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Abstract

The buyer of a homogeneous input employs split-award contracting to divide his input
requirements into two contracts that are awarded to different suppliers.  The buyer uses a
sequential second-price auction to award a larger primary contract and a smaller secondary
contract.  With a fixed number of suppliers participating in the auctions, we find that the buyer
pays a higher expected price than with a sole-source auction.  The premium paid to the winner
of the secondary contract must also be paid to the winner of the primary contract as an
opportunity cost of not winning the secondary contract.  With fixed costs of participating in the
auction, we identify the conditions under which a secondary contract can increase the number
of suppliers and lower the expected price paid by the buyer.  An optimal secondary contract
can internalize the cost reductions from the new industry capacity and extract the rents of the
suppliers.  An optimal secondary contract can be particularly beneficial when the number of
suppliers is limited by high fixed costs.

                                                
*  We acknowledge support from the TMR Network "The Evolution of Market Structures in Network Industries."
We appreciate many comments from a number of our colleagues, particularly Roberto Burguet and Keith
Waehrer.  We also appreciate the comments from the participants in various workshops where we have presented
earlier versions of this paper, particularly the Institute for Economic Analysis (CSIC), Barcelona, Spain and the
Economic Analysis Group at the U.S. Department of Justice.  Finally, two referees and two editors provided many
helpful suggestions.
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This paper examines split-award contracting in which a buyer divides the purchases of its

input requirements into two contracts that are awarded to two different suppliers in two separate

auctions.  Split-award contracts are a common procurement practice for inputs and components

used to produce final goods.1  For example, automobile manufacturers employ multiple suppliers for

various components of automobiles.2  Similarly, firms in the beverage industries contract with

multiple suppliers for cans and bottles.  In addition, corporate or government buyers often employ

auction mechanisms to award contracts for the inputs or components.  Split-award auctions have

also been employed by governments to privatize industries.  In some cases, the governments have

divided the markets and auctioned franchises to different suppliers.3  Split-award contracting raises

two interesting questions.  First, what are the implications for competition among the suppliers?

Second, what are the costs and potential benefits for the buyer?  In order to address these

questions, this paper proceeds in three parts.

In the first part of the analysis, we characterize the equilibrium expected price that a buyer

would pay if he employed sequential second-price auctions to award the primary and secondary

contracts to purchase his input requirements.  In the second part of the analysis, we examine how the

expected price is affected by the relative size of the primary and secondary contracts, the number of

suppliers participating in the auctions, and the cost distribution of the suppliers.  In the third part of

the analysis, we examine how an optimal secondary contract can induce entry by a new supplier and

result in a lower expected price paid by the buyer.

We consider a buyer with requirements for a homogeneous and divisible input, and three or

more potential suppliers of this input.  The buyer can hold a sole-source second-price auction for his

total input requirements.  Alternatively, the buyer can divide his input requirements into two

contracts, a larger primary contract and a smaller secondary contract, and then hold a separate

auction for each.  Prior to the auctions, the suppliers obtain independent private realizations on their

                                                
1 Corey (1978) discusses some cases of split-award contracts in a variety of industries.  See chapters 1-3.
Woodside and Vyas (1987) examine the purchasing strategies of six firms for eighteen industrial products.  The
firms employed split-award contracting for eight of the products.  Chapter 9 (pages 177-79) summarizes the
reasons for the split awards.
2 Smitka (1991) discusses subcontracting in the Japanese automobile industry.  See also McMillan (1990) and
Richardson (1993).
3 See McAfee and McMillan (1994) and Cramton (1997) for discussions of the FCC spectrum auctions.
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cost of producing the inputs from a known common distribution.  Assuming that the buyer awards

the contracts to two different suppliers, we derive the equilibrium bidding functions for second-price

sequential auctions of the two contracts.  The lowest cost supplier will win the larger primary

contract, and the second lowest cost supplier will win the smaller secondary contract.  However, the

equilibrium bid at any cost realization is higher for both the primary and the secondary contracts than

the bid for a corresponding sole-source contract.  As a result, the buyer pays a premium using a

split-award auction in that the expected price for the input requirements is higher than with a sole-

source second-price auction.

The exact nature of this premium provides some insights into the buyer's costs of using a

split-award auction.  Obviously, the premium includes the expected profit of the supplier winning the

secondary contract.  However, the premium is twice this expected profit because the supplier of the

primary contract must also receive the expected profit on the secondary contract.  This ensures that

the lowest cost supplier prefers to win the primary contract instead of the secondary contract.  In

other words, the expected profit on the secondary contract becomes an opportunity cost for any

supplier with the lowest cost and is incorporated into the bids on the primary contract.

One of the common arguments for split-award contracting is that the buyer can induce a

larger number of suppliers to compete for his input requirements.4  This can occur in our model

because split-award auctions can increase the expected profitability of suppliers.  With an optimal

secondary contract, the buyer may be able to simultaneously induce entry by an additional supplier

and lower the expected price.  Even with a premium over a sole-source auction, competition from

the additional supplier can generate an expected price lower than a sole-source auction without the

additional supplier.  Two effects account for this finding.  The first effect arises from the fact that an

additional supplier reduces the expected industry costs of producing the input requirements.  The

second effect arises from the fact that a sole-source auction will not eliminate the expected rents of

the existing suppliers.  The additional supplier would allow the buyer to internalize the cost reduction

and extract the rents of the existing suppliers, receiving both in the form of a lower expected price

                                                
4  This paper does not address several other arguments cited for the benefits of split-award contracting.  First,
split-award contracting may ensure the existence of an alternative supplier for the input requirements of the buyer
in the event that one supplier is unable to fulfill his contract in a timely fashion.  Second, split-award contracting
may enable the buyer to discipline the suppliers in the non-price dimensions of performance by adjusting the
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for the input requirements.  We show that this benefit from a split-award auction is more pronounced

when there are a small number of existing suppliers.

