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Abstract

This paper studies information transmission subject to anonymity requirements and

communication in public good provision without transfers. The structure of informa-

tive equilibria under anonymity or in public good provision can di¤er substantially

from that of direct one-to-one communication, and in particular we distinguish i)

informational distortion caused by the intrinsic divergence of preferences between

the decision maker and each agent; and ii) informational distortion caused by the

decision maker�s weak response to each agent�s message due to the equal treatment

of all agents that results from anonymity or the nature of public goods. We examine

the interaction between these two types of distortion and demonstrate that they may

partly o¤set one another. Information transmission and welfare can be enhanced by

introducing the second type of distortion through anonymity when the �rst type of

distortion is severe. In public good provision where the intrinsic preference diver-

gence between the utilitarian decision maker and each agent is absent, as the number

of agents becomes larger the quality of communication diminishes and informative

equilibria converge to the one that can be played by letting each agent report a binary

message (e.g. "yes" or "no") even if their preferences and the decision are continuous.
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1 Introduction

A great deal of information in society is communicated anonymously. In �rms or schools,

junior members often communicate with senior members (management, teachers) anony-

mously, through anonymous questionnaires, unions, representatives, or third parties such

as external consultants so that the sender of a message may not be known to its receiver.

Fraud investigations are often initiated by an anonymous report from a whistleblower in

an organization. Are we more likely, or less likely to tell the truth when we are anonymous

than otherwise? Why is anonymous communication so widely used?

Let us consider an apparently distinct but related setting. Suppose that a decision

maker chooses the quality or quantity of a public good that is consumed by all members of

a group with di¤erent preferences but no monetary transfers are allowed. Before making

her decision, the decision maker may communicate with the members to �gure out the

optimal provision. For example, a local authority may try to �nd the optimal public

services policy for the community by discussing with the residents, or a teacher may ask

his students how fast or how di¢ cult they would like his lectures to be. A regulator may

acquire information from �rms and their interested parties when choosing a regulation

policy. When an altruistic but uninformed decision maker is restricted to impose a uniform

decision on all members of a group, are they willing to reveal their private information to

the decision maker truthfully? How does the number of agents who consume the public

good a¤ect the quality of communication?

This paper addresses these questions by modelling communication as an extension of

the standard "cheap talk" model of Crawford and Sobel (1982) to a setting with multiple

senders (agents). Each sender receives a private signal and costlessly sends a message to an

uninformed receiver (decision maker) who, on the basis of the information received from

all agents, makes a decision that a¤ects their utilities. The sender, therefore, tailors the

message in order to induce the receiver to take an action closer to that desired by the sender.

When the decision concerns provision of a public good but no transfers are available, it must

be the same for all senders. When communication is anonymous so that the receiver does

not know the sender of each individual message, it is optimal for the receiver to implement

the same decision to all (ex ante identical) senders, but otherwise the communication

with each sender is the same as in one-to-one communication analyzed by Crawford and

Sobel (1982). Since anonymity in e¤ect works as a commitment device for equal treatment

of multiple senders, the model can be directly applied to study communication where

a decision maker is able to commit to equal treatment. Communication for "uniform

allocation" of subsidies or research grants may fall into this category.

Provided that the receiver treats every sender equally, her optimal policy is a function

of all messages she has received. Hence, the receiver�s response to a particular sender�s

message will become weaker under anonymity/equal treatment, compared with one-to-one
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communication where the receiver can take a tailored action for each individual sender. In

other words, each sender has less in�uence on the decision. Equal treatment of multiple

senders certainly changes each sender�s communication strategy, because in order to in�u-

ence the receiver�s decision in his favour the sender must also take into account the e¤ects

of the other senders�messages on the decision. This gives rise to the type of informational

distortion that is qualitatively di¤erent from what we call intrinsic bias, which represents

preference divergence that can be present even in one-to-one communication with a single

sender.

In the standard information transmission literature the source of informational dis-

tortion in communication is the presence of the sender�s bias that re�ects the intrinsic

divergence of preferences between the sender and the receiver. Typically a positive (neg-

ative) intrinsic bias is modelled in such a way that the sender�s type is represented in an

interval and any type of sender wishes to induce a consistently higher (lower) action than

the receiver, if she completely believes the message from the sender. No type fully reveals

because doing so always leads to a lower (higher) action than he desires. As a result, in

a perfect Bayesian equilibrium the sender�s type is at best only partially revealed: the

informative equilibria are typically characterized by a partition of the sender�s type space

into a �nite number of intervals, where the types of sender in the same interval induce the

same action by the receiver. When the intrinsic bias is too large no information can be

transmitted and the receiver�s action is based solely on her prior belief.

Weak response to a message due to anonymity/equal treatment leads to certain char-

acteristics in the sender�s incentive to reveal information that cannot be found in commu-

nication with an intrinsic bias only. First, when the receiver�s response to a message is

weak, the sender�s bias may not be consistently positive or negative. This means that full

revelation may lead to higher or lower action by the receiver than the sender�s desired ac-

tion, depending on his type. In order to highlight the e¤ects of weak response, suppose for

the moment that there is no intrinsic preference divergence between the receiver and each

individual sender, and that the utilitarian decision maker (receiver) simply maximizes the

sum of all senders�utilities. An example would be a local authority that seeks to maximize

the sum of the residents�utilities. Suppose that the local authority wishes to communicate

with the residents regarding the public health service. Since each resident has only a small

in�uence on the �nal decision, residents who want only a slight increase in the spending

(and quality) may not reveal completely truthfully and "overstate" their need by saying

they want a huge increase. On the other hand those with private insurance or those who

use other public services more often may "understate" their demand by reporting that they

want a large cut even if they actually want only a slight reduction. In this example those

who want an increase in the spending are positively biased while those who prefer a cut are

negatively biased. When many senders are involved in a decision, the receiver must take
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into account the senders�incentive to "exaggerate" their types, relative to the average.1

Second, when both individual preference divergence (intrinsic bias) and informational

distortion caused by weak response are present, they partly o¤set each other. This sug-

gests that when intrinsic bias is large, introduction of anonymity may improve information

transmission and welfare. By introducing anonymity the receiver is unable to take tailored

action for each sender and this reduces e¢ ciency if the quality of information the receiver

can obtain from each sender is �xed. However when the senders are intrinsically biased

weak response as a result of anonymity may encourage them to reveal more information.

The intuition behind more revelation is simple. Suppose that the senders have a positive

intrinsic bias and the type of a particular sender is low. When anonymous his incentive to

"exaggerate" gives rise to a negative bias (since the receiver�s response is weak) and this

may o¤set the positive intrinsic bias. Thus low types may reveal more information under

anonymity because their interests are more aligned with those of the receiver. In particu-

lar we show that when the intrinsic bias is large the bene�t of information revelation may

exceed the cost of equal treatment.

Finally, in the context of public good provision where there is no intrinsic bias and

the receiver is a utilitarian decision maker, any informative equilibria converge to the

one that can be played by letting each agent (sender) choose between only two messages

as the number of agents who consume the public good becomes larger. Moreover, the

informational loss caused by using only two messages (as opposed to using many messages

that can be supported in equilibrium) is smaller when there are more agents. This might

explain why the "choice between the two" ("yes or no", "agree or disagree", etc.) is a

very common way of communicating when many people are involved in a decision, even if

neither the agents�preferences nor the decision made after communication is binary (e.g.

quality of service, pace of lectures, or tightness of regulations). When an agent can only say

whether he agrees or disagrees with a proposal, he cannot express how strongly he agrees

or disagrees. A binary message eliminates the possibility of "exaggerating" preferences,

which is the chief cause of informational distortion when each sender has weak in�uence

on the decision.

Throughout this paper we are concerned with situations where the receiver cannot com-

mit to a complete pre-determined decision rule (mechanism), and she makes her decision

after hearing or reading the messages. Although much of the literature on decision making

in multi-agent settings assumes that commitment to decision rules is possible and focuses

1By incentive to "exaggerate", we mean a sender�s incentive to misreport in such a way that, if words are

taken literally and believed by the receiver, the sender whose type is high (low) "overstates" ("understates")

his type by saying his type is even higher (lower). However, in cheap talk games messages used are

completely arbitrary and do not have to be taken literally. What matters for the equilibrium outcome

and e¢ ciency is the correspondence between each sender�s type and the receiver�s induced action, so what

word (or language) is used to induce a particular action is irrelevant.

4



on the design of such rules, imperfect commitment or the absence of complete decision

rules is prevalent in many situations of interest. Often the receiver of a message is tempted

to treat its sender individually even when it discourages truthful communication. For ex-

ample a manager may be tempted to dismiss a worker who says he is unable to perform

an important task, but knowing this the worker may not report his skills truthfully. In

public good provision decision makers rarely o¤er a decision rule that prescribes a deci-

sion according to every possible set of received messages. A local authority may ask its

residents whether they agree or disagree with a proposal on public services but typically

such a proposal is vague. The local authority may decide the details after it has learnt the

number of residents who agree with the proposal. Even if a decision rule is o¤ered the de-

cision maker may not necessarily follow it unless it is solicited as a legally binding contract

or she has strong reputational concerns for commitment to decision rules. Whereas there

are clearly many circumstances where the decision maker is able to commit to decision

rules and the design of such rules is of great importance, we focus on communication under

limited commitment that seems relevant to a wide variety of decision making environments

where multiple agents are involved.

1.1 Relation to the Literature

As anonymity and the concept of equal treatment necessarily entail multiple senders,

our model is related to the literature on communication with multiple experts. Krishna

and Morgan (2001) study whether senders should be consulted together or sequentially.

Battaglini (2002) shows that when there are multiple senders with di¤erent biases and

the state space is multidimensional, full revelation can be achieved for an arbitrarily large

con�ict of interest. Battaglini (2004) studies a model where the senders observe imper-

fect signals. Baliga, Corchon, and Sjöström (1997) investigate a set of social choice rules

that can be implemented when agents play a cheap talk game with the decision maker. A

common feature of these papers is that the senders observe the same or correlated states

of nature while each sender has a di¤erent bias, where senders would most naturally be

interpreted as experts with di¤erent political/business standpoints.

Among models of communication with multiple senders our model is closer to Austen-

Smith (1993) and Wolinsky (2002) where senders observe independent signals (types).

Austen-Smith (1993) focuses on the comparison between simultaneous and sequential re-

porting, and Wolinsky (2002) considers information sharing between senders. Thus the

questions they address are di¤erent from ours and the ways they set up their models are

suited particularly to consultation with a relatively small number of experts, while our

model can naturally be interpreted in terms of communication with many agents. Also,

both Austen-Smith (1993) and Wolinsky (2002) assume that the individual types and mes-

sages are binary. Because of the binary structure, the incentive to "exaggerate" types,
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which we argue is an important source of informational distortion inherent in many multi-

sender settings, cannot be fully incorporated into their models.

