the image plane, where ~r is pixel position and t is time. As par-
ticles move, I(~r, t) fluctuates with time. The statistics of these fluctuations
contain information about the particle motions. To quantify these fluctua-
tions, DDM measures the Differential Image Correlation Function (DICF),
g(~q, τ), i.e. the square modulus of the Fourier transform of the difference of
two images separated by τ in time

g(~q, τ) =
〈
|I(~q, t+ τ)− I(~q, t)|2

〉
t
. (1)

Here, 〈...〉t means average over the initial time t, and I(~q, t) is the Fourier
transform of I(~r, t), which picks out the component in the image I(~r, t) that
varies sinusoidally with wavelength 2π/q in the direction ~q. In isotropic sam-
ples (no preferred direction of motion), the relevant variable is the magnitude
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q of ~q. It can be shown (6–8) that g(q, τ) is related to the ISF, f(q, τ), by

g(q, τ) = A(q)[1− f(q, τ)] +B(q), (2)

where A(q) depends on the optics, the individual particle shape and the
sample’s structure, and B(q) represents the camera noise. For independent
particles, the ISF is given by (10)

f(q, τ) =
〈
e−i~q·∆~r(τ)

〉
, (3)

with ∆~r(τ) the single-particle displacement and 〈...〉 an average over all par-
ticles.

Eq. 3 shows that f(q, 0) = 1 and f(q, τ → ∞) = 0. This decay of
the ISF from unity to zero reflects the fact that particle configurations (and
therefore images) separated by progressively longer delay time, τ , become
more decorrelated due to particle motion. The precise manner in which
f(q, τ) decays contains information on these motions on the length scale 2π/q.
The analytic form of the ISF is known for a number of ideal systems (10). As
an example, for identical spheres undergoing purely Brownian motion with
diffusion coefficient D, f(q, τ) = e−Dq

2τ . On the other hand, for an isotropic
population of straight swimmers in 3D with speed v, f(q, τ) = sin(qvτ)/qvτ .

Figure 1 shows the calculated f(q, τ) for (i) diffusing spheres with about
the same volume as a typical E. coli cell; (ii) isotropic swimmers with a
speed distribution P (v) typical of E. coli; and (iii) for a mixture of these
(11) (see later, Eq. 4) at q = 1 µm−1. The curve for the mixture illustrates
the utility of plotting the ISF against log τ : it renders obvious that there
are two processes, a fast one due to swimming that decorrelates density
(or, equivalently, intensity) fluctuations over ∼ 10−1 s, and a slower process
due to diffusion that decorrelates over ∼ 1 s (at this q). Their fractional
contributions can be visually estimated to be ≈ 7 : 3.

2 Methods

2.1 Samples

E. coli AB1157 (WT and ∆cheY strains (12)) were grown in Luria-Bertani
broth (LB) at 30◦C and shaken at 200 rpm, harvested in the exponential
phase, washed three times by careful filtration (0.45 µm filter) with and re-
suspended in motility buffer (6.2 mM K2HPO4, 3.8 mM KH2PO4, 67 mM
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NaCl, 0.1 mM EDTA, pH=7.0) to optical density 0.3 (at 600 nm), corre-
sponding to ≈ 5×108 cells/ml, and ≈ 0.06% by cell volume. Care was taken
throughout to minimize damage to flagella. A ≈ 400 µm deep flat glass cell
was filled with ≈ 150 µl of cell suspension, sealed, and observed at 22±1◦C.
Swimming behavior was constant over a 15 minute period.

Batch cultures of WT C. reinhardtii (CCAP 11/32B) were grown on 3N
Bold’s medium (15), and concentrated in cotton using gravitaxis (16). Con-
centrated cell stock was diluted in growth media to optical density 0.175 (at
590 nm), corresponding to 1.4 × 106 cells/ml, and ≈ 0.002% by volume of
cells. Cells were observed at 22±1◦C in the same glass cells used for E. coli
under a 600 nm long pass filter (Cokin) to avoid stimulating the phototaxis
(17). The sample dimensions are sufficiently large to avoid boundary effects
and small enough to avoid bioconvection or thermal convection (5). The
algae motility was constant for 20 minutes. In all cases, we waited at least
one minute before capturing images to avoid drift due to mixing flows.

2.2 Differential dynamic microscopy

We collected movies using a Nikon Eclipse Ti inverted microscope and a high-
speed camera (Mikrotron MC 1362) connected to a PC with a frame grabber
card with 1GB onboard memory. The CMOS pixel size (14 µm × 14 µm)
and magnification determine the inverse pixel size k (in pixel/ µm) in the
image plane, which, together with the image size L (in pixels), define the
spatial sampling frequency (qmin = 2πk/L). For bacteria, 10× phase-contrast
movies were acquired at L = 500, which gives k = 0.712 µm−1 and a q range
of 0.01 / q / 2.2 µm−1. This allows the imaging of ∼ 104 bacteria cells
at a bulk cell density of 5 × 108 cells/ml in a 0.49 mm2 field of view with a
depth of field δ ≈ 40 µm, over 38 s at a frame rate of 100 fps. For algae,
4× bright-field movies were acquired at L = 500, giving k = 0.285 µm−1

and a q range of 0.004 / q / 0.9 µm−1, and allowing the imaging of ∼ 104

algae cells at a bulk cell density of 1.4 × 106 cells/ml in a 3.2 mm2 field of
view with δ ≈ 200 µm, over 3.8 s at a frame rate of 1000 fps. We imaged at
≈ 200 µm from the bottom of a 400 µm thick glass capillary cell to minimize
wall effects.
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2.3 Data reduction and fitting