In Section 1, we briefly review the literature on second-sourcing, focusing primarily on the

papers dealing with split-award contracting.  In Section 2, we define the model.  In Section 3, we

characterize the equilibrium bidding functions for the auctions of the primary and secondary

contracts.  In Section 4, we show that expected price is higher with a split-award auction and

examine the behavior of this premium for different parameters of the model.  In Section 5, we

examine the expected profits of the suppliers.  We introduce fixed costs of participating in the

auctions and demonstrate the circumstances under which a split-award auction can increase the

number of suppliers.  In Section 6, we define the optimal secondary contract and show how it can

reduce the expected price for a wide range of participation costs.  We then provide an illustration of

the results in Section 7 and the intuition in Section 8.  Finally, we offer some concluding remarks in

Section 9.

1. Related Literature

Split-award contracting is one form of second-sourcing.  Second-sourcing has been used to

describe procurement practices in which a buyer authorizes an increase in the number of suppliers in

order to increase competition and reduce the price or cost.5  Second-sourcing has also been used to

describe procurement practices in which the buyer contracts with an initial supplier in one period but

then switches to a second supplier in a subsequent period in order to limit the monopoly rents of the

initial supplier.6  Split-award contracting differs from these other two forms of second-sourcing

                                                                                                                                                       
purchases between them or by creating some form of yardstick competition.  Third, split-award contracting may
increase the number of suppliers by reducing the risk associated with participating in the auctions.

5  In Rob (1986), a buyer finds it optimal to limit the size of an initial production contract to the developer of an
input and auction the remaining input requirements among other suppliers.  In Dasgupta and Spulber (1989/90)
and Auriol and Laffont (1993), second-sourcing reduces the costs of purchasing the input because the suppliers
have rising marginal costs of production.  In Dana and Spier (1994) and McGuire and Riordan (1995), a regulator
takes the place of the buyer and the benefit of second-sourcing is more competition and lower prices for
consumers.  See also Dick (1992).
6   In Anton and Yao (1987) the option of switching to a second source allows the buyer to limit the informational
rents of the incumbent on the initial production contract.  In Laffont and Tirole (1988), second-sourcing of a
production contract reduces the informational rents for the developer of the input, but undermines his investment
incentives. In Riordan and Sappington (1989), the buyer's option to use a second source for production of the
input can reduce the informational rents for the developer of the input and increase the probability that
production will occur.  See also Marshall, Meurer, and Richard (1994).
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because the buyer divides his simultaneous input purchases and directly or indirectly limits

competition among the potential suppliers.

The theoretical literature on split-award contracting originates with the work by Wilson

(1979) and Bernheim and Whinston (1986) on "share" or "menu" auctions.  Anton and Yao (1989

and 1992) build on these papers to examine split-award contracting when suppliers compete in a

menu auction for all or part of the buyer's input requirements.  Two suppliers submit bids for the

whole contract and fractions of the contract.  The buyer then selects the split that minimizes his costs

of purchasing the input requirements.  Sole-sourcing occurs when the buyer chooses one or the

other supplier to produce the total input requirements.

In their 1989 paper, Anton and Yao consider the case in which the suppliers know each

other's costs.  The equilibrium price of a sole-source auction would be the cost of production for the

higher cost supplier, and the lower cost supplier would win the auction earning rents equal to his cost

advantage over the higher cost supplier.  With diseconomies of scale in production (economies from

splitting production), Anton and Yao then show that split awards reduce the total production costs,

but increase the equilibrium menu bids and generate additional rents for the suppliers.  In particular,

both suppliers increase their sole-source bids to reflect the full cost reduction from split production.

The buyer chooses the cost-minimizing split of production, but pays a total price equal to the cost of

the higher cost supplier, plus the cost reduction from splitting production (relative to the cost of the

lower cost sole-source supplier).  Thus, the suppliers receive one rent from internalizing the cost

reduction and a second rent from the higher price that is also equal to the cost reduction.

The buyer's use of a menu auction allows the suppliers to offer the efficient split of the

production contracts.  However, the menu auction also allows the suppliers to collude tacitly and

raise the price to the buyer.  The anomaly is that menu auction increases the price paid by the buyer

precisely in the situation where splitting the production would lower costs.  The buyer has effectively

eliminated competition between the two suppliers by his inability to commit to a sole-source

auction.7

                                                
7  Anton and Yao (1992) generalize their 1989 paper to incorporate incomplete information about costs.  The
suppliers have private signals about their costs and there is a parameter C which measures diseconomies of scale
(C<1/2).  They examine equilibria in which 50/50 split awards arise for all realizations of costs.  Again, there must
be diseconomies of scale, but the low cost realization provides an upper bound on the highest price that could
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Our model differs substantially from the models of Anton and Yao.  The buyer explicitly

decides on the split of input production between the primary and secondary contract.  The

technology of production is constant returns so that the marginal cost is constant for each supplier.

Each contract is auctioned separately and competition is preserved by assuming that there are more

than two suppliers in the market.  The expected price paid by the buyer increases with a split-award

auction, but not because of any collusive effects or cost reductions from split production.  Instead,

the expected profit on the secondary contract becomes an opportunity cost for the suppliers in

bidding on the primary contract.  Thus, the suppliers bid less aggressively on both contracts and earn

the additional expected profit from the secondary contract on the primary contract as well as the

secondary contract.

The most closely related paper is Seshadri, Chatterjee, and Lilien (1991).  In this paper, a

buyer simultaneously auctions equal shares of his input requirements to a chosen number of

suppliers.  The buyer is not allowed to discriminate in the contract prices so the price for each

contract is set at the highest accepted bid (as in a first-price auction).  The authors make entry

endogenous by assuming that each potential supplier draws an opportunity cost of participating in the

auction from a common distribution.  Since the expected price for each contract increases when the

buyer increases the number of contracts awarded, the buyer can stimulate entry by awarding more

contracts.  The number of contracts that minimizes the expected price paid by the buyer depends on

the manner in which the distribution of opportunity costs among the potential suppliers shifts as the

number of entrants changes.8

Our model addresses the same tradeoff using a different specification for the split-award

decision, an alternative model of the auctions, and a simpler version of the entry costs. In our model,

the buyer chooses the relative size of two contracts, rather than the number of equal-size contracts.