It is already known in the literature that the introduction of randomness in messages

may facilitate information transmission especially in the presence of large con�ict of inter-

est between communicating parties. Myerson (1986) and Forges (1986) have shown this

possibility in highly abstract settings, and Krishna and Morgan (2004) and Mitusch and

Strausz (2005) have proposed more speci�c randomization mechanisms that improve in-

formation transmission. In this line of research Blume, Board and Kawamura (2007) have

shown recently that in the model of Crawford and Sobel (1982) with quadratic utilities and

a uniform type distribution, if a certain noise mechanism is introduced into the model it is

possible to construct an equilibrium that Pareto dominates any equilibrium without noise

as long as the intrinsic bias is present but not too large. Although randomization is typ-

ically interpreted as what a "mediator" does, it may not be easily introduced in practice.

Hence the present paper introduces anonymity/equal treatment as an alternative device for

enhancing communication when there are multiple senders. Moreover while the literature

on noisy communication focuses on how communication can be improved in the presence

of intrinsic bias, the current paper also o¤ers a detailed analysis of communication where

there is no intrinsic bias, which can be applied to study public good provision without

transfers.

The literature on public good provision has been concerned with mechanism design

problems where agents reveal their preferences (partially or fully) by sending a message

on or voting for the provision of a public good (Palfrey and Rosenthal, 1984; Bagnoli and

Lipman, 1989; Ledyard, 1995). Typically monetary transfers are allowed and the decision

maker is assumed to be a mechanism designer who is able to commit to a mechanism

(i.e. a mapping from messages to the decision including transfers). Having received the

messages the decision maker implements the provision and compels transfers, according

to a pre-speci�ed rule. The main source of moral hazard is the free rider problem, where

agents have incentive to "understate" true preferences for the public good, because given

the amount of the public good everyone prefers to incur less cost. Without a truthful

revelation mechanism the agents are negatively biased in reporting their preferences.

The present paper sheds light on a di¤erent set of problems in public good provision.

First, we focus on situations where no transfers among members (including the decision

maker) are available and therefore each agent�s costly contribution is not a concern. As

we have suggested earlier, settings with no transfers characterize many important aspects

of decision making within organizations including �rms and schools as well as certain

regulatory and political relationships. In many of these circumstances monetary transfers

are often infeasible or considered inappropriate. Second, we assume that the decision

maker cannot commit to a mechanism. In other words, the decision maker makes her
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decision strategically after hearing or reading the messages, which seems to be relevant

to many practical situations, especially where legally binding contracts are unavailable or

the decision maker does not have strong reputational concerns. A similar model to ours

is studied by Bester and Strausz (2000) but they solely focus on showing that a version

of the revelation principle, proposed in Bester and Strausz (2001), does not extend to

cheap talk games with multiple senders. Unlike us they do not consider the characteristics

of information transmission in equilibrium, but we demonstrate that communication in

public good provision can be fruitfully analyzed in our framework.

The structure of informative equilibria we identify is related to that of Melumad and

Shibano (1991), Alonso, Dessein and Matouschek (2006) and Gordon (2006) who, like us,

study cheap talk models with weak response to a message. However, unlike our model

Melumad and Shibano (1991) introduce weak response directly into the receiver�s util-

ity function, and Alonso, Dessein and Matouschek (2006) do not consider the interaction

between weak response and intrinsic bias. We derive informative equilibria in a simple

multi-sender setting that can be applied to a wide variety of circumstances and in particu-

lar examine interplay among the quality of information transmission, preference divergence

and the number of senders involved. Gordon (2006) provides a general characterization

of cheap talk equilibria where the sender�s bias is type-dependent and may not be consis-

tently positive or negative. His equilibrium characterization with type-dependent bias can

potentially be applied to various types of cheap talk games, including noisy communication

and multiple sender/receiver settings, and indeed encompasses communication equilibria

in many models that extend Crawford and Sobel (1982) and ones presented in this paper.

However, since Gordon (2006) is mainly concerned with equilibrium characterization it-

self, he either takes the receiver�s response function as given, or introduces the source of

biases directly into the players�utility functions. In contrast we will illustrate how certain

communication environments (such as anonymity or public good provision) lead to weak

response by the receiver, and examine how parameters in these environments alter the

characteristics of information transmission.

Our model focuses on communication in a one-shot game, but reputational concerns

in repeated interactions can give rise to the type of informational distortion di¤erent from

both intrinsic bias and incentive to "exaggerate" presented in this paper. Ottaviani and

Sørensen (2006a,b) have shown that an expert�s reputational concerns for his ability create

a bias towards the uninformed party�s prior belief.2 Interestingly, this type of bias is in

stark contrast to incentive to "exaggerate" since the latter can be interpreted as a bias

away from the prior belief.

2In the models of Ottaviani and Sørensen (2006a,b) there is no preference divergence as long as the

sender of a message is perfectly informed. Other papers on communication with reputational concerns,

including Sobel (1986), Morris (2001) and Park (2006), study reputation building for an (unknown) intrinsic

bias.
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This paper proceeds as follows. Section 2 introduces the model and its applications

for constrained communication with multiple senders. In Section 3 we derive informative

perfect Bayesian equilibria with quadratic utilities and uniformly distributed sender types,

and compare the players� expected utilities in anonymous communication and those in

Crawford and Sobel (1982). Section 4 shows that many of our qualitative results hold in a

more general setup. Section 5 concludes.

2 Model and Applications

Before we present our multiple sender setting, let us introduce a version of the standard

cheap talk model of Crawford and Sobel (1982; henceforth CS). A sender who has private

information about his type (or state of nature) � 2 [0; 1] communicates with a receiver.
The sender�s utility function is US = U(y; �; b) and the receiver�s is UR = U(y; �; 0) where

y 2 R denotes the receiver�s action. b � 0 represents the sender�s bias or the level of

con�ict and is common knowledge. U(�) is twice continuously di¤erentiable, with U11 < 0,
U12 > 0, U13 > 0, and U1 = 0 for some y to ensure that the unique maximum with respect

to y exists. Let yS(�) and yR(�) be the receiver�s actions that maximize US and UR ,

respectively. The assumptions on the utility functions imply that both yS(�) and yR(�)

are strictly increasing �. Also if b > 0 (b = 0) then yS(�) > yR(�) (yS(�) = yR(�)).

The sender�s type � has a di¤erentiable distribution F with density f on [0; 1]. Before

the receiver takes her action, the sender reports a costless message m 2 M where M is a

message space that is rich enough to cover all types. Before selecting y the receiver updates

her belief on � according to the message.

CS have shown that, for b > 0, the perfect Bayesian equilibria of this game are such

that the type space is divided into a �nite number of intervals and all types in a particular

interval induce the same action. We denote a typical partition of the type space into J

intervals by f[0; a1); [a1; a2):::; [aj�1; aj); :::; [aJ�1; 1]g, where aj denotes a boundary type
within the interval (0; 1). If a1 = 0 the �rst interval is degenerate and we denote the par-

tition by f[0]; (0; a2):::; [aj�1; aj); :::; [aJ�1; 1]g. Let �J(b) be the largest number of intervals
that can be supported in equilibrium, which is shown to be a function of b. CS have also

shown that there exists an equilibrium with J intervals for any 1 � J < �J(b). If b = 0

both parties�interests are perfectly aligned and the sender may fully reveal �.

In CS�s "uniform-quadratic" setting, US = �(y � � � b)2; UR = �(y � �)2 and �
is uniformly distributed. In this case the �rst order condition for the receiver�s utility

maximization gives her best response

y(m) = E [� j m] , (1)

which is the expected value of the sender�s type conditional on the message. Hence the
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in�uence the sender�s message has on the receiver�s action is captured in (1). In a perfect

Bayesian equilibrium the sender�s strategy must also be a best response to (1).

2.1 Anonymous Communication

2.1.1 General Formulation

Let us consider an information transmission game between a single receiver and n senders

labelled by f1; 2; :::; i; :::; ng. Each sender has a di¤erent type, which is private information
to the sender. The receiver can take a di¤erent action for each sender, and the receiver�s

utility function depends on each sender�s type and the action taken towards him.

Let sender i�s utility function be

USi(yi; �i; b) = U(yi; �i; b) for all i (2)

where yi 2 R is the receiver�s action for sender i, �i is the sender�s type, and b � 0 is

both symmetric across all senders and common knowledge. The receiver cannot observe

� = [�1; �2; :::; �i; :::; �n] 2 [0; 1]n. Each sender�s type �i is independent and identically

distributed (i.i.d.) and has a di¤erentiable distribution F with continuous density f . Only

sender i observes �i, while the receiver and the other senders do not.

The receiver�s utility function is given by

UR(y;�) =
nX
i=0

U(yi; �i; 0) (3)

where y = [y1; y2; :::yi; ::; yn] is the vector of actions taken by the receiver. Her utility is

the sum of all senders�utilities such that b = 0. As we have noted, we interpret yi as an

action taken towards sender i. The utility function implies that if the receiver perfectly

knew � = [�1; �2; :::; �i; :::; �n] she would choose a di¤erent action for each sender unless

their types coincide.

The intrinsic divergence of preferences between the receiver and each sender is captured

by b. Since b is symmetric, ex ante (before the senders observe their types) all senders are

identical. Let mi 2M be the message sender i reports to the receiver, where the message

space M has enough elements to cover all sender types, and is shared by all senders. A

strategy of a sender is described by qi(mi j �i), the conditional probability that sender i�s
message is mi given that his type is �i. Technically speaking, the receiver�s action space is

multidimensional, while each sender�s message and type spaces are unidimensional. Each

sender reports his message mi independently and simultaneously to the receiver, before she

selects her action vector y.

De�nition 1 Communication between a receiver and n senders is anonymous if, having
observed all n messages, the rational receiver assigns probability 1=n to the event that a

message is reported by sender i, for i = 1; 2; :::; n.
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In anonymous communication, having observed the messages the receiver cannot up-

date her belief on which message corresponds to which sender. Therefore, the probability

that a message comes from any sender is 1=n. There are at least a few ways in which com-

munication with multiple senders is not anonymous. First, anonymity is clearly violated

when the receiver sees a sender delivering his own message. Second, even if the receiver

does not observe the sender of a message, it may include information on both his type and

identity. This is the case if the message is multidimensional and includes the "name" of

the sender as well as information on his type. Alternatively, even when the message does

not contain the "name", the receiver may be able to infer the identity of a sender through

his message if the senders adopt di¤erent strategies, since a certain message may be used

only by a particular sender in equilibrium.

If the identity of the sender of a message is perfectly revealed, the game between that

sender and the receiver reduces to the single sender model of CS we have introduced above.

Thus unless revelation of identities through messages is ruled out before the game is played,

there exist equilibria where anonymity is violated and some (or all) senders�equilibrium

strategies replicate those of the single sender model.