The image processing and fitting analysis are easily automated and details
are given below (18). Figure 1b illustrates how we obtain the DICF, g(q, τ),
from the movies. For a given delay time τ , the difference images Di(~r, τ) =
I(~r, ti + τ) − I(~r, ti) are calculated for a set of N different initial times ti
(typically i = 1, 4, 7, . . . , 313). After computing the fast Fourier transform,
FDi(~q, τ), of each Di(~r, τ) and calculating the squared modulus, |FDi(~q, τ)|2,
we average over initial times ti, giving g(~q, τ) = 〈|FDi(~q, τ)|2〉i, to improve
the signal-to-noise ratio (averaged image appears less grainy, Fig. 1b).

For isotropic swimmers, g(~q, τ) is azimuthally symmetric and can be az-
imuthally averaged to give g(q, τ) = 〈g(~q, τ)〉~q. We linearly interpolate be-
tween four adjacent points in discrete ~q-space to find values for g(~q, τ) along
a circle of equidistant points with radius q. The finite image size causes nu-
merical artefacts (8) mainly along the horizontal and vertical center lines of
the image g(~q, τ); these are reduced by omitting the values for qx = 0 and
qy = 0 during the azimuthal averaging. The procedure is repeated for a set of
delay times τ to obtain the full time-evolution of g(q, τ). Calculations were
done in LabView (National Instruments) on an 4-core PC (3 GHz Quad core,
3 GB RAM) . Processing . 4000 frames with L = 500 and averaging over
≈ 100 initial times ti take ≈ 5 min.

We fitted independently each g(q, τ) to Eq. 2 using the appropriate
parametrized model for f(q, τ). At each q, non-linear least-squares fitting
based on χ2 minimization using the Levenberg-Marquardt algorithm and
the ‘all-at-once-fitting’ procedure in IGOR Pro (WaveMetrics) returns A(q),
B(q) and motility parameters.

2.4 Simulation

We carried out Brownian dynamics simulations in 3D of non-interacting point
particles (‘bacteria’) at a concentration and in a sample chamber geometry
directly comparable to our experiments, using periodic boundary conditions
to keep the bulk density of swimmers constant. Each particle has a drift ve-
locity whose direction and magnitude were chosen from uniform and Schulz
distributions, respectively. During a tumble event, a wild-type (run and tum-
ble) swimmer undergoes standard Brownian diffusion and a new swimming
direction is chosen uniformly at random after each ‘tumble’. The swimming
speed is constant for each bacterium.
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From these simulations, we constructed 2D pixelated ‘images’. Particles
in a slice of thickness d, centered at z = 0, contribute to the image. A particle
at (x, y, z) is ‘smeared’ into an ‘image’ covering the pixel containing (x, y) and
the 8 neighboring pixels. To define the image contrast of a bacterium, which
depends on z, we used the experimentally measured z-contrast function c(z)
(Section 3.4). This mimics the finite depth of field in a microscope.

2.5 Tracking

Both experimental and simulated data were analyzed using standard parti-
cle tracking (19) giving the 2D tracks r2D(t). We used inverted 20× videos
of E. coli with bright cells of ≈ 3 pixels on a dark background and a run-
ning average of 3 frames to improve the features’ signal over noise ratio. In
simulations, equivalent 10× videos could be tracked due to the absence of
noise. In all cases, > 400 features were identified per frame, using only high
brightness features near the focal plane. Tracking of simulated movies of
non-motile (NM) or motile cells reproduced the input diffusion coefficient D
and swimming speed distribution P (v)(20). Tracking of experimental data
of purely NM E. coli yields the same D as from DDM.

The analysis of (simulated or experimental) mixed populations of motile
and NM cells is more challenging. We generalized a recently-proposed method
(21) to analyze such data. Each trajectory is split into short elementary seg-
ments of duration ∆t over which an average swimmer moves ≈ 1 pixel. First,
the mean angle 〈|θ|〉 between successive segments is calculated; 〈|θ|〉 = π/2
for a random walk and 〈|θ|〉 = 0 for a straight swimmer. Then, using the
trajectory’s start-to-end distance L, duration T , and the mean elementary
segment length ∆r2D(∆t), we calculate the parameter Nc = L/∆r2D

T/∆t
. Thus

Nc = 0 for a random walk with T →∞ and Nc = 1 for a straight swimmer.
Previous tracking of mixed swimmers and diffusing particles in 2D (at a wall)
(21) returned two well-separated clusters in the (Nc, 〈|θ|〉) plane, from which
motile and NM populations could be separated and the respective P (v) andD
- via fitting of the mean-squared displacement (MSD), 〈∆r2

2D,NM(τ)〉 = 4Dτ
- could be extracted.

However, our bulk data (Section. 3.3) show a much less well defined
separation in contrast to the clear distinction in (21) between motile and
NM populations (specific for near wall dynamics). Therefore, we studied
the dependence of motility parameters with the population selection criteria
(Nc, 〈|θ|〉). In addition, we use another estimate for the diffusion coefficient,
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Dg, obtained by fitting the distribution of 1D displacements, P (∆xNM(τ)),
to a Gaussian and using the linear increase of the variance of the fitted dis-
tribution with τ to obtain Dg.