Indeed, we find that equal-size split-award contracts are not optimal.  The two contracts are

                                                                                                                                                       
arise from an equilibrium split award.  Depending on the cost distribution, this price may be higher or lower than
the expected price from a sole-source auction.  But again, the split award with two suppliers provides a
mechanism for tacit collusion.
8  Gilbert and Klemperer (2000) have a model of rationing with an interpretation for split awards.  The buyer of an
input wants to ensure that two suppliers (one high cost and the other low cost) each make an investment which
will generate a positive probability of success, where success enables them to produce the input.  For certain
probabilities of success, the high cost supplier can be induced to make the investment at a lower expected price if
the production is split when both suppliers are successful.  In this model, the buyer retains the bargaining power
over the suppliers and the split award weakens the participation constraint for the high cost supplier.
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auctioned separately, and there is no constraint imposed by the buyer on the relationship between

the awarded prices.  In particular, we find that the expected price paid on the smaller secondary

contract is greater than on the larger primary contract.  Finally, we assume that the fixed costs of

participating in the auctions are known to suppliers and to the buyer.  In this way, we can fully

illustrate the conditions under which a split-award auction would increase the number of suppliers

and lower the expected price paid by the buyer.

2. The Model of a Split-Award Auction

The model is a three-stage game.  In the first stage, the buyer commits to a split between a

larger primary contract and a smaller secondary contract.  In addition, the buyer commits to a

sequential second-price auction for these two contracts in which the primary contract is auctioned

first and the winner of the primary contract cannot also win the subsequent auction for the secondary

contract.  In the second stage, potential suppliers decide simultaneously and independently whether

to incur a known fixed cost of participating in the auctions.  The suppliers only know the common

distribution of production costs for themselves and the other suppliers, so their decision is based on

the expected profits from participating in the auctions.  This stage will be discussed in Sections 5 - 8.

In the third stage, the suppliers that entered in the second stage decide what to bid for the contracts.

In making their bids, they know their cost which is realized independently from the common cost

distribution and they know the number of other suppliers participating in the auctions with costs

drawn from the same common cost distribution.  This stage will be examined in Sections 2 - 4 for a

given number of suppliers.   The distinguishing feature of the model is the buyer’s choice of the size

of the primary and secondary contracts in the first stage, taking into account how it will affect

competition and profits in the third stage and thus entry in the second stage.

The buyer has a value v for the total input requirements.  We assume that the value v is

sufficiently larger than the highest possible cost realization of the suppliers, so that the buyer would

not use a reserve price to reject bids within the range of feasible costs.  The input is homogeneous

and divisible so that it can be purchased from more than one supplier without any loss of productive

efficiency for the buyer. The buyer awards two contracts, a primary contract for the majority of the

input requirements and a secondary contract for the remainder.  Let α ≥  1/2 be the fraction of the

input requirements awarded to one supplier as the primary contract, and β = 1 - α ≤  1/2 be the
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remaining fraction awarded to a second supplier as the secondary contract.  We assume that the

buyer can commit to award only one contract to a given supplier.  Thus, the buyer cannot announce

a split-award auction and then award both contracts to the lowest cost supplier.  This commitment is

the essence of split-award contracting because otherwise the model would be equivalent to a sole-

source auction.  In addition, we assume that the lowest cost supplier who wins the primary contract

cannot re-contract with the winner of the secondary contract to produce the inputs for the secondary

contract.9

When there is a secondary contract, we assume that there are n > 2, risk neutral suppliers

competing to provide the input requirements of the buyer.  If there were only two suppliers, the

buyer would clearly use a sole-source auction to preserve competition to supply his input

requirements.  So when there is no secondary contract, we can allow n = 2.  We also assume that

there are constant returns in the production of the input.10  Thus, if c is the cost of producing the

entire input requirements for a supplier, then the cost of supplying the α-contract is α ·c, and the β-

contract is β ·c.

The buyer awards the contracts to the potential suppliers using a competitive bidding

procedure.  Specifically, we assume that the buyer holds two sealed-bid second-price auctions for

the two contracts in sequence, with the auction for the larger α-contract held first.  For simplicity,

we assume that the bids on the α-contract are not observed by the suppliers prior to submitting their

bids for the β-contract.  This sequential second-price auction need not be the optimal mechanism.11

However, it is equivalent to other standard auction procedures, in terms of both the expected

payments by the buyer and the award of the contracts to the suppliers.  In particular, any mechanism

yields the same expected outcome as this sequential second-price auction as long as all the suppliers

are risk neutral, their costs are independent, the α and β contracts are won respectively by the

                                                

9  This assumption ensures that split-award contracting actually occurs as intended by the buyer.  Presumably,
the buyer would realize that one supplier was producing all the inputs, and would have some recourse.  On a
technical level, the expected outcome of a negotiation between the lowest cost supplier and the second lowest
cost supplier over the price of supplying the inputs for the secondary contract would alter the bidding strategies
for the auctions in relatively complex ways.
10 If the marginal cost of production was increasing in the quantity produced, there would be an inherent
technological reason for splitting the input requirements into smaller contracts. This explanation for split awards
has already been explored by Dasgupta and Spulber (1989/90) and Auriol and Laffont (1993).
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lowest and the second lowest cost suppliers, and a supplier with the highest possible cost earns no

profit.12  In particular, this sequential second-price auction is equivalent to a simultaneous, non-

discriminatory unit price auction, where the potential suppliers bid unit prices, the lowest bidder

obtains the larger α-contract, the second lowest bidder obtains the smaller β-contract, and both

receive the unit price bid by the third lowest bidder.  Similarly, our results would apply if we

employed sequential first-price auctions.13

We assume that neither the buyer nor the other suppliers know the cost of any potential

supplier prior to either auction.  We also assume that the suppliers are symmetric in that each

supplier draws his cost of producing the entire input requirements from the same distribution G(c)

having a normalized support of [0,1].  Each supplier learns his cost prior to submitting a bid to the

buyer, but need not incur this cost unless he wins one of the two auctions.  Finally, we assume that

the cost of each supplier is independently distributed from the costs of the other suppliers.  Thus, the

auctions are held in the setting of symmetric independent private values for the costs of the suppliers.