On the other hand as long as the receiver does not observe a sender delivering his own

message, there also exist equilibria where the identity part of messages is not believed

by the receiver or the senders choose not to reveal their identities. That is, in this class

of equilibria communication is anonymous in the sense of our de�nition above, and such

equilibria are of particular interest because as we will see later there are situations in which

both parties are better o¤ when the identities of the senders are not revealed. Moreover,

before the senders learn their types both the receiver and the senders may agree on using

some anonymization device that precludes revelation of identities (such as communication

through a neutral third party who enforces anonymity). When we refer to anonymous

communication or communication under anonymity, we either focus on the class of equi-

libria where no senders�identities are revealed, or on the information transmission game

where revelation of identities is ruled out by assumption.

Throughout this paper we focus on symmetric sender strategies so that if �i = �j for

i 6= j, then qi(mi j �i) = qj(mj j �j). That is, we assume that any (ex ante identical) senders
with the same type report their messages according to the same conditional distribution.

As we have suggested already if senders adopt di¤erent strategies, the receiver can identify

the sender of a message (say sender 1) from the message itself, since the message may not

be used in the equilibrium strategies of the other senders. Note that by symmetry we also

rule out sender strategies such that the senders reveal their identities directly by telling

their names.

Under those assumptions, we establish the e¤ect of anonymity on the receiver�s action

vector.
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Proposition 1 (Equal Treatment) In anonymous communication, the receiver�s equi-
librium actions are symmetric for all senders, or

y1 = y2 = ::: = yn.

Proof. Consider the receiver�s utility maximization problem with respect to yi. Note that
the sender strategy is symmetric q1 = q2 = ::: = qn = q. Suppose that a message mj

corresponds to sender i. The posterior density function of �i is given by

p (�i j mj) =
q (mj j �i) f(�i)R 1
0
q (mj j t) f(t)dt

:

Since communication is anonymous the message mj corresponds to any sender with the

equal probability 1=n. Therefore, we have the posterior density function of �i given n

messages

p (�i j m1;m2; :::;mn) =
nX
j=1

1

n

q (mj j �i) f(�i)R 1
0
q (mj j t) f(t)dt

:

Clearly this posterior density function of sender i�s type is identical for all senders. There-

fore, the maximization problem with respect to yi is identical for all y1; y2; :::; yn. Moreover,

since the utility function is strictly concave the solution to the the receiver�s maximization

problem given m1;m2; :::;mn is unique. Hence, y1 = y2 = ::: = yn.

Thanks to the equal treatment property we can focus on the relationship between n

messages m1; m2; :::;mn and the unidimensional action y to analyze anonymous communi-

cation. That is, the receiver�s utility maximization problem in anonymous communication

is equivalent to the maximization problem where the receiver must treat every sender

equally for exogenous reasons.

2.1.2 Uniform-Quadratic Setting

In order to illustrate the e¤ect of anonymity on the receiver�s best response and sender

strategies clearly, let us consider quadratic utilities and uniform distribution of sender types.

In this setting the utility of the receiver is given by �
nX
i=1

(yi � �i)2, while that of sender i

is �(yi � �i � b)2. As above, �i is private information to sender i, and independently and
uniformly distributed on [0; 1]. Before the receiver chooses her action, each sender reports

a message mi on his type, independently, simultaneously, and anonymously.

According to Proposition 1, when the sender strategies are symmetric the receiver�s

optimal action is the same for every sender. Therefore, without loss of generality we can

write the receiver�s maximization problem in such a way that she selects a uniform action
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y = y1 = y2 =; :::;= yn to maximize her expected utility given the received messages:

max
y

E

"
�

nX
i=1

(y � �i)2
�����m1;m2; :::;mn

#
=

nX
i=1

�
�(y � E[�i j mi])

2 � var(�i j mi)
�
:

In this maximization problem we can ignore the variance term var(�i j mi), which is con-

stant from the receiver�s viewpoint. Therefore the �rst order condition gives the receiver�s

best response function

y(m1;m2; :::;mn) �
1

n

nX
i=1

E[�i j mi]: (4)

From sender i�s viewpoint, after sending his message the receiver�s action is still a random

variable but with quadratic utility functions we can focus on the expected value of the

receiver�s action to consider the sender�s strategy. Since he does not observe the other

senders�types or messages, (4) implies that the expected action from the sender�s viewpoint

conditional on his own message is given by

1

n
E[�i j mi] +

n� 1
n

E [E[��i j m�i]]

where ��i denotes a sender other than sender i. Using the following fact

E [E[��i j m�i]] = E[��i] =
1

2
,

and letting  � 1=n to simplify notation, de�ne

yS(mi) � E[�i j mi] + (1� )
1

2
. (5)

We call yS(mi) the reaction function, or the receiver�s reaction to the message from sender

i. This is to be distinguished from the receiver�s best response function y(m1;m2; :::;mn).

In the single sender model of CS we have n = 1 = , and indeed both (4) and (5) reduce

to (1). Therefore the CS model is a special case of ours, where n = 1 and anonymity is

irrelevant.

Let us consider the receiver�s reaction from a sender�s viewpoint. Compared with (1) the

sender�s message has less in�uence on the receiver�s action in (5) because it is weighted at

, and the in�uence becomes weaker as the number of senders becomes larger. Moreover,

in expected terms, the reaction is biased towards the unconditional expectation of the

senders�types 1=2.

The change in the reaction function from (1) to (5) may have a great impact on a

sender�s incentive to reveal information. First, when the receiver�s reaction to the message

from a sender is given by (5), there may be a "fully revealing type", the type of sender

12
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Figure 1: Sender�s desired action and receiver�s best response

wishes to be fully revealed even for b > 0. To �nd this type, suppose that the sender�s type

is �i. De�ne

yS(�i) � �i + b

yR(�i; ) � �i +
1

2
(1� ),

where yS(�i) denotes the sender�s desired action given his type �i, and yR(�i; ) is the

receiver�s reaction given that �i is perfectly revealed to her. Note that yS(mi) denotes the

receiver�s reaction as a function of the sender�s message, while yS(�i) is the sender�s desired

action as a function of his type. If the sender�s type is such that

yS(�i) = yR(�i; )() (6)

�i =
1

2
� b

1�  � �̂; (7)

the sender may induce his (expected) desired action �i + b by reporting truthfully. Hence,

if  < 1 (n � 2) and b is not too large, there may exist �̂ 2 [0; 1] that satis�es (7). The
sender�s desired action and the receiver�s reaction for given �i are illustrated in Figure 1,

where the horizontal axis represents the sender�s type �i and the vertical axis represents the

receiver�s action y. In communication with a single sender (n = 1) the receiver�s reaction

13



if she knew �i is given by yR(�i; 1) = �i, the 45 degree line, which never coincides with

the sender�s desired action yS(�i) for b > 0. This implies that no type wishes to be fully

revealed in one-to-one communication. However, if n � 2 the receiver�s reaction yR(�i; )
crosses yS(�i) at �i = �̂, that is, the sender�s desired action and the receiver�s reaction

coincide at �̂.

If b = 0 and n = 1 then yR(�i; 1) = yS(�i) = �i so that the sender can induce his desired

action simply by revealing truthfully: perfect communication is possible in CS when there

is no intrinsic bias. On the other hand if b = 0 but n � 2 then we have �̂ = 1=2. Even

if there is no intrinsic bias the sender�s desired action and the receiver�s response do not

coincide except for the "average" type.

Also, when the receiver�s reaction is given by (5) the sender�s desired action may be

higher or lower than the receiver�s reaction depending on his type. In communication with

a single sender if b > 0 then yS(�i) > yR(�i; 1) for all �i, so that the sender�s desired action

is consistently higher than the receiver�s reaction under perfect revelation. However we

have yS(�i) < yR(�i; ) (yS(�i) > yR(�i; )) if �i < �̂ (�i > �̂), in which case the sender�s

desired action is lower (higher) than the receiver�s reaction.

2.1.3 An Alternative Speci�cation of Anonymous Communication

Let us consider a di¤erent way of modelling anonymous communication from what we have

introduced above. Often a decision is made according to a particular anonymous message

from an informed sender rather than anonymous messages from all the senders as presented

above. For example an o¢ cial or investigator may act upon a message from an anonymous

whistleblower in a group, rather than anonymous messages from all the members. The

above framework can easily be modi�ed to suit circumstances where only a subset of n

potential senders report anonymous messages while the others stay "silent".

Suppose that the utility functions and the timing are the same as our original spec-

i�cation, and sender strategies are also symmetric. However, assume that only one of n

senders (call him an "informer") observes �i from the known distribution on [0; 1] and all

the other senders�types, denoted by ��i, are the same and ex ante known ��i = h 2 [0; 1].
Until the senders learn their types they do not know whether they will be an informer or

not, and the types are privately observed.

Also in this speci�cation, unless the receiver observes the informer delivering his message

there is an equilibrium where his identity is unknown to the receiver. If so, then equal

treatment applies here too. When choosing her action the receiver cannot di¤erentiate

the anonymous informer from the others. In the uniform-quadratic setting with h = 1=2

(= E[�i]), from the informer�s viewpoint the receiver�s reaction to his anonymous message is

given by (5).3 The receiver�s action is taken towards every sender equally but is in�uenced

3In the uniform-quadratic setting even if there are l informers such that l < n, (5) still holds for each
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only by the informer�s type. Naturally the messages sent by the senders other than the

informer can be interpreted as "silence".4

Although this alternative speci�cation may suit certain circumstances better, in order

to highlight the common structure with other forms of constrained communication, we will

focus on the original speci�cation (where �i is i.i.d. for all i) when we consider anonymous

communication. However the main theoretical insights in both speci�cations are almost

identical.

2.2 Public Good Provision

The discussion on anonymous communication so far indicates that the essential feature

that leads to the reaction function (5) is equal treatment of multiple senders. In certain

environments equal treatment is implied in the receiver�s decision problem, whether or not

the receiver can identify the sender of a message. Consider communication in public good

provision with no transfers. Each agent (sender) has a di¤erent preference for the decision

maker�s (receiver�s) action y and the utility of an agent is given by U(y; �i) � U(y; �i; 0).
Unlike the case of anonymous communication, in this context it would be appropriate to

assume b = 0, so that there is no intrinsic divergence of preferences between the decision

maker and each agent. In other words, the utility functions are such that, if n = 1, their

interests are completely aligned. The decision maker maximizes the sum of the agents�

utilities
nX
i=1

U(y; �i), which can be interpreted as a utilitarian social welfare function, but

she cannot commit to a mechanism (i.e. a pre-determined mapping from the received

messages to y). The agents send messages to the decision maker before she chooses y.