Finally we tracked the C. reinhardtii videos, identifying ≈ 300 algae per
frame with ≈ 5 pixels per cell, and applied the above track diagnostic method
(using ∆t such that ∆r(∆t) ≈ 1 pixel on average) to separate ‘straight’
tracks in the imaging plane from other tracks. Further details are given in
Section 5.3.

3 Smooth swimming E. coli

In (6), we demonstrated DDM using a WT strain of E. coli, in which cells ‘run
and tumble’. We suggested that while salient features of bacterial motility
could be explained ignoring the effect of tumbling, some details of the data,
such as a small q-dependence in the fitted swimming velocity, could only be
understood by taking tumbling into account. Here, we present measurements
for a smooth swimming mutant of E. coli. The simplicity of the motion
compared to the WT makes this mutant the ideal organism for presenting
the details of DDM. We return to the WT in Section 4.

3.1 Model of f(q, τ)

In a smooth swimming (SS) mutant, each cell possesses a flagellar bundle that
rotates exclusively CCW (at ∼ 100 Hz); this propels the cell in a straight
line, but angular deviations accumulate from orientational Brownian motion.
Since the whole ‘cell+flagella’ complex must be torque free, the cell body
rotates CW (at ∼ 10 Hz). Moreover, the flagella bundle in general propels
the cell off-centered, therefore the cell body ‘wobbles’.

To extract motility parameters from the ISF, f(q, τ), it is important to
measure this function in the appropriate q range. An upper bound for q
exists because at q & 2π/R ∼ 6 µm−1, where R ∼ 1 µm is a typical cell size,
both swimming and body wobble contribute to the decay of f(q, τ), so that
it is impractical to extract swimming parameters cleanly in this regime. We
thus need to access lower q, or, equivalently, larger length scales. A lower
bound for q is set by deviations from straight-line swimming due to Brownian
orientational fluctuations and/or tumbling. For E. coli, cells run for ∼ 20 µm
between tumbles; this is also the ‘persistence length’ of the trajectory of SS
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cells due to orientational fluctuations. Thus, we do not want to probe much
below q ∼ 0.5 µm−1.

Within the range 0.5 µm−1 . q . 6 µm−1, it is possible to model a
population of swimming E. coli as straight swimming particles with a speed
distribution P (v) and uniformly distributed directions. Each particle also
undergoes Brownian motion, with diffusivity D. To model a natural pop-
ulation, which inevitably contain non-motile cells, we specify that only a
fraction α of the particles are swimming. The resulting ISF has been derived
before (11):

f(q, τ)= (1− α)e−q
2Dτ + αe−q

2Dτ

∫ ∞
0

P (v)
sin(qvt)

qvt
dv. (4)

To use Eq. 4 to fit experimental data, we need a parametrized form for P (v).
Limited previous data (11, 22) suggest that P (v) is peaked. Using a Schulz
(or generalised exponential) distribution

P (v) =
vZ

Z!

(
Z + 1

v̄

)Z+1

exp
[
−v
v̄

(Z + 1)
]
, (5)

where Z is related to the variance σ2 of P (v) via σ = v̄(Z + 1)−1/2, leads to
the following analytical solution of the integration in Eq. 4 (24)∫ ∞

0

P (v)
sin(qvτ)

qvτ
dv =

(
Z + 1

Zqv̄τ

)
sin(Ztan−1Λ)

(1 + Λ2)Z/2
, (6)

where Λ = (qv̄τ)/(Z + 1).
Figure 1 (green curve) shows an example of an ISF calculated at q =

1 µm−1 using typical E. coli motility parameters in Eqs. 4-6. The ISF shows
a characteristic two-stage decay. The integral in Eq. 4 due to the straight-
line motion of swimmers dominates the first, faster, process, while the purely
diffusive first term due to the Brownian motion of non-swimmers dominates
the second, slower, process.

Much can be learnt from visual inspection of this f(q, τ). The relative
amplitudes of the fast and slow processes can easily be estimated to be ≈
7 : 3, which gives an estimated α ≈ 0.7. The length scale probed at this q is
` ∼ 2π/q ∼ 6 µm. Either by extrapolating the green curve or by reference to
the red curve for pure swimmers, it can be estimated that the fast process
decays completely in τswim ∼ 0.5 s. An order of magnitude estimate of the
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swimming speed is therefore v ∼ `/τswim ∼ 12 µm/s. The slower, diffusive,
process decays completely in τdiff ∼ 20 s, so that an estimate of the diffusion
coefficient of the non-swimmers can be obtained from 6Dτdiff ∼ `2, giving
D ∼ 0.35 µm2/s. These are credible estimates of the parameters used to
generate this ISF: v = 15 µm/s, D = 0.3 µm2/s, and α = 0.7.

3.2 DDM Results

Fig. 2a shows typical DICFs, g(q, τ), measured using DDM in the range
0.45 ≤ q ≤ 2.22 µm−1 for a suspension of SS E.coli mutant ∆cheY. The
measured g(q, τ) have a characteristic shape reminiscent of the calculated
f(q, τ) shown in Fig. 1 (Note the log-scale for the y-axis in Fig. 2a); indeed,
Eq. 2 shows that g(q, τ) should take the shape of an (un-normalized) ‘up-
side-down’ f(q, τ). Eq. 2 also shows that the value of g(q, τ) at small τ gives
a measure of the camera noise parameter B(q), which is therefore seen to be
more or less q-independent. The total amplitude of g(q, τ) measures the pre-
factor A(q), which evidently increases rapidly as q decreases. This reflects
the strong q dependence of both the form factor of a single bacterium and
the contrast function of the microscope objective.