Our basic results on the equilibrium bidding functions will be valid for the general distribution

function G(c) on the costs of suppliers.  However, we also define a convenient one-parameter family

of distribution functions G(c;t) in order to examine some comparative statics results over different

distributions within this family.  For t > 0, define G(c;t) = 1 - [1 - H(c)]t, where H(c) is some given

distribution function over the range [0,1].  The parameter t can be interpreted as the number of

independent draws from the cost distribution H(c) that each supplier receives in order to obtain his

lowest cost of producing the input requirements.  For most of the comparative static results and

examples, we will assume that H(c) is uniform so that H(c) = c.

The parameter t in G(c;t) shifts the probability of different cost realizations.  If t > 1, then

G(c;t) > G(c;1) ≡ H(c) and the probability of obtaining a cost lower than c is larger than under

H(c).  Similarly, if t < 1, then G(c;t) < G(c;1) and the probability of obtaining a cost lower than c is

                                                                                                                                                       
11 Within the class of ex post efficient mechanisms, optimality is guaranteed if the informational rents of the
buyers are extracted.  This will happen if the buyer chooses the optimal secondary contract (Section 6).
12  See Engelbrecht-Wiggans (1988) for the appropriate revenue equivalence theorem.
13  On the other hand, the expected payments would be affected if the order of the two auctions were switched,
i.e., β > α.  Since the lowest cost supplier may not win the primary contract, this change would increase the
productive inefficiency, reduce the expected profits of the suppliers, and increase the expected price paid by the
buyer.
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smaller.  Alternatively, consider the density function g(c;t) = t⋅[1-H(c)]t-1·h(c), where h(c) is the

density function corresponding to H(c).  When t increases, the probability of lower cost realizations

is higher, whereas the probability of higher cost realizations is lower. In other words, a distribution

with a higher t stochastically dominates (in the first-order sense) a distribution with a lower t.  For

convenience, we will refer to t as the capacity of each supplier and refer to T(n) = t·n as the

industry capacity.  With the family G(c;t), the distribution function for the lowest cost among all the

suppliers is G(c;T(n)) = 1 - [1 - H(c)]T(n). 14  Thus, a larger capacity t or a larger number of

suppliers n will lower the expected costs for both contracts.  This will be important when we

examine the impact of a split-award auction on entry and the expected price paid by the buyer.

3. The Bidding Strategies of Suppliers

The auction for the primary α-contract occurs before the auction for the secondary β-

contract.  For this reason, the bid of a supplier on the α-contract depends on the expected profit

from winning the β-contract.  The auction for the β-contract is a second-price auction among the (n-

1) suppliers who did not win the α-contract.  Recall that, in a sole-source second-price auction, the

dominant strategy for each supplier is to bid the true cost c.  Thus, for a supplier with cost c, the

probability of winning the auction for the β-contract is [1-G(c)]n-2.   In equilibrium, the expected

profit from the β-contract for a supplier with cost c, conditional on winning the β-contract, can be

expressed as

(1) πβ (c;α,n) = (1-α) · ( ) ( ) [ ]
[ ]∫ ⋅⋅

−
−⋅−⋅− −

−1 
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The normalized profit margin is (ξ - c), where ξ is the cost (and the equilibrium bid) of the second

lowest cost supplier from among the (n-1) suppliers bidding on the β-contract.  As such, ξ is the

equilibrium price in the second-price auction.  The other terms in the integral are the density of ξ ,

                                                

14 The specification of G(c;t) is not as special as it appears.  Waehrer and Perry (2001) have shown that G(c)
must take the form G(c;t) for some t and H(c) under very reasonable assumptions. The key assumption is that
the industry exhibits a form of constant returns to scale in that the distribution of the lowest cost draw among the
suppliers (the first order statistic) depends on T(n) only and not on n and t separately.
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where ξ is equivalently defined as the lowest cost from among the other (n-2) suppliers bidding on

the β-contract, conditional on c being the lowest cost of the supplier who wins the β-contract.  The

resulting expected profit must then be multiplied by β = 1 - α, which is the fraction of the input

requirements purchased by the buyer under the β-contract.

 Observe that πβ (c;α,n) is the opportunity cost of winning the α-contract.  This conditional

expected profit from the β-contract is the profit that a supplier would forego by winning the α-

contract.  By the monotonicity of the equilibrium bidding strategy, the supplier who wins the α-

contract would surely win the β-contract if it chose not to bid on the α-contract.  In a sole-source

auction (β=0), there would be no such opportunity cost, and thus no cost of bidding more

aggressively on the α-contract.  As such, a split-award auction should result in a higher equilibrium

price on the α-contract.

Now consider the expected profit from the α-contract.  Let b(c) be the normalized

equilibrium bidding function on the α-contract.  In order to solve for b(c), consider the optimal bid

of one supplier when the other suppliers are using the equilibrium bidding function based on their

realized costs.  This supplier may bid b(x) as if its cost x were above the true cost c.  This reduces

the probability of winning the α-contract, but ensures a higher profit margin after winning.  The

expected profit from the α-contract can be expressed as

(2) πα (x,c;α,n)  =  α · ( ) ( ) [ ] ϕϕϕϕ dgGncb n
x

⋅⋅−⋅−⋅− −∫ )()(11)( 2 1 

 
.