Under these assumptions the decision maker�s maximization problem is identical to that

of the anonymous communication case. In the uniform-quadratic setting her best response

to n messages is represented by (4). Similarly the decision maker�s reaction (in expected

terms) from an agent�s viewpoint is given by (5). Therefore, communication in public good

provision with no transfers has a common strategic feature to anonymous communication,

and the former can be analyzed as a special case (b = 0) of the latter.

2.3 Noisy Communication with a Single Sender

One of the most studied features in the cheap talk literature is the introduction of noise in

communication with a single sender. As we suggested earlier a class of equilibria identi�ed

under noisy environment in Blume, Board and Kawamura (2007) has a similar structure

informer�s viewpoint if the types of the informers are independently distributed.
4As we noted earlier, in cheap talk games messages are arbitrary. Any anonymous message (including

"silence") that induces the receiver�s belief that the (anonymous) sender of the message is not an informer,

has the same e¤ect on the receiver�s reaction.
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to communication with multiple senders subject to anonymity/equal treatment presented

in this paper. Since we need to specify the sender�s equilibrium strategy to point out the

formal relationship between our model and noisy communication, we discuss this issue in

Appendix II.

The intuition behind the similarity is as follows. Blume, Board and Kawamura (2007)

assume that with probability 1 � q the receiver observes the message sent by the sender
but with probability q the receiver observes a message drawn from a known distribution on

the message space. The possibility that the message may not be from the sender himself

makes the receiver�s response to the observed message weaker than in the situation where

the receiver always observes the message from the sender (q = 0). This has a similar e¤ect

on the sender strategy to that of anonymity/equal treatment.

However, there are signi�cant di¤erences between noisy communication and the present

model for communication with multiple senders. Clearly the communication features that

lead to the receiver�s weak response di¤er. In the model presented here weak response

arises from the presence of multiple senders and an important aim of this paper is to

illustrate how the number of senders a¤ects the nature of communication. Moreover, in

noisy communication the weight the receiver puts on the received message may change

depending on sender strategies. In the uniform-quadratic setting of Blume, Board and

Kawamura (2007) the receiver�s reaction represented by (5) corresponds to only one of

many classes of sender/receiver strategies, and though analytically convenient, this class of

strategies is not generally welfare maximizing. On the other hand as we have seen already

the receiver�s reaction is fully represented by (5) under anonymity/equal treatment and

this paper provides a detailed analysis of equilibria that result from (5). Moreover, the

case where b = 0 is hardly important in the context of noisy communication, because then

there is no need to introduce noise as both parties�interests are perfectly aligned. Here

we carefully examine this case too, as we have already demonstrated that our multi-sender

setting with b = 0 can be interpreted as communication in public good provision and

therefore be of independent interest from whether and how introduction of randomization

or anonymity facilitates information transmission.

3 Equilibrium in the Uniform-Quadratic Case

In this section we study the uniform-quadratic setting introduced earlier, in order to il-

lustrate how anonymity or equal treatment alters the structure of informative equilibria,

and then discuss when introduction of anonymity is desired. We come back to the gen-

eral setting in the following section. By informative equilibrium we mean an equilibrium

where with strictly positive probability the receiver�s action is di¤erent from the action
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she chooses based only on her prior belief.5 In order to simplify notation we drop sub-

script i when we refer to generic sender i. As in (5) yS(m) denotes the receiver�s reaction

to the sender�s message (expected action from the sender�s viewpoint conditional on his

message m). Also, yR(�; ) is the receiver�s action from the sender�s viewpoint given that

the receiver knows �, and yS(�) is the sender�s desired action when his type is �.

In the following we begin by studying the sender�s equilibrium strategy given the re-

ceiver�s reaction function (5). In the CS model where n = 1 it has been shown that, if

the receiver�s desired action and that of the sender never coincide, any perfect Bayesian

equilibrium takes a partitional form, where the type space is divided into a �nite number

of intervals. In contrast, we will demonstrate that if the fully revealing type �̂, which is

given by (7), exists on [0; 1] there is an equilibrium with an in�nite number of intervals,

which, however, is not fully revealing.

In order to consider equilibrium sender strategies, let us introduce an alternative rep-

resentation of the receiver�s reaction. Let a and a be two points in [0; 1] such that a < a.

From (5) and the assumption that � is uniformly distributed

E[� j � 2 [a; a)] = a+ a

2
.

De�ne

�yS(a; a) � 
a+ a

2
+ (1� )1

2
: (8)

�yS(a; a) is the expected action from the sender�s viewpoint conditional on the receiver�s

belief that a sender�s type is such that � 2 [a; a). If � = a then we write �yS(a; a). While
yS(m) is de�ned as a function of the sender�s message, �yS(a; a) is a function of an interval

although they both denote the receiver�s reaction. Note that the receiver�s action is a

random variable from the sender�s viewpoint. However, the randomness is caused only by

messages from the other senders. Hence, the variance of the receiver�s action is independent

from the sender�s strategy (message). The quadratic utility functions imply that, to derive

equilibrium sender strategies, we can focus our attention on the expected value of the

receiver�s action �yS:

In an equilibrium partition each boundary type aj 2 (0; 1) must satisfy the "arbitrage"
condition which says that the sender with � = aj is indi¤erent between inducing �yS(aj�1; aj)

and �yS(aj; aj+1). Solving the condition

�(�yS(aj�1; aj)� aj � b)2 = �(�yS(aj; aj+1)� aj � b)2 (9)

by using (8) we obtain a second-order di¤erence equation

aj+1 � (4� 2)aj + aj�1 = 4b+ 2 � 2: (10)

5The uninformative equilibrium refers to the equilibrium where the receiver�s action is based only on

her prior belief with probability 1.
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For a �nite number of intervals, substituting a0 = 0 and aJ = 1 we can solve the J

simultaneous equations with J unknown variables in (10) to obtain the exact equilibrium

partition that corresponds to certain , b and �nite J . From (10) we obtain the following

example for J = 3.

Example 1 Suppose that  = 1=2 and b = 0. Then the partitional strategy f[0; 3
7
); [3

7
; 4
7
); [4

7
; 1]g

supports a perfect Bayesian equilibrium.

Notice that the length of an interval is narrower as it becomes closer to 1
2
. This means

that a message from a sender whose type is closer to 1
2
enables the receiver to infer the

sender�s type more accurately.

Before discussing applications of the model, let us brie�y consider the issue of multiple

equilibria. As we have already discussed earlier unless anonymity is imposed to rule out

revelation of identities by assumption, there exist equilibria where a single or multiple

senders reveal their identities and play the standard information transmission game in the

CS model.

Even within the class of equilibria where all senders are anonymous, (10) can gener-

ate multiple equilibria. In particular, for any parameter values exists the uninformative

equilibrium where all senders messages are ignored and the receiver�s action is based only

on her prior. However, if we look for the equilibrium where the ex ante (i.e., before the

senders learn their types) expected utilities of the receiver and the senders are highest for

given n and b within the class, we can focus on the equilibrium that has the largest number

of intervals. CS have shown that this holds for the single sender case n = 1.

Proposition 2 Under anonymity/equal treatment in the uniform-quadratic setting, for
given b and n � 2, both the receiver and the senders are ex ante better o¤ in an equilibrium
with more intervals.

Proof. See Appendix I.

In the following we refer to the equilibrium with the largest number of intervals for

given parameter values as the "most informative equilibrium".

3.1 Most Informative Equilibrium

Let us consider the partition in the most informative equilibrium. To do so, we �rst solve

(10) with respect to aj explicitly using a0 = 0, and obtain

aj = �̂ +
a1 + 2�̂(1�  �

p
1� )

4
p
1� 

�
2�  + 2

p
1� 



�j
�a1 + 2�̂(1�  +

p
1� )

4
p
1� 

�
2�  � 2

p
1� 



�j
(11)
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Figure 2: Most informative equilibrium for �̂ � 0

where �̂ � 1=2� b
1� . We have

daj
da1

=


4
p
1� 

"�
2�  + 2

p
1� 



�j
�
�
2�  � 2

p
1� 



�j#
> 0; (12)

which implies that the equilibrium with J intervals is unique, since otherwise the boundary

types given by (11) contradict a0 = 0 and aJ = 0. By rearranging (11) and letting J !1,
we obtain

a1 ! 2�̂

�
1� 1�

p
1� 


�
� a�1:

Substituting a�1 into a1 in (11),

aj = �̂ � �̂
�
2�  � 2

p
1� 



�j
: (13)

Note that since

0 <
2�  � 2

p
1� 


< 1 for 0 <  < 1;

(13) gives a strictly increasing sequence that converges to the fully revealing type �̂. This

converging sequence constitutes a partition in [0; �̂). Let the sequence of aj�s obtained by

(13) be P0.

It remains to obtain the partition in (�̂; 1]. Let a0j be a decreasing sequence such that

a00 = 1. Solving (10) with a
0
0 = 1 and J !1, we have a strictly decreasing sequence that

converges to �̂

a0j = �̂ + (1� �̂)
�
2�  � 2

p
1� 



�j
. (14)

This sequence constitutes a partition of (�̂; 1] with an in�nite number of intervals. Let the

sequence obtained by (14) be P1. De�ne P � P0 [ P1 [ �̂. Clearly every boundary type in
P satis�es (9), and therefore the partition P supports the most informative equilibrium for

�̂ � 0 or equivalently b � 1
2(1�) . Let us summarize the above observations in the following:
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Proposition 3 Under anonymity/equal treatment in the uniform-quadratic setting, if the
fully revealing type exists on the type space (�̂ � 0) then there exists the unique equilibrium
with an in�nite number of intervals. The boundary types for the intervals are given by

(13) and (14) where  = 1=n.

From Proposition 2 the equilibrium identi�ed in Proposition 3 Pareto dominates all

the other equilibria for �̂ � 0. The equilibrium partition is depicted in Figure 2. We can

see that in the most informative equilibrium there are an in�nite number of intervals in

the neighbourhood of the fully revealing type �̂. The equilibrium partition also takes into

account both positive bias for types higher than �̂ and negative biases for types lower than

�̂. Hence the length of intervals is wider as they are away from �̂ and is narrower as they

are closer to �̂, which implies that sender types are more accurately inferred when they are

closer to the fully revealing type.

Figure 2 also indicates that weak response to a message has just as important impli-

cations for the nature of information transmission as intrinsic bias b, which has been the

centre of attention in the cheap talk literature. In particular, as long as b is not too large

the fully revealing type exists under a wider range of parameters, and this can change the

structure of informative equilibria substantially, compared with CS and many models of

information transmission where the sole source of informational distortion is intrinsic bias.