The above qualitative remarks can be quantified by fitting the measured
g(q, τ) using Eqs. 2, 4 & 6. From the fit, we extract the six parameters v̄,
σ, D, α, A and B. The fitted functions A(q) and B(q) allow us to calculate
f(q, τ) from the measured g(q, τ) via Eq. 2 (25), Fig. 2b.

The ISFs calculated from experimental data (especially those for q ≈
1 µm−1) show the characteristic shape already encountered in the theoretical
ISF shown in Fig. 1: a fast decay due to swimming, followed by a slow
decay due to diffusion. The identity of these two processes is confirmed
by the different scaling of the time axis required to collapse the data at
different q values: the slow (diffusive) decay scales as q2τ , Fig. 3a, and the
fast (swimming, or ballistic) decay scales as qτ , Fig. 3b.

A clear separation of the swimming and diffusive decays is important for
robust fitting of the ISF using Eq. 4. Such separation of time scales will be
achieved if a cell takes much less time to swim the characteristic distance
probed, ` = 2π/q, than to diffuse over the same distance (in the image
plane), i.e. τswim ∼ `/v � τdiff ∼ `2/4D, which requires q � qc ∼ v/D ∼
20 − 50 µm−1 for typical E. coli values of v and D. All the data shown in
Fig. 2b fit comfortably into this regime (23).

Fig. 4 shows the fit parameters (v̄, σ, α,D,A,B) from Eq. 4-6 as functions
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of q. A common feature, particularly evident in D(q), is the enhanced noise
at low q. This is because at low q, the long-time, diffusive part of f(q, τ) has
not fully decayed yet in our time window, rendering it harder to determine
D accurately. This can be improved by probing g(q, τ) over long times. To
within experimental uncertainties, the motility parameters (v̄, σ, α,D) are all
q independent for q & 1 µm−1, which suggests that our model, Eq. 4, is indeed
able to capture essential aspects of the dynamics of a dilute mixture of non-
motile and smooth swimming E. coli. Note that a fit using fixed D, over the
full q-range, results in q-independent motility parameters only when the value
used for D is within 10% of the value found in free fitting (data not shown).
Averaging over q, in the range 0.5 / q / 2.2, yields v̄ = 10.9 ± 0.3 µm/s,
σ = 6.43± 0.04 µm/s, α = 0.585± 0.002 and D = 0.348± 0.003 µm2/s with
error bars being the standard deviation of the mean in all cases except for v̄
where estimated error bars reflects the residual q dependence.

Note that the value of D = 0.35 µm2/s is higher than the value (6)
of D = 0.30 µm2/s expected for a suspension of purely non-motile E. coli
with ”paralyzed” flagella (∆motA) with similar geometry as the wild type.
This is due to an enhancement of the diffusion of non-motile cells (and other
colloidal-sized objects) in a suspension of motile organisms (6, 21). More-
over, the fitting of D is dominated by the diffusion of non-motile organisms:
changing our model from Eq. 4 to one in which the motile cells do not diffuse
does not change the results (data not shown).

We used a Schulz distribution for modelling P (v) for analytic convenience
in the integration of Eq. 4. In Fig. 5a we show the average speed obtained
by fitting with three different probability distributions. The results for the
Schulz and log-normal distributions agree closely, but using a Gaussian form
produced noisier data and a significantly lower v̄. The latter is because
P (v = 0) 6= 0 for the Gaussian distribution, strongly overestimating the
number of slow swimmers. The presence of these spurious slow swimmers
in turns renders it difficult to fit D, causing noisier data for all motility
parameters.

We were able to fit the data satisfactorily irrespective of whether bright
field, phase contrast or fluorescence imaging was used. However, phase-
contrast imaging shows a better signal to noise ratio (A(q)/B(q)). In partic-
ular, changing A(q) and B(q) by using a 20× phase-contrast objective (which
is suboptimal for our experiment) produced the same results in the relevant
q range (data not shown).
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3.3 Tracking results

Figure 6(a) show the probability density of the track diagnostics (Nc, 〈|θ|〉)
(Section 2.5). Recall that (Nc, 〈|θ|〉) = (1, 0) for straight swimming and
(0, π/2) for Brownian diffusion. While two clear maxima corresponding to
diffusion and (nearly-straight) swimming are observed, there is a substan-
tial statistical weight of tracks with intermediate (Nc, 〈|θ|〉) values. The ac-
tual distribution obtained depends on ∆t, the elementary time interval into
which we segment trajectories. Our optimal choice, ∆t = 0.1s, over which
the average swimming distance is ≈ 1 pixel, gave the most sharply sepa-
rated peaks. However, the motile and NM populations are still not cleanly
separated in our (Nc, 〈|θ|〉) data, Fig. 6a. We therefore select various pop-
ulations of motile and NM cells by including tracks with (Nc, 〈|θ|〉) values
within progressively larger circles centered on their respective peaks in the
(Nc, 〈|θ|〉) space. The radius of the circle (ε) is measured in units such that
the (0 ≤ Nc ≤ 1, 0 ≤ 〈|θ|〉 ≤ π/2) space in Fig. 6a is a 10× 10 rectangle.