The normalized profit margin is b(ϕ) - c, where b(ϕ) is the equilibrium bid of the lowest cost supplier

from among the other (n-1) suppliers bidding on the α-contract, and thus the equilibrium price in the

second-price auction.  The integral is evaluated from a lower bound of x because this supplier wins

the α-contract whenever its bid b(x) is below the bid b(ϕ) of the lowest cost supplier from among

the other (n-1) suppliers.  The remaining terms in the integral are the density of the lowest cost ϕ

from among the other (n-1) suppliers.  Finally, the resulting expected profit must be multiplied by α,

which is the fraction of the input requirements purchased by the buyer under the α-contract.
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We can now express the total expected profit of a supplier in terms of its reported cost x ≥

c:

(3) π (x,c;α,n)  =  πα (x,c;α,n)  +  (n-1) ·G(x)·[1-G(c)] n-2 ·πβ (c;α,n).

The total expected profit is the expected profit from the α-contract defined by (2), plus the expected

profit from the β-contract.  The expected profit from the β-contract is the conditional expected

profit defined by (1), times the probability that the supplier will actually win the β-contract.  The

supplier will win the β-contract when (i) one of the other suppliers bids below b(x) for the α-

contract and thus has a cost below x, and (ii) the remaining (n-2) suppliers have costs above c (and

x), thereby losing both contracts.  The term (n-1) is simply the number of combinations that (i) and

(ii) can occur.

We can now state the following proposition about the equilibrium bidding function for the α-

contract.

Proposition 1:  The equilibrium bidding function for the α-contract is

(4a)    b(c;α,n) =  c  +  [1/α] · πβ (c;α,n)

(4b) =  c  +  [(1-α)/α] · θθ
d

cG
G

n

c
⋅





−
− −

∫
2

1 

 )(1

)(1
  .

Proof:  In a symmetric equilibrium with monotonic bidding strategies, it must be that a supplier with

cost c does not benefit from reporting a cost different from c and thus making a bid different from

b(c), given that the rest of the suppliers are bidding according to the monotone bidding function b(c).

Consequently, the equilibrium condition is
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Solving this equation for b(c), we directly obtain (4a).  The expression (4b) follows from integration

by parts.  QED

Proposition 1 states that the only symmetric and increasing equilibrium bidding strategy for a

supplier in the first auction for the α-contract is to bid its true cost, where cost now includes both the

actual production cost and the opportunity cost of losing the β-contract.16  As such, the bidding

strategy is a natural generalization of a sole-source second-price auction.

As assumed, the equilibrium bidding function b(c) is increasing with c.  This is true despite

the fact that the expected profit from the β-contract, conditional on winning, is decreasing with

higher costs.  The effect of a higher cost in supplying the α-contract dominates this effect from a

lower opportunity cost of losing the β-contract.

The equilibrium bidding function shifts downward when the number of suppliers n is

increased.  With more competition for the β-contract, the expected profit from the β-contract is

lower, even conditional on winning.  In addition, the equilibrium bidding function shifts downward

when the size of the α-contract is increased.  Thus conversely, the equilibrium bids on the primary

contract increase when the size of the secondary contract is increased.

The equilibrium bidding functions can be easily calculated for the one-parameter distribution

function G(c;t) defined in the previous section.  If we also assume that H(c) is uniform on the range

[0,1], then the equilibrium bidding function simplifies to

(4c) b(c;α,n,t)  =  c  +  [(1-α)/α]·{(1-c) / [t(n-2)+1]} .

                                                
15 In principle, this is only a necessary condition. However, it can be shown that it is also sufficient.  For example,
see McAfee and Vincent (1993).
16 Note that this strategy is not a dominant strategy.  The term [1/α] is simply a normalization because the
reported costs are the costs of producing the full input requirements.  Thus, the bid on the primary contract can
be expressed as α⋅b(c;α,n) = α⋅c + πβ .
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The bidding function clearly shifts downward as either the number of suppliers n or the capacity t of

each supplier increases.  When n is larger, more suppliers are drawing their costs from the same cost

distribution.  When t is larger, the same number of suppliers are drawing their costs from more

favorable cost distributions.  In either case, the probability of any one supplier winning either

contract is lower for any given cost c.  Thus, each supplier will bid more aggressively, and the

equilibrium bids must decline.

4. The Expected Price Paid by the Buyer

We can now define the expected prices (per unit of the input) that the buyer pays for the α-

contract, the β-contract, and the total input requirements.  Denote c1(n), c2(n), c3(n) as the

expected values of the first, second, and third lowest cost from the n suppliers.  Clearly, c1(n) <

c2(n) < c3(n).  The supplier with the lowest cost will win the α-contract, and the supplier with the

second lowest cost will win the β-contract.  The expected price paid by the buyer for the β-contract

is simply the expected value of the third lowest cost c3(n).  The expected price paid by the buyer for

the α-contract is the expected value of the equilibrium bidding function in (4a) integrated over the

distribution of the second lowest cost from among the n suppliers.  The expected price paid by the

buyer for his total input requirements is the weighted average of the expected prices on the two

contracts.  These expected prices can be expressed as follows:

(5a) EPβ (n)  =  c3(n)  ,

(5b) EPα (α,n)  =  ∫
1   

0   
b(c;α,n)·n·(n-1)·G(c)·[1-G(c)] n-2 ·g(c)⋅ dc ,

(5c) EP(α,n)  =  α ·EPα (α,n)  +  (1-α) ·EPβ (n) .

Substituting in the equilibrium bidding function and integrating by parts yields the following

proposition.
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Proposition 2:  The expected price for the total input requirements is given by

(6a) EP(α,n) = α ⋅ {c2(n) + [(1-α)/α] ⋅[c3(n) - c2(n)]} + (1-α)⋅ c3(n) ,

(6b) =  (2α − 1) · c2(n)  +   2⋅(1-α) · c3(n) ,

(6c) =  c2(n)  +  2⋅(1-α)⋅[c3(n) - c2(n)] .