Our construction of the equilibrium with an in�nite partition has been heuristic, but

Gordon (2006) provides a general equilibrium characterization of a large class of cheap talk

games that includes the uniform-quadratic setting of our model as a special case. However,

due to its generality his paper provides little guidance as to the nature of the equilibrium

partition. Our interest here is to study how the nature of the characterized equilibrium

changes according to the parameter values. The following proposition follows directly from

CS, where there is no fully revealing type and n = 1. We can easily extend their result to

n � 2 if there is no fully revealing type on the type space (�̂ < 0).

Proposition 4 (CS) Under anonymity/equal treatment in the uniform-quadratic setting,
if �̂ < 0 then the number of intervals in any equilibrium partition is �nite. Moreover the

largest number of intervals supported in equilibrium is non-increasing in b.

Proof. See Lemma 1 and Lemma 6 in CS. Since yS(�) 6= yR(�; ) for all � 2 [0; 1] and
(12) implies that their monotonicity condition (M) is satis�ed, we can directly apply the

Lemmas for any n � 1.

If �̂ < 0 any type of sender is only positively biased because yS(�) > yR(�; ) for all

� 2 [0; 1]. This is the case if b is high, or n is low. In Figure 1 if yS moves upwards further
(for higher b) �̂ disappears and yS is consistently higher than yR. Therefore any informative

equilibrium partition must be such that the length of intervals is longer for higher �, as in

the right hand side of the partition shown in Figure 2.
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3.2 Public Good Provision and Binary Choice

Before examining the interaction between two types of informational distortion caused by

intrinsic bias b and weak response, let us consider the public good provision setting where

b = 0, so that we can focus on informational distortion caused by weak response. If b = 0

we have �̂ = 1=2 and as we can see in Figure 2 for any n the most informative equilib-

rium features an in�nite partition. How do the characteristics of the most informative

equilibrium change when the number of agents n increases or decreases? Since

2�  � 2
p
1� 



in (13) and (14) is increasing in  (= 1=n) for any 0 <  � 1 (n � 2), (13) and (14) imply
that as n increases, every boundary type except for a0 = 0 and a00 = 1 becomes closer

to �̂ = 1=2. Intuitively, as the number of agents becomes larger the intervals in the most

informative equilibrium are more concentrated around the fully revealing type �̂ = 1=2

because there are more incentive to "exaggerate" types and messages from sender types

away from 1=2 become less and less precise. In particular, as n!1, we have a1; a01 ! 1=2:

as the number of agents goes to in�nity the most informative equilibrium converges to the

equilibrium with two intervals. Consequently, even if the decision maker and the agents

play the equilibrium with an in�nite number of intervals, the probability that each agent

induces either �y(0; a0) or �y(a01; 1) may be close to 1. Therefore communication may look

as if each agent faces a binary choice of message although other actions are induced with

small but positive probabilities.

Note that solving (10) for a0 = 0 and a2 = 1 we obtain the equilibrium with two intervals

f[0; 1=2); [1=2; 1]g for any n. When an agent can induce one of only two expected reactions
�y(0; 1=2) and �y(1=2; 1) the informational distortion caused by weak response does not play

a role in his incentive to reveal, since a binary choice of message completely invalidates the

agents�incentive to "exaggerate" their preferences. This is intuitive because when there

are only two alternatives one�s choice does not re�ect how "strongly" he prefers one to the

other.

Proposition 2 implies that the equilibrium with two intervals can never be welfare

maximizing when b = 0, but Figure 3 suggests that when the number of agents is larger

the loss from playing this equilibrium as opposed to the most informative one (with an

in�nite partition) can be very small. In Figure 3 the number of agents is on the horizontal

axis and an agent�s expected utility is on the vertical axis. We can see that the di¤erence

between the expected utility in the equilibrium with an in�nite partition and the expected

utility in the equilibrium with only two intervals diminishes as n becomes larger.6 The

6We can also do a similar calculation for EUR and con�rm that the di¤erence between EUR with the

in�nite partition and EUR with the binary partition diminishes as n becomes larger.
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Figure 3: Receiver�s expected utility per sender (= sender�s expected utility) when b = 0.

diminishing di¤erence implies that less is lost by playing the binary choice equilibrium,

since messages in the most informative equilibrium become less precise due to the severer

incentive to "exaggerate". This might explain why giving each person a "choice between

the two" (such as "yes or no" or "agree or disagree") is very common when many people

are involved in a decision that a¤ects them, even if neither the preferences nor the decision

made after communication is binary.7 Such an equilibrium has a much simpler structure

but approximates the most informative equilibrium when the number of agents is large.

3.3 Large Intrinsic Bias

Let us consider for what value of b an informative equilibrium can be supported. As we

have noted, in an informative equilibrium with strictly positive probability the receiver

takes a di¤erent action from the one based only on her prior belief. Thus the equilibrium

with the partition f[0]; (0; 1]g is not informative because the probability that the type of
any senders is � = 0 (and the receiver�s action is chosen accordingly) is 0. The equilibrium

7The equilibrium with two intervals can be played by letting the senders report one of only two messages,

such as "yes" and "no", if we appropriately specify the message spaceM and o¤-the-equilibrium beliefs. Of

course the same equilibrium can also be played through many more messages if some of them are randomly

sent to induce yS(0; 1=2) and the others induce yS(1=2; 1).
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with the partition f[0; a); [a; 1]g such that a 2 (0; 1) is informative. Suppose that at least
one informative equilibrium exists for b 2 [0;�b). From Proposition 4 the largest number of

intervals �J is non-increasing in b. Therefore, in order to �nd �b it su¢ ces to consider the

condition under which the equilibrium with two non-degenerate intervals can be supported.

By solving (10) for a0 = 0, a2 = 1, we obtain a1 = 1
2
� 2b

2� . In order for this equilibrium

to be supported it must be that a1 > 0, which implies

b < �b =
2� 
4

=
1

2
� 1

4n
. (15)

In the uniform-quadratic case of CS it has been shown that an informative equilibrium with

at least two non-degenerate intervals exists for all b 2 [0; 1=4), which can be con�rmed
here by letting n = 1. (15) indicates that by introducing anonymity the possibility of

informative communication can be extended beyond b = 1=4. From (15) we have that
�b ! 1=2 as n ! 1. As we will discuss shortly, this property leads to another important
result of this paper. Not only may anonymity change the structure of informative equilibria,

but it may also enhance information transmission when b is large.

A wider possibility of information transmission when b is large comes from the fact

that anonymity makes the receiver�s response to a message weaker. In order to get some

intuition, consider Figure 1 again. If n = 1, the receiver�s reaction for �, yR(�; 1), is given

by the 45 degree line. When the number of senders becomes larger under anonymity,

yR(�; ) rotates around � = 1=2 clockwise and its slope becomes less steep. The change

in the receiver�s response makes the vertical distance between the sender�s desired action

yS(�) and the receiver�s reaction yR(�; ) smaller (and disappear at �̂) especially for lower

types. The narrowing distance means that both parties�interests are less incongruent and

this may encourage information revelation. Thus, for a large value of b, weak response to

the message due to anonymity/equal treatment works as if it mitigates intrinsic bias.

3.4 When Should Communication be Anonymous?

In many situations where people communicate anonymously, they could have revealed

identities if they wished to. Therefore it is natural to ask when they opt for anonymous

communication. Here we show that both parties prefer to communicate anonymously (or

commit to equal treatment) when intrinsic bias between the receiver and each sender is

large but not too severe.

Let us focus on the most informative equilibrium for given b, and consider when anony-

mous communication is more desired than direct one-to-one communication. Note that

without anonymity or equal treatment the information transmission between the receiver

and sender i in our model is equivalent to the single sender game in CS, which is represented

by the case where n = 1 in our model. When n � 2 and communication is anonymous

Proposition 3 and (15) imply that the most informative equilibrium involves an in�nite
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Figure 4: Receiver�s normalized expected utility in the most informative equilibrium

number of intervals for b � 1
4
and communication is informative up to b < 2�

4
= 1

2
� 1

4n
.

Hence, if b 2 [1
4
; 1
2
� 1
4n
); information transmission can occur even if messages are completely

uninformative without anonymity. Also, we can see that the more senders there are, the

larger the intrinsic bias can be for information transmission (and welfare improvement) to

occur in equilibrium.

The comparison among the most informative equilibria is shown in Figure 4. The

horizontal axis represents the bias b and the vertical axis represents the per sender expected

utility of the receiver (normalized by dividing by n). Let us look at the curves for the CS

model (n = 1) and anonymous communication for n = 2 where the receiver�s utility

function is given by UR = �(y1 � �1)2 � (y2 � �2)2. Note that the curve for CS becomes
�at for b � 1=4 = 0:25, indicating that communication is completely uninformative. Both
curves are identical for b � 3=8 = 0:385, where communication is uninformative also in

anonymous communication. Thus when b is too large anonymity is irrelevant to information

transmission and decision making. We can calculate that for n = 2 the receiver prefers

anonymous communication if b & 0:194. A similar graph can be drawn for the senders,

and they also prefer anonymous communication when b & 0:194. When the bias is large

but not too severe both parties can bene�t from anonymity. The other curve plots the

normalized expected utility for n = 3. We can see that compared with the case where
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n = 2 anonymity becomes less advantageous for b not very high but more advantageous

for b very high.

These welfare characteristics of anonymity are driven by the trade-o¤ between loss of

�exibility in the receiver�s action and information revelation. Imposing equal treatment

itself is costly because it prevents the receiver from choosing her action optimally for each

sender. This cost increases with the number of senders because the receiver�s action is less

likely to suit each sender�s type. Indeed we can see in Figure 4 that the normalized expected

utility under anonymity becomes lower as n becomes larger when b is low. However, when

b is very high, weak response as a result of equal treatment induces more information

revelation than in one-to-one communication and the bene�t of enhanced communication

may outweigh the cost of in�exibility. This is pronounced when the number of senders is

large, as we have seen in (15) and also by comparing the curves for n = 2 and n = 3.

4 General Setting

In the previous section we have focused on quadratic utility functions with uniformly dis-

tributed sender types, in order to illustrate the characteristics of information transmission

in anonymous communication or public good provision. In this section we show that some

of the important qualitative results extend to the general case.

Under anonymity/equal treatment, from a sender�s viewpoint his message induces a

distribution of the receiver�s action rather than a certain action. This makes the character-

ization of informative equilibria di¢ cult except for the uniform-quadratic case, for which

we can (as in the previous section) concentrate on the expected value of the receiver�s

action to study equilibrium strategies. On the other hand in the general setting we need

to take into account the entire distribution of the receiver�s action because the expected

utility is now a¤ected by higher moments. Because of this, preference over distributions of

the action, which is key in equilibrium characterization, cannot be determined in as simply

as above.8

Fortunately, however, as we will show below the equilibrium with two intervals can be

characterized by the "arbitrage" condition just as in the uniform-quadratic setting. We

focus on this equilibrium, and show that when the intrinsic bias is large anonymity/equal

treatment may improve information transmission also in the general setting. Using this

the result we also observe that in public good provision (b = 0), regardless of the number

of senders, there exists an informative equilibrium with two non-degenerate intervals.