For motile cells, P (v) was determined, at each ε, by calculating the speed,
v = 〈∆r2D(τ)/τ〉T , for each trajectory, averaged over the trajectory duration
T , for various τ . The limit τ → 0 gives the instantaneous linear velocity. In
practice, the lowest reasonable τ is set by ∆t = 0.1s. Figure 6b shows P (v) at
ε = 3 for τ = 0.1 s and 0.4 s, while Fig. 6c shows v̄ and σ of P (v) for τ = 0.1 s
and τ = 1 s. Unsurprisingly, v̄ decreases with ε as progressively more ‘non-
ideal’ swimming tracks are included: first more curved trajectories and then
(at larger ε), some diffusive ones. Thus, there are ambiguities involved in
motility characterisation using tracking. It was also not possible to extract
reliably a value for α due to strong dependence on ε.

However, the results for the other motility parameters show reasonable
agreement with DDM (Fig. 4). In particular, using (∆t, τ) = (0.1s, 0.1s)
(•, Fig. 6c), and averaging over all ε, v̄ = 10.7 ± 0.3 µm/s and σ = 5.1 ±
0.1 µm/s. The mean speed v̄ε for each ε is also consistent with the MSD
of the swimmers, Fig. 6e. The measured P (v) depends on τ , e.g. some fast
swimmers will not be tracked for large τ unless perfectly aligned with the
image plane, while for very short τ the 2D-projection contributes to P (v) at
small v (20). Yet, for τ ∼ 0.1 − 0.2s, our measured P (v) agrees with the
Schulz distribution inferred from DDM, Fig. 6c.

For NM cells, we determined D by fitting the MSDs for selected tracks at
several ε. We again found a dependence on (∆t, τ) and ε. The MSD for ε > 1
showed deviations from purely diffusive behaviour and/or the resulting values
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of D depend significantly on ε (Fig. 6d, �). Both effects are due to (likely
artificial) non-Gaussian tails in P (∆xNM(τ)) (not shown). Another estimate
of the diffusion coefficient is Dg (based on Gaussian fits to P (∆xNM(τ)),
Section 2.5), shown as a function of ε in Fig. 6d. The average value Dg =
0.36 µm2/s agrees with the DDM value of 0.35 µm2/s and to the one from
the MSD for ε = 1. Figure. 6e shows both the incorrect MSD of the diffusers
obtained for ε = 3 and the appropriate MSD based on Dg.

3.4 Vertical motion and depth of field

Our derivation of Eq. 2 assumes that the image contrast of a bacterium does
not vary with its position along the vertical (optical) z-axis, i.e. assumes an
infinite depth of field (δ). The validity of this assumption depends on how
fast cells move relatively to the finite δ in reality. Giavazzi et al. presented
a complex theoretical model, based on the coherence theory, to take into
account this effect (8). Here, we suggest a simple model and use simulations
to investigate this effect and its importance over the accessible q-range. Our
simple model captures the essential features and reproduces qualitatively and
quantitatively the experimental results.

Experimentally (6), the intensity profile of a bacterium along the z-axis
can be described by the contrast function

C(z) = CB − C0

(
1− 4z2

δ2

)
(7)

where CB and C0 are the background and the amplitude of an object in
the focal plane (z = 0) respectively. We determined CB and C0 experimen-
tally, and then used this function to ‘smear’ the simulated data previously
presented (6) to give simulated ‘images’ at a range of δ. At each δ except
the lowest, the input values {v̄, σ, α,D} are recovered from DDM analysis
of these images at q & 2π/δ; the case of v̄ is shown in Fig. 7. However, for
q . 2π/δ, the analysis returns v̄ and D values that are too high: disappear-
ance of cells along the z axis due to the rapid fading of C(z) is mistaken as
swimming and diffusion. Comparison between simulated data (Fig. 7) and
experimental data (Fig. 4 & 5b) shows that the effect of finite depth of field,
δ, is negligible for q > 0.5 µm−1 using 10x phase-contrast imaging and that
our experimental depth of field δ & 20 µm.
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4 Wild-Type E.coli

The motility pattern of WT E. coli in the absence of chemical gradients is
well known (4). A cell alternates between running for trun ≈ s and tumbling
for ttum ≈ s. During the latter they change direction abruptly. After many
tumbling events, the bacterium effectively performs a 3D random-walk.

Modelling the ISF using Eq. 4 assumes that swimmers follow straight
trajectories and neglects the effect of tumbling. We have previously applied
our method to the WT E. coli (6). Here we study the effect of tumbling
by comparing systematically the q-dependence of the average speed obtained
from DDM for WT (run and tumble) and SS (run only) swimmers. Since
several experimental data sets were obtained from different batches of cells,
we report the speed normalised to 〈v̄〉high q, the average in the range (2.0 <
q < 2.2 µm−1).

Simulations and experiments show, Fig. 5, a qualitative difference in v̄(q)
of SS and WT cells. All data for WT cells show a slight decrease in v̄(q)
towards low q, while data for SS show the opposite trend. The increase
towards low q in the v̄(q) of the SS is presumably largely due to depth of
field effects (Section 3.4). The opposite trend in the behaviour of v̄(q) for
the WT can be understood as follows. The mean speed, v̄(q), measured by
DDM at a certain q is estimated by v̄(q) ∼ (2π/q)/τq, i.e. the time (τq)
taken to advect density between two points spatially separated by distance
2π/q. For a straight swimmer, the tracklength s will be equal to the distance
between the two points, i.e. s = 2π/q, so that v̄(q) = v̄. Any deviation from
a straight track, e.g. due to changes in direction from tumbling, renders
s > 2π/q. Since τq = s/v̄, we now have v̄(q) < v̄. This effect becomes
progressively more pronounced at low q, as observed.