Expression (6a) makes it clear that the expected price paid on the primary contract is less than the

expected price paid on the secondary contract for α  > 1/2.  The reason for the difference in

expected prices is that the α-contract is larger than the β-contract.  As a result, the opportunity cost

[c3(n) - c2(n)] decreases as it is re-normalized by [(1-α)/α] < 1.17  Expression (6b) makes it clear

that the expected price is a linear combination of c2(n) and the expected price c3(n) on the

secondary contract.  Expression (6c) makes it clear that the expected price is linearly decreasing in

α from EP(1/2,n) = c3(n) to EP(1,n) = c2(n).18

Consider now the difference between the expected price with a split-award auction and a

sole-source auction defined as ∆(α,n) = EP(α,n) – EP(1,n).  The function ∆(α,n) is the expected

premium that the buyer must pay when he chooses to employ a split-award auction.  This premium

follows directly from expression (6c) in Proposition 2:

(7) ∆(α,n)  =  2⋅(1-α)⋅[c3(n) - c2(n)] .

                                                
17  The fact that the contracts are not awarded simultaneously at a uniform price is only a necessary condition for
this difference in the expected prices.  If the two contracts were identical, as in Seshadri, Chatterjee, and Lilien
(1991), the expected prices would also be equal in our sequential auctions.
18  Burguet and Sakovics (1997) examine a model of sequential auctions in which bidders are uncertain at the time
of the first auction whether the second auction will occur.  Under these circumstances, the selling price of
identical goods auctioned sequentially decreases over time.  These results are analogous to the increasing prices
in this sequential procurement auction.  Thus, the expected price for the total input requirements is lower when
the secondary contract is smaller.  If the buyer could induce the suppliers to undervalue the secondary contract
as γ < 1-α, then it is easy to show that the expected price becomes EP(γ ) = c2(n) + (1-α + γ)⋅[c3(n) - c2(n)].  As γ
declines, the expected price also declines.
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This premium has a natural interpretation.  When the buyer creates the β-contract, the

second lowest cost supplier will win the contract at a price equal to the third lowest cost, with an

expected value of c3(n).  Since the expected price in a sole-source auction would have been the

expected value c2(n) of the second lowest cost, the expected premium from the β-contract covering

(1-α) of the buyer's input requirements is simply (1-α)⋅[c3(n) - c2(n)].  This half of the total premium

is the expected profit for the supplier who is awarded the β-contract.  However, the total premium

that the buyer must pay is twice this amount.  The reason is that the expected profit on the β-

contract is an opportunity cost of winning the α-contract.  Thus, the bid of the second lowest cost

supplier for the α-contract must also be higher to reflect this expected profit on the β-contract.  In

the second-price auction for the α-contract, the bid of the second lowest cost supplier determines

the price at which the contract is awarded.  Thus, the premium that the buyer must pay in a split-

award auction is twice the expected profit of the supplier winning the β-contract.19

The behavior of the premium with respect to the number of suppliers n and the capacity t

can be investigated using the distribution function G(c;t) with H(c) uniform on [0,1].  In this case, the

bidding function b(c) from (4c) is linear in c, so that the expected price paid by the buyer in the

auction for the α-contract is simply the equilibrium bid evaluated at the expected value of the second

lowest cost from all n suppliers.  Let c1(n,t), c2(n,t) and c3(n,t) denote the expected value of the

first, second and third lowest costs from the distribution G(c;t) with H(c) uniform on [0,1].  The

derivation of these expressions is contained in Appendix 1.  All three expressions are decreasing in

both the number of suppliers and the capacity of each supplier.  When t = 1, G(c;t) is uniform on

                                                
19  The intuition for the premium in our model has some similarities, as well as some differences, to the tacit
collusion that arises in the model of Anton and Yao (1989).  In the model of Anton and Yao, the diseconomies of
scale make the split-award contracts more profitable for the suppliers.  This generates an opportunity cost of
winning a sole-source contract.  The resulting higher bids on the sole-source contract then feedback as an
opportunity cost on winning a split-award contract.  In equilibrium, the price paid by the buyer incorporates the
higher cost of sole-source production, plus the economies from split production relative to the lower cost of sole-
source production.  Thus, a similarity between the two models is that the bids are higher because the profit on a
split-award contract becomes an opportunity cost.  In the model of Anton and Yao, this profit is an opportunity
cost for a sole-source contract; whereas, in our model, this profit is an opportunity cost for the primary contract.
But there are also some other differences.  In the model of Anton and Yao, a split-award contract does not create
an opportunity cost unless there are diseconomies of scale.  With constant returns or economies of scale, the
equilibrium would result is a sole-source contract and a Bertrand price.  In our model, the buyer selects the split
of his input requirements between the primary and secondary contracts, and is not forced to choose among the
menu bids of the suppliers.  The opportunity cost then arises from the assumption that the buyer selects different
suppliers for the two contracts.  As a result, there are fewer suppliers competing for the secondary contract.
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[0,1] and these expressions collapse to the familiar formulas:  ci(n,1) = i/(n+1) .  Substituting these

expressions into (7), the premium in a split-award auction can now be written as

(8)     ∆(α,n,t) =  2⋅(1-α) ⋅{n·(n-1)·t2} / {[tn+1]⋅[t(n-1)+1]⋅[t(n-2)+1]}  .

Corollary 2.1 in Appendix 2 examines the behavior of this premium.  Although there are no general

results, the premium is declining in both n and t when t ≥ 1.  Thus, if the cost distribution is uniform

or more favorable to low cost realizations, a split-award auction is less costly to the buyer when the

number of suppliers is larger or when the capacity of each supplier is greater.

5. The Expected Profit of Suppliers and Entry

In this section, we investigate how a split-award auction affects the ex ante expected profits

of the suppliers.  We then introduce a fixed cost of participating in the auctions and characterize the

smallest secondary contract which can increase the number of suppliers participating in the auctions.

The expected profit of a supplier can be obtained by integrating expression (3) over c with x

= c.  But more intuitively, the expected profit is equal to the expected price minus the expected cost

for the total input requirements of the buyer, divided by the number of suppliers.  The expected cost

of producing the total input requirements of the buyer is

(9) EC(α,n)  =  α ·c1(n)  +  (1-α)·c2(n)  =  c1(n) + (1-α)·[c2(n) - c1(n)] .