8The argument using the �rst order stochastic dominance is invalid here because the utility function is

non-monotonic in the receiver�s action y. The equilibrium characterization provided by Gordon (2006) is

not applicable either because he assumes that the receiver�s reaction to a message is deterministic. The

receiver�s action is random also in Blume, Board and Kawamura (2007) but in their model the distribution

can have a much simpler structure for which the arbitrage condition is still valid.
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4.1 Equilibrium with Two Intervals

Let us review our general setting. Sender i�s utility is USi = U(yi; �i; b) and that of the

receiver is UR =
Pn

i=1 U(yi; �i; 0), where U11 < 0, U12 > 0, U13 > 0, and U1 = 0 for some

yi 2 R. In this section when we study communication under anonymity we simply assume
equal treatment y = y1 = y2 =; :::;= yn, since Proposition 1 says that in anonymous

communication the receiver�s best response can be represented by a scalar y 2 R.9 Each
sender�s type �i has a di¤erentiable i.i.d. distribution F with continuous density f on

[0; 1]. The distribution does not have to be uniform. However, we assume that the utility

functions and the type distribution are such that, if a sender and the receiver communicate

directly as in CS, any equilibrium partition satis�es their monotonicity condition (M).

The receiver�s best action given the messages she has received is given by

�y (a1j; a1j+1; a2j; a2j+1; :::; aij; aij+1; :::; anj; anj+1)

= argmax
y

nX
i=1

R aij+1
aij

U(y; �i; 0)f(�i)d�iR aij+1
aij

f(�i)d�i
(16)

where �y (a1j; a1j+1; a2j; a2j+1; :::; aij; aij+1; :::; anj; anj+1) is the receiver�s best response given

the posterior belief that sender i�s type �i 2 [aij; aij+1). Let Gi(y j �i 2 [a; a)) be the
distribution function of the receiver�s action from sender i�s viewpoint, conditional on the

receiver�s belief that the sender�s type (whose identity is may or may not be known) is in

[a; a).

Now let us characterize the informative equilibrium with two intervals. Let a be the

boundary type for a particular (symmetric) sender strategy f[0; a); [a; 1]g. If a = 0 the

lower interval is degenerate so that we denote this partition speci�cally by f[0]; (0; 1]g. The
receiver�s best response (16) implies that given the partitional sender strategy f[0; a); [a; 1]g
the receiver�s action conditional on all messages is a function of the number of senders whose

types are in the upper (or lower) interval. Let ~y(k j a) denote the receiver�s best response
given that k senders�types are in the upper interval [a; 1]. The probabilities that �i 2 [0; a)
and that �i 2 [a; 1] are given by F (a) and 1 � F (a), respectively. Hence the distribution
Gi(y j �i 2 [0; a)) has the probability mass function

g0(y) = 8<:
(n� 1)!

(n� 1� k)!k! (F (a))
n�1�k(1� F (a))k for y = ~y(k j a), k = 0; 1; :::; n� 1

0 for y 6= ~y(k j a)
9As a result, as long as we assume equal treatment whether or not the receiver knows the sender of a

message is irrelevant in deriving an equilibrium, even when we are primarily concerned with anonymous

communication.
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where g0(~y(k j a)) is the probability that y = ~y(k j a) from sender i�s viewpoint, conditional
on the receiver�s belief �i 2 [0; a). Note that n� 1 � k � 0 because the receiver�s action is
based on her belief that at least one sender�s type is in the lower interval [0; a). Similarly

the probability mass function g1 for Gi(y j �i 2 [a; 1]) is given by

g1(y) =8<:
(n� 1)!

(n� 1� k)!k! (F (a))
n�1�k(1� F (a))k for y = ~y(k + 1 j a), k = 0; 1; :::; n� 1

0 for y 6= ~y(k + 1 j a):

Since the receiver�s utility function is supermodular in y and �i, the best response given

by (16) implies that, for a given a, ~y(k j a) is strictly increasing in k. The more senders
are in the upper interval (a; 1], the higher the receiver�s action is. De�ne

V (0; a; �i; b) �
n�1X
k=0

(n� 1)!
(n� 1� k)!k! (F (a))

n�1�k(1� F (a))k � U(~y(k j a); �i; b) (17)

and

V (a; 1; �i; b) �
n�1X
k=0

(n� 1)!
(n� 1� k)!k! (F (a))

n�1�k(1� F (a))k � U(~y(k + 1 j a); �i; b): (18)

V (0; a; �i; b) is the expected utility of a sender whose type is �i when his message induces

Gi(y j �i 2 [0; a)). Likewise V (a; 1; �i; b) is the same sender�s expected utility when his
message induces Gi(y j �i 2 [a; 1]). The "arbitrage" condition requires

V (0; a; a; b) = V (a; 1; a; b),

which says that the sender with the boundary type �i = a is indi¤erent between inducing

the two distributions Gi(y j �i 2 [0; a)) and Gi(y j �i 2 [a; 1]).

Proposition 5 Suppose that a� 2 [0; 1] satis�es V (0; a�; a�; b) = V (a�; 1; a�; b). Then the
partition f[0; a�); [a�; 1]g supports a perfect Bayesian equilibrium.

Proof. See Appendix I.

Proposition 5 establishes that the informative equilibrium with two intervals in the

general setting is characterized by the "arbitrage" condition, as in the uniform-quadratic

setting we have studied earlier. In what follows we prove the existence of an equilib-

rium with two non-degenerate intervals by showing that there exists a� 2 (0; 1) such that
V (0; a�; a�; b) = V (a�; 1; a�; b).
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4.2 Anonymous Communication/Public Good Provision

Let b0 be the level of intrinsic bias such that at least one informative equilibrium exists for

all b 2 [0; b0) in communication with a single sender. A version of our Proposition 4 for the
general setting with n = 1 guarantees that b0 is well-de�ned.10 For the uniform-quadratic

setting we have seen that b0 = 1=4. The following proposition says that anonymity extends

the possibility of information transmission beyond b0.

Proposition 6 Suppose that n � 2. Under anonymity/equal treatment, there exists an

informative equilibrium with two non-degenerate intervals for b 2 [0; b0 + �(n)) such that
�(n) > 0. Moreover, �(n) is increasing in n. At least the receiver strictly prefers this

equilibrium to the uninformative one.

Proof. See Appendix I.

This Proposition has important implications for both anonymous communication and

communication in public good provision. First, anonymity has been shown to enhance

information transmission when the intrinsic bias is large in this general setting as well as

the uniform-quadratic case. In particular when b 2 [b0; b0+�(n)) the informative equilibrium
does not exist in the CS model of communication with a single sender but by introducing

anonymity in this multi-sender setting we can construct an informative equilibrium. The

fact that � is increasing in n implies that anonymity enhances communication especially

when both the intrinsic bias and the number of senders are large. In the uniform-quadratic

setting of the previous section, from (15) we have � = �b � 1=4 = n�1
4n
. As the number of

anonymous senders increases the receiver�s response to a message becomes weaker. This

encourages information revelation for senders with very low types. Despite their positive

intrinsic bias (b > 0) those senders may want to lower the receiver�s action by partially

revealing their types, because the receiver�s action may well be higher than their desired

actions due to the presence of other senders whose types are also likely to be much higher

than theirs.

Second, Proposition 6 says that in public good provision (b = 0) there exists an informa-

tive equilibrium with two intervals regardless of the number of senders n. In other words,

however serious the incentive to "exaggerate" caused by the presence of other senders is,

this does not completely eliminate the possibility of information transmission. That is, a

binary message is coarse but "robust" to this type of informational distortion. The intu-

ition is the same as in the uniform-quadratic setting: when one is given the choice of saying

only "yes" or "no" to a proposal he cannot express how strongly he feels for or against it.

Thus the incentive to "exaggerate" is irrelevant to the choice of message.

10See Lemma 6 in CS.

28



5 Conclusion

Are we more likely or less likely to tell the truth when we are anonymous than otherwise?

How is the provision of a public good determined when the decision maker cannot commit to

a mechanism and no monetary transfers are available? This paper has studied constrained

communication with multiple senders. We have o¤ered a �rst attempt to analyze anonymity

in cheap talk communication, and shown that under anonymity the receiver puts less weight

on an individual message in choosing her action, compared with situations where the

receiver and a sender communicate directly. Weak response to an individual message gives

rise to incentive to "exaggerate", which di¤ers qualitatively from the intrinsic preference

divergence between the receiver and each sender.

In the uniform-quadratic setting we have derived informative equilibria and also demon-

strated that anonymity/equal treatment may change the structure of informative equilibria

signi�cantly. In particular, there exists no fully revealing equilibrium even in the absence

of intrinsic bias, but there may exist a type of sender whose desired action coincides with

that of the receiver (in expected terms) even in the presence of such bias. The most in-

formative equilibrium may have an in�nite number of intervals, although it is not fully

revealing. The two types of informational distortion, one caused by the intrinsic bias and

the other caused by weak response to a message, may partly o¤set each other when the

intrinsic bias is large. We have argued that communicating parties may choose to ignore

the senders�identities or they may agree on introducing some anonymization device (such

as a third party who imposes anonymity) in order to enhance communication and welfare.

This holds much more generally than in the simple uniform-quadratic setting.

Some of the insights we have obtained for anonymous communication can be directly

applied to study communication in public good provision. As the number of agents becomes

larger the decision maker�s response to each individual message becomes weaker. This gives

the agents incentive to "exaggerate" their preferences as in anonymous communication.

When the decision maker is a utilitarian welfare maximizer the quality of communication

becomes inevitably lower as there are more agents who consume the public good. We have

also seen that as the number of agents becomes large the most informative equilibrium

converges to the equilibrium with two intervals, which can be played by each agent choosing

between only two messages. This might explain why the "choice between the two" is very

widely observed when many people are involved in a decision, even when the decision or

preference is not binary. This paper contributes to the literature on public good provision

by o¤ering an analysis of communication where the decision maker cannot commit to a

mechanism and no transfers are available, which seems relevant to a lot of practical stations,

including communication in political or regulatory relationships as well as decision making

within organizations.
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6 Appendix I: Proofs

6.1 Preliminaries to the Proof of Proposition 2

Before we prove the Proposition, we provide some useful lemmas and outline how we

construct the main proof. Let us call a sequence (a0; a1; :::; aJ) that satis�es the arbitrage

condition (9) a "solution" to (9). The monotonicity condition (M) in CS requires that, for

given  and b, if we have two solutions a+ and a++ with a+0 = a
++
0 and a+1 > a

++
1 , then

a+j > a
++
j for all j = 2; 3; ::: In other words, (M) says that starting from a0, all solutions

to (9) must move up or down together. As we have seen in (12), our uniform-quadratic

setting with 1 �  > 0 satis�es (M).
In order to show that the players� expected utility is higher in an equilibrium with

more intervals, CS deform the partition with J intervals to that with J + 1 intervals,

by continuously increasing the player�s expected utility throughout the deformation. We

follow this method, but we need to proceed by two step deformation, rather than one,

because the deformation takes place towards the opposite directions for the right-hand

and left-hand sides of �̂ on (0; 1]. Intuitively as the number of interval increases, the each

boundary type on the left hand side of �̂ move to the left (except for a0 = 0) while each

boundary type of the right hand side of �̂ move to the right (except for aJ = 1). We need

to perform a di¤erent comparative statics for each case.