5 Swimming algae: wild-type C. reinhardtii

As a final example we apply DDM to the bi-flagellate freshwater alga Chlamy-
domonas reinhardtii, a model for eukaryotic flagellar motility (15). C. rein-
hardtii has a prolate spheroidal cell body about 10 µm across with two flagella
roughly 10-12 µm long (15). Beating the latter at ' 50Hz in an alternation
of effective (forward moving) and recovery (backward moving) strokes pro-
pels the cell body forward, oscillating as it advances. The flagellar beat is
not perfectly planar, so cells precess around their long axis at ' 2Hz; this
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rotation, critical to phototaxis (17), results in helical swimming trajectories.
For length scales ∼ 100 µm the direction of the axis of the helical tracks
is approximately straight, but on larger scales the stochastic nature of the
flagellar beat causes directional changes resulting in random walk (5, 26, 27).

Racey et al. (28) carried out the first high-speed microscopic tracking
study of C. reinhardtii, obtaining the cells’ swimming speed distribution,
with mean speed v̄ = 84µm/s, as well as the average amplitude Ā = 1.53µm
and frequency f̄ = 49 Hz of the beat. A more recent tracking study obtained
a 2D swimming speed distribution with v̄ ≈ 100µm/s (29). The swimming
of C. reinhardtii has also been studied with dynamic light scattering (DLS)
(28, 30). However, studies at appropriately small q are difficult, severely
limiting useful data (the limitation is even greater than for bacteria: algae
swim on larger length scales, requiring smaller values of q). We present here
the first characterisation of the swimming motility of C. reinhardtii using
DDM. As for E. coli, the technique allows to study the 3D motion of much
larger numbers of cells (∼ 104) than tracking, and allows easy access to larger
length scale than DLS.

5.1 Model of f(q, τ)

The swimming dynamics of C. reinhardtii are on larger length scales, shorter
time scale (algae swim faster) and of a different nature than E. coli, so
models and experimental conditions used for DDM need to be adjusted for
this organism. In particular, the decay of the ISF, f(q, τ), will reflect these
algae’s peculiar dynamics. Cells oscillate at lengthcales < 10µm, translate
in the range 10µm < L < 30µm, spiral over 30µm < L < 100µm, and
diffuse for L > 100µm. A schematic representation of a helical trajectory,
highlighting the small scale oscillatory motion is shown in inset of Fig. 8
(diffusive length scales are not shown).

At length scales L / 30 µm, the swimming of C. reinhardtii can be
approximated as a sinusoidal oscillation superimposed on a linear progression,
so that the particle displacement ∆r(τ) of a cell after a time interval τ is
given by (30)

∆r(τ) = vτ + A0[sin(2πf0τ + φ)− sin(φ)], (8)

where A0 and f0 are the amplitude and frequency of the swimming oscillation
and φ is a random phase to ensure the swimming beats of different cells
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are not synchronised. Substituting this into Eq. 3, averaging over φ, and
assuming a Schulz distribution for the swimming speed (Eq. 5), we obtain
the ISF,

falgae(q, τ) =
1

2

∫ 1

−1

cos [(Z + 1) tan−1 (Λχ)][
1 + (Λχ)2](Z+1)/2

J0[2qA0χ sin(πf0τ)] dχ, (9)

where Λ ≡ qvτ
Z+1

, χ ≡ cosψ, where ψ is the angle between ~q and ~r, J0 is
the zeroth order Bessel function. All other terms are as previously defined.
The first and second term describe the contribution from straight swimming
and oscillatory beat, respectively. In the limit qA0 � 1 (J0 → 1), Eq. 9
analytically integrates to Eq. 6, the same expression as for the progressive
model used for E. coli.

The derivation of Eq. 9 assumes the distributions P (A) and P (f) for
swimming amplitude and frequency, respectively, are narrowly centred around
the values A0 and f0 and ignores (i) the negligible diffusion of non-motile al-
gae; (ii) any bias in the swimming direction caused by gravitaxis (31); and
(iii) the helical nature of the swimming.

5.2 DDM results

Fig. 8a shows a typical DICF, g(q, τ), at q = 0.52 µm−1 (l ≈ 12 µm), for
a suspension of WT alga C. reinhardtii measured using DDM. The recon-
structed ISFs, f(q, τ), are shown in Fig. 8b in the range 0.2 / q / 0.9 µm−1,
corresponding to a length scale range of 7 / l / 30 µm−1. f(q, τ) shows
a characteristic shape for all q’s: a fast decay at τ ≤ 0.02 s due to the
oscillatory beat and a slower decay at τ ≥ 0.02 s due to swimming. The
identity of these two processes is confirmed by their difference in τ− and q−
dependencies. The characteristic time of the fast process is independent of
q, while its amplitude decreases with q. Both observations fully agree with
the term (J0) due to the oscillatory contribution in Eq. 9. Moreover, 0.02 s
corresponds to the period of a 50 Hz oscillatory beat. Finally, the slow pro-
cess scales perfectly with qτ (data not shown) confirming the ballistic nature
(swimming) of this process.