The second term of (9) is the expected inefficiency in production that arises from awarding a

secondary contract to the second lowest cost supplier.  Using (6c), we can now express the

expected profit of a supplier as

(10) Eπ(α,n)  =  n –1 ⋅ {α ·[c2(n) - c1(n)] + 2⋅(1-α)·[c3(n) - c2(n)]}.

The first term is the informational rent earned on the α-contract.  The second term is the premium

paid by the buyer equal to twice the expected profit from the β-contract. Differentiating (10) with

respect to α, we obtain the following proposition.
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Proposition 3: The expected profit of each supplier is increasing with the size of the

secondary contract if and only if

(11)  2·[ c3(n) - c2(n) ]  > c2(n) - c1(n)  .

The left-hand side of (11) is the increase in the expected price with higher β  (see (6c)), and the

right-hand side of (11) is the increase in the expected cost with higher β  (see (9)).  In other words,

the expected profits of the suppliers will increase with the size of the secondary contract when the

expected premium is larger than the expected efficiency loss from awarding the secondary contract

to the second lowest cost supplier.  Whether condition (11) is satisfied or not depends on the cost

distribution.  If we restrict attention to the family of distributions G(c,t) with H(c) uniform on [0,1],

condition (11) can be greatly simplified.  Thus, we can state the following corollary to Proposition 3.

Corollary 3.1:  Assume the costs are drawn from G(c;t) with H(c) uniform on [0,1]. The

expected profit of each supplier is increasing with the size of the secondary contract if and

only if the industry capacity is greater than unity, T(n) = t⋅ n > 1 (or t > 1/n).

Proposition 3 and Corollary 3.1 demonstrate that a split-award auction need not increase

the expected profits of the suppliers, even though it always increases the expected price (see

Proposition 2).  The reason is that a split-award auction also increases the expected cost of

producing the input requirements.  Instead of awarding the total input production to the lowest cost

supplier, a split-award auction allows part of the production to be performed by the second lowest

cost supplier.  The expected price increases with a larger secondary contract, but a larger fraction of

the input requirements is awarded to the second lowest cost supplier.  For T(n) < 1, this increase in

expected cost is greater than the increase in expected price, and thus the expected profit declines

with higher β.  When T(n) < 1, the distribution of the lowest cost realization for the industry is

skewed toward higher values of cost relative to the uniform distribution.  Therefore, because of the

smaller probability of low cost realizations, the difference between the first and second order

statistics grows larger than the difference between the second and the third order statistics.

Having characterized the expected profit of suppliers, we now examine how a split-award

auction can induce entry or prevent the exit of a supplier.  Since there is always a positive expected
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profit from having capacity t and participating in the auctions, we now assume that there is a fixed

cost f of participating in the auctions with the capacity t.  This fixed cost must be incurred by the

suppliers prior to the auctions, as well as prior to their cost realizations for producing the input

requirements.  In addition, the fixed cost is independent of the actual input production that may or

may not result from the contract awards.  Thus, f is simply an investment in learning about the true

cost of production.20  Given this fixed cost, the size of the secondary contract can affect the number

of suppliers that can profitably participate in the auction.21

By Corollary 3.1, if the industry capacity is less than unity, a split-award contract cannot

induce entry and the buyer will always use a sole-source auction.  On the other hand, if the industry

capacity exceeds unity, the buyer may be able to use a split-award auction to induce the entry of a

new supplier or prevent the exit of an existing supplier.  Consider the case in which n suppliers

would find it profitable to participate in a sole-source auction, but (n+1) suppliers would not.

Define Fn,t as the set of fixed costs which generate exactly n suppliers with capacity t:

(12)   Fn,t = ( Επ(1,n+1,t) , Eπ(1,n,t) ) . 22

Since Eπ(α,n+1,t) is decreasing in α when T(n+1) > 1, the buyer can offer the maximum possible

expected profits to the suppliers when he awards two equal-size contracts (α = 1/2).  Thus, we can

characterize the conditions for the existence of a secondary contract that can induce entry.

Corollary 3.2:  Assume the costs are drawn from G(c;t) with H(c) uniform on [0,1] and that

T(n+1) = t⋅ (n+1) > 1.  For f ∈ Fn,t such that f ≤ Επ(1/2,n+1,t), there exists a minimal

secondary contract β′(f) which can induce entry by the (n+1)st supplier.

Proof:  The condition t⋅ (n+1) > 1 ensures that the expected profit is increasing with β  when there

are (n+1) suppliers.  If Eπ(1,n,t) < Επ(1/2,n+1,t), there is a minimal secondary contract for all f ∈

                                                
20   Alternatively, the fixed costs could also be interpreted as opportunity costs of reserving capacity to produce
the inputs if the supplier wins one of the contracts.
21  In this section, we assume again that the buyer can commit to the size of the secondary contract.  The buyer
would obviously benefit from switching to a sole-source auction after suppliers incurred their entry costs
believing there would be a secondary contract.  Such a commitment could be enforced in a repeated game with
punishment strategies.  Doing so in this model would be relatively cumbersome because the gain from a split-
award auction depends on the fixed cost of the additional supplier who would be induced to enter.
22  The expected profit of a supplier are strictly decreasing in n: dEπ(α,n,t)/dn  < 0  for n > 2 and all α and t.
Thus, the set [Eπ(1,n+1,t) , Eπ(1,n,t)] is clearly non-empty for any given n > 2.
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Fn,t .  However, if Επ(1/2,n+1,t) < Eπ(1,n,t) and Επ(1/2,n+1,t) < f < Επ(1,n,t), there is no β ≤

1/2 which can increase the expected price sufficiently above ΕP(1,n+1,t) in order to make the

(n+1)st supplier profitable.  The buyer can induce entry by the (n+1)st supplier only if f ≤

Επ(1/2,n+1,t).  The minimal secondary contract is β′(f)  = 1 − α′(f) where  α′(f) is implicitly

defined by f = Επ(α′,n+1,t).  QED

Corollary 3.2 demonstrates that a split-award auction can induce entry for some fixed costs

in Fn,t , but not necessarily all.  We find that Επ(1/2,n+1,t) < Eπ(1,n,t) when n < 3 + 1/t.  Thus,

there exist interesting cases for which no secondary contract can induce the (n+1)st supplier to

enter.  For example, this can occur for n ∈ {2,3} when t ≥ 1;  for n ∈ {2,3,4} when 1/2 ≤ t < 1;

and for n ∈ {2,3,4,5} when 1/3 ≤ t < 1/2.   However, for smaller f ∈ Fn,t such that f ≤

Επ(1/2,n+1,t), a minimal secondary contract would induce entry.  When a minimal secondary

contract exists, the buyer would certainly not offer a larger secondary contract that would increase

the expected price.  But not all minimal secondary contracts will benefit the buyer.  The next section

examines the conditions under which the minimal secondary contract can lower the expected price.