Let a(J) be the equilibrium partition of size J . We show that a(J) can be deformed to

a(J + 1) by two steps, continuously increasing the players�expected utility in each step.

Here we consider the case where �̂ 2 (0; 1]. We omit the case where �̂ =2 (0; 1] because the
Proposition for this case can be proven similarly, by using the �rst deformation only.

Let the sub-partition of a(J) equal or below �̂ be a(J) � (a0(J); a2(J); :::; aK(J)) where
a0(J) = 0. Also, suppose that aK(J) is closer to �̂ than aK+1(J) is, in other words,

�̂ � aK(J) < aK+1(J)� �̂. In the following we proceed in two steps:

1. We �x aK(J) and make the sub-partition (aK(J); aK+1(J); :::; aJ(J)) deform contin-

uously to (aK(J); aK+1(J + 1); aK+2(J + 1); :::; aJ+1(J + 1)), increasing the expected

utility.

2. We make the sub-partition (a0(J); a1(J):::; aK(J)) deform continuously to (a0(J +

1); a2(J + 1); :::; aK(J + 1)), increasing the expected utility.

� If �̂�aK(J) � aK+1(J)��̂ then the �rst step deforms (a0(J); a1(J); :::; aK(J); aK+1(J))
to (a0(J+1); a1(J+1); :::; aK+1(J+1); aK+1(J)) while �xing aK+1(J), and the second

step deforms (aK+1(J); aK+2(J); :::; aJ(J)) to (aK+2(J +1); aK+3(J +1); :::; aJ+1(J +

1)). Except for this the same method and result as the case where �̂ � aK(J) <
aK+1(J)� �̂ apply.
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Lemma 1 If a(J) and a(J+1) are two equilibrium partitions for the same values of b and
, then aj�1(J) < aj(J + 1) < aj(J):

Proof. See Lemma 3 (p.1446) in CS. The proof follows directly from (M).

The �rst step of deformation is carried out as follows. Let (axK ; a
x
K+1; :::; a

x
j ; :::; a

x
J+1) be

the sub-partition that satis�es (9) for all j = K + 1; K + 2; :::; J with axK = aK(J), a
x
J = x

and axJ+1 = 1. If x = aJ�1(J) then a
x
K+1 = a

x
K = aK(J): If x = aJ(J + 1) then we have

(aK(J); aK+1(J +1); :::; aJ(J +1)), where (9) is satis�ed for all j = K+2; K+3; :::; J . We

are going show that, if x 2 [aJ�1(J); aJ(J + 1)], which is again a non-degenerate interval
by Lemma 1, then the sender�s expected utility is strictly increasing in x.

In the second step, let (az0; a
z
1; :::; a

z
j ; :::; a

z
K) be the sub-partition that satis�es (9) for

j = 1; 2; :::; K � 1; with az0 = 0 and azK = z. If z = aK(J) then azj = aj(J) for all

j = 0; 1; :::; K. If z = aK(J + 1) then azj = aj(J + 1) for all j = 0; 1; :::; K:. We will show

that when z 2 [aK(J + 1); aK(J)], which is again a non-degenerate interval by Lemma 1,
the sender�s expected utility is strictly decreasing in z.

Lemma 2 Suppose that (a0; a1; :::; aj; :::; aJ) is a solution to (9). Then for all j = 1; 2; :::; J�
1 if aj > (<)�̂ then aj � aj�1 < aj+1 � aj (aj � aj�1 > aj+1 � aj). If aj = �̂ then

aj � aj�1 = aj+1 � aj:

Proof. The sequences that satisfy (9) are described by (10). Rearranging (10) we have

(aj+1 � aj)� (aj � aj�1) =
4aj + 4b+ 2 � 2


� 4aj: (19)

The left hand side (aj+1 � aj)� (aj � aj�1) = 0 if

4aj + 4b+ 2 � 2


� 4aj = 0)

4aj(1� ) = �4b� 2 + 2)

aj =
1

2
� b

1�  � �̂:

Since the right hand side of (19) is increasing in aj, if aj > �̂ then (aj+1�aj)�(aj�aj�1) > 0;
and if aj < �̂ then (aj+1 � aj)� (aj � aj�1) < 0.

The above lemma says that an interval [aj+1; aj) is longer (shorter) than the previous

interval [aj�1; aj) when aj > (<)�̂. The intuition is captured in Figure 2. The following

Lemma is similar but cannot be implied by Lemma 2. Since by de�nition axK and a
z
K+1 are

�xed throughout the respective deformation, (9) is not satis�ed at aj = axK+1 or aj = a
z
K .

Lemma 3 axK+1 � axK < axK+2 � axK+1 and azK � azK�1 > azK+1 � azK .

31



Proof. From Lemma 2 we have axK+1 � ~aK < axK+2 � axK+1 where ~aK is de�ned such that
faj�1 = ~aK ; aj = axK+1; aj+1 = axK+2g satis�es (10). Since aK(J + 1) < ~aK < aK(J) = axK
from Lemma 1, we have axK+1�axK < axK+2�axK+1. This proves the �rst part of the Lemma.
Similarly we have azK � azK�1 � �aK+1 � azK where �aK+1 is de�ned such that faj�1 =

azK�1; aj = a
z
K ; aj+1 = �aK+1g satis�es (10). Lemma 1 implies azK+1 = aK+1(J+1) < �aK+1 <

aK+1(J). Hence we have azK � azK�1 > azK+1 � azK .

6.2 Proof of Proposition 2

� Sender

The receiver�s action from a sender�s viewpoint is a random variable, and since the

utility functions are quadratic, we can separate the expected value terms and the variance

terms. Let yi(mi) be the receiver�s (random) action from the sender�s viewpoint. The

sender�s utility in this separated form conditional of his report is given by

E
�
�(yi(mi)� (�i + b))2 j mi

�
= �var(yi(mi))� (Eyi(mi))

2 + 2(�i + b)Eyi(mi)� (�i + b)2

= �var(yi)� (Eyi(mi)� (�i + b))2; (20)

where from (5)

Eyi(mi) � yS(mi) =
1

n
E [�i j mi] +

n� 1
n

� 1
2
:

The variance term is independent of the sender�s message since the randomness is caused

by the other senders�messages unobservable to the sender. Let sender i�s expected type

given his message be âi(aj; aj+1). If a message is sent from �i 2 [aj; aj+1), then

âi =
aj + aj+1

2
.

From (4) the receiver�s action is the mean of all posterior expected types. Hence, from

sender i�s viewpoint

var(yi) = var

 
1

n

 X
l 6=i

âl + âi

!!
=
1

n2
var

 X
l 6=i

âl + âi

!
=
n� 1
n2

var(âi);

where var(âi) is the variance of the expected type of a sender given his equilibrium strat-

egy. The last equality follows from independent type distributions and symmetric sender

strategies. In what follows we drop the subscript i.

32



The expected utility for the �rst part of deformation is given by

EUS � �
KX
j=1

Z axj

axj�1

�
aj�1 + aj
2n

+
n� 1
2n

� b� �
�2
d�

�
J+1X

j=K+1

Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� �
�2
d�

�n� 1
n2

"
KX
j=1

(aj � aj�1)
�
aj�1 + aj

2

�2

+
J+1X

j=K+1

(axj � axj�1)
�
axj�1 + a

x
j

2

�2
� 1
4

#
:

It follows that

dEUS

dx
�

J+1X
j=K+1

daxj
dx

(
�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� axj
�2

� 1

n

"Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� �
�
d� +

Z axj+1

axj

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� �
�
d�

#

�
�
n� 1
2n2

(axj+1)
2 � (axj�1)2 +

(axj�1 + a
x
j )
2 � (axj + axj+1)2

2

��
:

For the �rst line we have11

�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� axj
�2

=
n� 1
2n2

(axj+1 � axj�1)(1� 2axj )�
b(axj+1 � axj�1)

n
+
(axj+1 � axj�1)(axj�1 � 2axj + axj+1)

4n2
:

Also for the second line,

� 1
n

"Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� �
�
d� +

Z axj

axj�1

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� �
�
d�

#

=
n� 1
2n2

�
(axj+1)

2 � (axj�1)2 � (axj+1 � axj�1)
�
+
b(axj+1 � axj�1)

n
:

11For j = K + 2;K + 3; :::; J � 1 we can use the fact that axj satis�es (9) or

�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� axj
�2
= 0

to simplify the calculation, alhtough later exposition will become more complex because this does not

apply to j = K.
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Hence, all terms in the curly brackets can be written

�
�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� axj
�2
+

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� axj
�2

� 1
n

"Z axj

axj�1

�
axj�1 + a

x
j

2n
+
n� 1
2n

� b� �
�
d� +

Z axj+1

axj

�
axj + a

x
j+1

2n
+
n� 1
2n

� b� �
�
d�

#

�n� 1
2n2

�
(axj+1)

2 � (axj�1)2 +
(axj�1 + a

x
j )
2 � (axj + axj+1)2

2

�
=

axj+1 � axj�1
2n

�
axj�1 � 2axj + axj+1

2

�
> 0:

The inequality follows because from Lemmas 2 and 3, we have aj � aj�1 < aj+1 � aj )
axj�1 � 2axj + axj+1 > 0 for all j = K + 1; K + 2; :::; J . We have

daxj
dx
> 0 by (M). It follows

that
dEUS

dx
�

J+1X
j=K+1

daxj
dx

�
axj+1 � axj�1

2n

�
axj�1 � 2axj + axj+1

2

��
> 0:

We have the second part of deformation as follows:

dEUS

dz
�

KX
j=1

dazj
dz

(
�
�
azj�1 + a

z
j

2n
+
n� 1
2n

� b� azj
�2
+

�
azj + a

z
j+1

2n
+
n� 1
2n

� b� azj
�2

� 1

n

"Z azj

azj�1

�
azj�1 + a

z
j

2n
+
n� 1
2n

� b� �
�
d� +

Z azj+1

azj

�
azj + a

z
j+1

2n
+
n� 1
2n

� b� �
�
d�

#

�n� 1
2n2

�
(azj+1)

2 � (azj�1)2 �
(azj�1 + a

z
j)
2 � (azj + azj+1)2

2

��
=

KX
j=1

dazj
dz

�
azj+1 � azj�1

2n

�
azj�1 � 2azj + azj+1

2

��
< 0:

The inequality follows because
dazj
dz
> 0 by (M), and from a0; a1; :::; aK � �̂ and Lemmas 2

and 3 we have aj � aj�1 > aj+1 � aj ) azj�1 � 2azj + azj+1 < 0 for all j = 1; 2; :::; K.
Since we have completed the deformation from a(J) to a(J + 1) by two steps while

increasing the expected utility, we conclude that the sender�s expected utility is higher in

an equilibrium with more intervals.