Fig. 9 shows the fitting parameters (v̄, σ, A0, f0) from Eq. 2 using the os-
cillatory model (Eq. 9) as a function of q. All parameters display a small
q-dependence. This is likely due to effects not captured by the simple oscilla-
tory model (e.g. body precession and helical swimming) and will be discussed
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elsewhere. Averaging over q yields v̄ = 89.6±2.8 µm/s, σ = 24.9±4.6 µm/s,
A0 = 0.98 ± 0.06 µm and f0 = 48.6 ± 0.55 Hz, with estimated error bars
reflecting the residual q dependence. Fitting the experimental data using
Eq. 9 requires numerical integration. Using instead the linear model (Eq. 6),
thus ignoring the oscillatory beat, yields similar results for (v̄,σ) as shown in
Fig. 9. This is because the fast process is mainly ignored when performing
such fit as shown in Fig. 8a. Moreover, using the linear model and a movie,
for which the lowest τ ' 1/f0 (for example 100 fps) and therefore the oscilla-
tory beat is not contributing to the ISF, yields the same (v̄, σ), thus allowing
high-throughput economical measurements of the mean speed of biflagellate
algae.

5.3 Tracking results

Tracking of C. reinhardtii resulted in two well separated groups of (Nc, 〈|θ|〉)
values (Section 2.5) independent of ∆t, provided ∆t > 1/f0, Fig. 10a. We
used tracks with (Nc ≥ 0.7, 〈|θ|〉 < 0.5), reflecting nearly straight swimmers
aligned with the image plane, to obtain P (v). Misaligned tracks are excluded
this way: motion perpendicular to the helical axis enhances the circular con-
tribution in the 2D projection, thus reducing Nc and increasing 〈|θ|〉 (insets
to Fig. 10a).

We measured P (v) for several τ , Fig 10b, and found a slight τ - depen-
dency, e.g. due to undetected fast swimmers for large τ . Note that our P (v)
is smaller at small v than in (29), where all projected trajectories were con-
sidered. Our small v data are likely closer to the true distribution, due to our
exclusion of misaligned tracks. Moreover, our P (v) are in reasonable agree-
ment with the result inferred from DDM (Fig 10b). We find v̄ = 81±1 µm/s
and σ = 22 ± 3 µm/s (averaged over different τ), in excellent agreement
with the values from DDM (Fig. 9). Extending the selected trajectories to
(Nc ≥0.55, 〈|θ|〉 < 0.7), changes P (v) and v̄ by less than 5%. We analysed
the oscillating component of the displacement, ros(t), for ‘straight’ tracks
(32). From Fourier analysis of ros(t), we obtained f0 = 49.3 ± 0.5 Hz. We
identified an additional modulation frequency of ∼ 10 Hz (i.e. an extra peak
at f−f0 ' 10 Hz in the power spectrum of ros(t), to be discussed elsewhere).
From the rms value of ros(t), we determined the average oscillation amplitude
A0 =

√
2〈x2

os + y2
os〉 = 0.93 ± 0.22 µm. These values are in agreement with

previous (28) and DDM results.
Thus, our results simultaneously validate the DDM methodology and the
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simple model (Eq. 8 & 9) for the swimming of C. reinhardtii. Our method
can therefore be used for the fast and accurate characterisation of the motility
of large ensembles of this organism, and, potentially, of other algae.

Conclusions

We have shown that DDM is a powerful, high-throughput technique to char-
acterise the 3D swimming dynamics of microorganisms over a range of time
scales and length scales (∼ 3 and ∼ 1 order of magnitude respectively) si-
multaneously in a few minutes, based on standard imaging microscopy. The
time scales and length scales of interest depend on the swimming dynamics
of the microorganism, and are easily tuned by changing the frame rate or
optical magnification respectively.

We have studied in considerable detail how to use DDM for character-
ising the motility of smooth-swimming (run only) and wild-type (run and
tumble) E. coli, as well as the wild-type alga C. reinhardtii. We validated
the methodology using tracking and simulations. The latter was also used
to investigate the effect of a finite depth of field and tumbling. Using DDM,
we were able to extract (i) for E. coli: the swimming speed distribution, the
fraction of motile cells and the diffusivity; and (ii) for C. reinhardtii: the
swimming speed distribution, the amplitude and frequency of the oscillatory
dynamics. In both cases, these parameters were obtained by averaging over
many thousands of cells in a few minutes without the need for specialised
equipment.

Further developments are possible. For E. coli, analytic expressions for
v̄(q) taking into account either trajectory curvature due to rotational Brown-
ian motion (smooth swimmers) or directional changes due to tumbling (wild
type), can be derived. Fitting these expressions to data should then yield
quantitative information on the respective features. For C. reinhardtii, the
helical motion, the asymmetric nature of the swimming stroke, and the higher
harmonics in the body oscillations observed by tracking could be explored
theoretically and using DDM experiments. This will allow us to test sim-
ulations that use the method of regularised stokeslets to reproduce the fine
details of the swimming of bi-flagellate algae (33).

DDM is based on the measurement of the spatio-temporal fluctuations
in intensity, and therefore does not require good optical resolution of the
motile objects. Thus, DDM can probe a large field of view, yielding good
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statistics even under relatively poor imaging conditions. Moreover, DDM
could also be used to probe anisotropic or asymmetric dynamics (34) of
microorganisms. Finally, the analysis is not restricted to dilute suspensions
and can be used to investigate the swimming dynamics at different time
scales and length scales of the collective behaviour of populations. However,
quantitative interpretation of the resulting data will require new models of
the ISF.

With the availability of DDM, quantitative characterisation of motility
can become a routine laboratory method, provided suitable theoretical mod-
els are available for fitting of the ISF. Even without such models, however,
qualitative features of the measured ISF can still allow conclusions to be
drawn and trends to be studied (e.g. the speeding up of the decay of the ISF
almost invariably correspond to faster motion). DDM should therefore be a
powerful tool in future biophysical studies of microorganismic locomotion.
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Figure 1: (a) Theoretical ISF, f(q, τ), vs τ at q = 1 µm−1, for (black dotted
line) a population of diffusing spheres with D = 0.3 µm2/s, (red dashed
line) a population of equivalent-size spheres swimming isotropically in 3D
with a Schulz speed distribution P (v) with average speed v̄ = 15 µm/s
and width σ = 7.5 µm/s, and (green line) a 30:70 mixture of diffusers and
swimmers. (b) Schematic of the image processing to obtain the DICFs,
g(q, τ), from the videos (left) collected in an experiment. (Middle) Non-
averaged image, |FDi(~q, τ)|2 and (right) averaged image, g(~q, τ), over initial
times ti at τ = 0.52 s.
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Figure 2: DDM for smooth swimming E. coli. (a) Measured (symbols) and
fitted (lines) DICFs, g(q, τ). (b) ISFs, f(q, τ), reconstructed from g(q, τ)
using Eqs. 2,4 & 6.
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Figure 3: The reconstructed ISFs, f(q, τ), shown in Fig. 2 plotted against
(a) qτ and (b) q2τ . Data collapse for the fast process in (a) and for the slow
process in (b). q value increases from red to blue end of the spectrum colour
in the range 0.3 ≤ q ≤ 2.2 µm−1.
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Figure 4: SS E. coli. Fitting parameters vs q using Eqs. 2, 4 & 6. From top
to bottom: v̄ and σ of the Schulz distribution, motile fraction α, diffusivity
D, and A(q) (◦) and B(q) (�). Red lines are results from tracking, with
thickness corresponding to the error bars. No reliable value for α could be
obtained from tracking.
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Figure 5: Swimming speed vs. q from DDM. (a) Effect of using different
forms of the speed distribution: lognormal (�), Schulz (◦), and Gaussian
(4). (b) Effect of tumbling (experiments): four data sets from the SS (black
symbols) and four data sets from the WT (red symbols). (c) Effect of tum-
bling (simulations): SS (◦) and WT (�). Note that for (b) and (c) panels,
the swimming speed has been normalised to 〈v〉high q to enable comparison
and highlight the difference in q-dependence.
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Figure 6: Tracking of SS E. coli. (a) Probability P (Nc, 〈|θ|〉) (∆t = 0.1 s)
for all tracks. White denotes large values of P . Circles (radius ε, see text)
are selection criteria for motile (red, lower right) or NM (green, upper left)
cells. (b) P (v) for ε = 3 (∆t = 0.1 s) for two time lags τ . Dashed line:
Schulz distribution from DDM. (c) v̄ (squares) and σ (circles) of P (v) vs ε
for τ = 0.1 s (filled) and τ = 1 s (open). (d) Diffusion coefficient of NM
cells vs. ε, from Gaussian fits to P (∆xNM(τ)) (�) and from linear fits to
the MSD (�). (e) MSD vs. τ for motile (�) and NM cells (•) for ε = 3,
∆t = 0.1 s. Line: motile MSD calculated using v̄ε=3 in (c); dashed line: NM
MSD calculated using Dg,ε=3 from (d).
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Figure 7: Effect of the depth of field on DDM analysis of simulated data.
Normalised mean swimming speed v̄/v̄input versus q for smooth swimmers
and several values of depth of field δ. v̄input = 15µm/s is the input mean
swimming speed used to generate the simulated data.
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Figure 8: DDM for WT C. reinhardtii. (a) Measured (circles) g(q, τ). Line
and dashed line are fits using the oscillatory model (Eq. 9) and the linear
model (Eq. 6), respectively. Inset: Portion of a helical C. reinhardtii tra-
jectory. The progressive, Lp, and (zoomed-in) oscillatory, L0, length scales
probed by DDM are shown, with the frequencies of the helical precession
(2 Hz) and oscillatory swimming (50 Hz). (b) ISFs, f(q, τ), using Eqs. 2 &
9.
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Figure 9: Fitting parameters using the oscillatory model Eq. 9 (circles) or
linear model Eq. 6 (squares) as function of q for C. reinhardtii. From top to
bottom: v̄ and σ of the Schulz distribution, amplitude A0, and frequency f0.
Red lines are results from tracking with dashed lines corresponding to error
bars.

Figure 10: Tracking of C. reinhardtii. (a) Probability P (Nc, 〈|θ|〉) of all tracks
(∆t = 0.05 s). Tracks within the red bordered region (example in top right
inset, 7 s, scalebar 150 µm) are used to measure P (v); Top left inset: an
excluded track with Nc < 0.4 (30 s, scalebar 30 µm). (b) Normalised P (v)
from tracks selected in (a), for two values of τ . Dashed line: P (v) from DDM
analysis.
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