� Receiver

Since the receiver�s utility is the sum of the senders�utilities without bias (b = 0), we

can apply the above result for a sender�s expected utility directly to show that the receiver�s

expected utility is higher with an equilibrium with more intervals. Q.E.D.
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6.3 Proof of Proposition 5

Recall that a� satis�es V (0; a�; a�; b)� V (a�; 1; a�; b) = 0. De�ne

A(�i) � V (0; a�; �i; b)� V (a�; 1; �i; b):

A(�i) is the di¤erence between the expected utilities of the sender with �i when his message

induces Gi(y j �i 2 [0; a�)) and Gi(y j �i 2 [a�; 1]), respectively. Note that ~y(k + 1 j a�) >
~y(k j a�) for any k. Since U12 > 0, from (17) and (18)

@

@�i
V (0; a�; �i; b) <

@

@�i
V (a�; 1; �i; b):

Hence in terms of A(�i) we obtain
dA(�i)

d�i
< 0: (21)

By de�nition A(a�) = 0. Thus (21) implies that the sender with �i < a� strictly prefers

to induce Gi(y j �i 2 [0; a�)), while the sender with �i > a� strictly prefers to induce

Gi(y j �i 2 [a�; 1]). The receiver�s best response is implied in these distributions. Therefore
the partition f[0; a�); [a�; 1]g supports a perfect Bayesian equilibrium. Q.E.D.

6.4 Proof of Proposition 6

Let us �rst de�ne b0 formally. Let �y(a; a) be the receiver�s best response when her belief is

such that � 2 [a; a). CS have shown that an informative equilibrium cannot exist for b � b0

in communication with a single sender (n = 1 in our model), where the critical value b0 is

given by the following condition

U(�y(0; 1); 0; b0) = U(�y(0; 0); 0; b0): (22)

This condition says that the sender with the lowest type � = 0 is indi¤erent between

being fully revealed and being completely disguised. From the assumptions on the utility

functions it is easy to see that �y(0; 1) > �y(0; 0) and thus U(�y(0; 1); 0; b) > U(�y(0; 0); 0; b)

for all b > b0.

For notational convenience let us de�ne

B(a; b) � V (0; a; a; b)� V (a; 1; a; b):

B(a; b) is the di¤erence between the expected utilities of the sender on the cut-o¤ point a

(�i = a) when his message induces Gi(y j �i 2 [0; a)) and Gi(y j �i 2 [a; 1]), respectively.
The "arbitrage" condition implies B(a; b) = 0.

The rest of the proof proceeds as follows. We �rst show that B(0; b) > 0 and then

B(1; b) < 0, for all b 2 [0; b0]. Since B(a; b) is shown to be continuous on [0; 1], by
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the intermediate value theorem there exists a� 2 (0; 1) such that B(a�; b) = 0. Also by

continuity an informative equilibrium exists for all b 2 [0; b0 + �) at least with some � > 0.
That � is increasing in n is proven similarly.

Suppose that a = 0 and �i = a = 0. Recall that ~y(k j a = 0) is the receiver�s best

response when she believes that k senders�types are in the upper interval (0; 1]. Since the

senders�types are drawn from a continuous density function, almost surely all the other

senders types are in (0; 1]. That is, if he induces Gi(y j �i 2 [0; 1)) the receiver�s action is,
almost surely, ~y(n � 1 j a = 0), and if he induces Gi(y j �i = 0) the receiver�s action is,

almost surely, ~y(n j a = 0). Hence

V (0; a; �i; b) = V (0; 0; 0; b) = U(~y(n� 1 j a = 0); 0; b)

and

V (a; 1; �i; b) = V (0; 1; 0; b) = U(~y(n j a = 0); 0; b):

From (16) we have ~y(n j a = 0) = �y(0; 1), which says that the action in the uninformative
equilibrium is the same for both CS and anonymous communication. (16) also implies

~y(0 j a = 0) = �y(0; 0): the action when �i = 0 for all i = 1; 2; :::; n and the action in CS

where � = 0 are the same too. Since ~y(k j a) is increasing in k,

�y(0; 0) = ~y(0 j a = 0) < ~y(n� 1 j a = 0) < ~y(n j a = 0) = �y(0; 1): (23)

Suppose that b = b0. By de�nition the sender is indi¤erent between �y(0; 0) = ~y(0 j a = 0)
and �y(0; 1) = ~y(n j a = 0). By strict concavity of the utility function, the sender is strictly
better o¤ with ~y(n� 1 j a = 0) than ~y(n j a = 0). Hence

V (0; 0; 0; b0) = U(~y(n� 1 j a = 0); 0; b0) > U(~y(n j a = 0); 0; b0) = V (0; 1; 0; b0):

The assumption U13 > 0 implies U(~y(n � 1 j a = 0); 0; b) > U(~y(n j a = 0); 0; b) for

b 2 [0; b0]. Therefore, B(0; b) = V (0; 0; 0; b)� V (0; 1; 0; b) > 0 for all b 2 [0; b0].
Suppose on the contrary that �i = a = 1. The receiver�s action is, almost surely,

~y(0 j a = 1) if he induces Gi(y j �i 2 [0; 1)) and ~y(1 j a = 1) if he induces Gi(y j �i = 1).
Suppose that b = 0. The sender strictly prefers ~y(1 j a = 1) to ~y(0 j a = 1) since from

(16) his desired action is ~y(n j a = 1) and this implies that the sender�s utility is strictly
increasing for all y < ~y(n j a = 1). Equivalently, we have

V (0; 1; 1; 0) = U(~y(0 j a = 1); 1; 0) < U(~y(1 j a = 1); 1; 0) = V (1; 1; 1; 0):

This and U13 > 0 imply U(~y(0 j a = 1); 1; b) < U(~y(1 j a = 1); 1; b), and therefore

B(1; b) = V (0; 1; 1; b)� V (1; 1; 1; b) < 0 for all b � 0.
Since U and f are assumed to be di¤erentiable (16) implies that ~y(a; k) and consequently

B(a; b) are continuous on a 2 [0; 1]. Therefore, by the intermediate value theorem there
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exists a� 2 (0; 1) such that B(a�; b) = 0. From Proposition 5 f[0; a�); [a�; 1]g supports a
perfect Bayesian equilibrium. Moreover, by continuity there exists �0 > 0 and B(0; b0+�0) =

0. Therefore we have established that an informative equilibrium with two non-degenerate

intervals exists for all b 2 [0; b0 + �0).
Suppose n0 > n and de�ne b00 � b0 + �0. As above we have B(0; b00) = 0 when there

are n senders, which implies a sender with �i = 0 is indi¤erent between ~y(n � 1 j a = 0)
and ~y(n j a = 0). However, when there are n0 senders, inducing Gi(y j �i = 0) leads to

~y(n0 � 1 j a = 0) and we have ~y(n0 � 1 j a = 0) > ~y(n � 1 j a = 0). On the other hand
inducing Gi(y j �i 2 [0; 1)) leads to ~y(n0 j a = 0) = ~y(n j a = 0). Hence we have

~y(n� 1 j a = 0) < ~y(n0 � 1 j a = 0) < ~y(n0 j a = 0) = ~y(n j a = 0) = �y(0; 1).

By strict concavity the sender strictly prefers ~y(n0 � 1 j a = 0) to ~y(n0 j a = 0), so that

he induces Gi(y j �i = 0) and we have B(0; b00) > 0. It is easy to observe formally that

when there are n0 senders we have B(0; b00) > 0 and B(1; b00) < 0 using the same method as

above, and the rest of the argument follows immediately. Hence when there are n0 senders

there exists an informative equilibrium for b 2 [0; b0 + �00), and �00 > �0.
The receiver strictly prefers the equilibrium with two intervals to the uninformative

equilibrium, since the receiver�s expected utility maximization (16) guarantees that condi-

tional on any combination of messages in the informative equilibrium her expected utility

is higher. Q.E.D.

7 Appendix II: Formal Relation to Noisy Communi-

cation

As we have discussed brie�y in the main text the receiver�s response to a message may

become weaker when some noise is introduced in communication too. In particular, a class

of equilibria identi�ed by Blume, Board and Kawamura (2007) in their uniform-quadratic

setting has a similar structure to the one we have seen for anonymous communication and

public good provision, although the similarity applies only to the class described below.

Consider communication between a single sender and receiver, whose utility functions

are �(y� �� b)2 and �(y� �)2 respectively. As above � is uniformly distributed on [0; 1].
Blume, Board and Kawamura (2007) introduce noise in communication as follows: the

sender observes the value of �, and then sends a message m 2 [0; 1]; with probability 1� q
the receiver observes the message m sent by the sender; otherwise with probability q the

receiver observes a message m0 that is uniformly distributed on [0; 1]. Finally, the receiver

chooses action y 2 R:
Suppose that the sender�s strategy is such that if � 2 [aj�1; aj) he randomizes his

message uniformly over [aj�1; aj). Let mR be the message the receiver observes and mR 2
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fm0;mg. Note that with this sender strategy, upon receiving a message the receiver cannot
update her belief on whether the received message is noise (mR = m0) or comes from the

sender himself (mR = m), since a message is drawn from the same uniform distribution in

both cases. From the receiver�s viewpoint the received message is informative about the

sender�s type only with probability 1 � q. Therefore the receiver�s best response is given
by

yR(mR) = (1� q)E [� j mR = m] + q
1

2
;

where E [� j mR = m] is the conditional expectation of � given that the received message

is from the sender himself. From the sender�s viewpoint we have

yS(m) = (1� q)E [� j m] + q
1

2
: (24)

Clearly the receiver�s reaction from the sender�s viewpoint has a common feature to that of

anonymous communication or equal treatment we have seen in (5). This implies that, using

(10), the structure of equilibria with this type of sender strategy in noisy communication

can be studied just in the same way as we did for anonymity/equal treatment in the main

text. In particular, the noise can be introduced to enhance information transmission when

the intrinsic bias b is large.

However, in Blume, Board and Kawamura (2007) the simple form of the receiver�s best

response (10) applies only to the class of equilibria described above. There are many other

types of equilibria in their model and they obtain their strongest welfare result with a

(less straightforward) sender strategy where the receiver can update her belief on whether

mR = m0 or mR = m.
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