6. An Optimal Secondary Contract Can Reduce the Expected Price

For a fixed number of suppliers n and an industry capacity greater than unity, a split-award

auction increases the expected profits of the suppliers and introduces an inefficiency from using the

second lowest cost supplier for the secondary contract.  However, if a split-award auction induces

entry by the (n+1)st supplier, there is new capacity in the industry and new competition in the

auction.  The new capacity lowers the expected production costs of the input requirements, and the

new competition can convert this cost reduction into a lower expected price paid by the buyer.  In

addition, the new competition can enable the buyer to extract rents from the existing suppliers, also

in the form of a lower expected price.  We can now state the key proposition characterizing when a

secondary contract can lower the expected price.

Proposition 4:  Assume the costs are drawn from G(c;t) with H(c) uniform on [0,1] and that

T(n+1) = t⋅(n+1) > 1.  There exists a non-empty subset of Fn,t , denoted by (fL,fH), such that

for all f ∈ (fL,fH), an optimal secondary contract β*(f) > 0 induces entry by the (n+1)st

supplier and lowers the expected price.  The boundaries of this subset are defined by fL =



21

Eπ(1,n+1,t) and fH = Eπ(n/(n+1),n+1,t), and the optimal secondary contract is the minimal

secondary contract: β*(f) = β′(f).  For f ∈ Fn,t  and f > fH , β*(f) = 0.

Proof:  We first define the smallest primary contract α(n) which would lower the expected price.

The expected price EP(α,n,t) is decreasing in n and linearly decreasing in α (linearly increasing in

β ).  One can show that EP(1,n+1,t) < EP(1,n,t) < EP(1/2,n+1,t).  As a result, there exists an

α(n)∈ (1/2,1), implicitly defined by EP(α,n+1,t) = EP(1,n,t), such that for all α > α(n),

EP(α,n+1,t) < EP(1,n,t).  Interestingly, α(n) does not depend on t, and we can show that α(n) =

n/(n+1) > 1/2.

We can now define the largest fixed cost fH which would allow entry of the (n+1)st supplier

and reduce the expected price.  Since α(n) is the smallest primary contract which lowers the

expected price after entry, fH = Eπ(α(n),n+1,t) < Eπ(1/2,n+1,t).  Recall that for f ≥

Eπ(1/2,n+1,t), a split-award auction cannot induce entry of the (n+1)st supplier.  For fH < f <

Eπ(1/2,n+1,t), a split-award auction could induce entry by the (n+1)st supplier, but the expected

price would be higher than a sole-source auction with n suppliers.  However, for any fL < f < fH,

there exists a set of primary contracts (α(n),α′(f)] which would induce entry of the (n+1)st supplier

and lower the expected price.

We can now define the optimal primary and secondary contracts.  Since the expected price

decreases strictly with higher α for any given number of suppliers, the expected price is minimized at

the largest α (smallest β ) which induces the (n+1)st supplier to enter.  Thus, the optimal primary

contract α*(f) is implicitly defined by Eπ(α*,n+1,t) = f and the optimal secondary contract is the

corresponding minimal secondary contract β*(f) = β′(f).

Finally, we need to show that a larger secondary contract cannot further reduce the

expected price by inducing the (n+2)nd supplier to enter.  This part of the proof is contained in

Appendix 3, but the intuition is clear.  The optimal secondary contract β*(f) extracts all the rents

from the (n+1) suppliers.  Thus, any further reduction in the expected price requires a reduction in

the expected costs from (9).  However, a larger secondary contract increases the productive

inefficiency because a greater fraction of the input requirements are awarded to the supplier with the
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second lowest cost.  This greater inefficiency dominates the reduction in expected costs from having

the capacity of an additional supplier.   QED

Figures 2(a) and 2(b) illustrates Proposition 4.  In Figure 2(a), we have drawn the expected

prices EP(α,n,t) and EP(α,n+1,t).  Both are decreasing functions of α, and the latter is uniformly

lower with the additional supplier.  Thus, α(n) is the primary contract for which the expected price

EP(α(n),n+1,t) is equal to the expected price of a sole-source auction with n suppliers, EP(1,n,t)

= c2(n).  If α > α(n), then the expected price would be lower with the (n+1)st supplier.  Figure

2(b) illustrates the region of fixed costs (fL,fH) for which an optimal secondary contract can generate

entry and a lower expected price.  We have drawn the expected profit of the suppliers Eπ(α,n+1,t)

which is a decreasing function of α.  Thus, for an f ∈ (fL,fH), the α*(f) = α′(f) is illustrated in Figures

2(a) and 2(b) respectively as the largest α which would induce entry by the (n+1)st supplier.  Thus,

β*(f) = 1 - α*(f) is the optimal secondary contract.  Figure 2(a) illustrates that the resulting

expected price EP(α*(f),n+1,t) is below the sole-source price EP(1,n,t) = c2(n) with n suppliers.

The set of fixed costs (fL,fH) with an optimal secondary contract generating (n+1) suppliers

clearly depends the number of suppliers n, but it also depends on the capacity t of each supplier.

We can measure the magnitude of this set relative to Fn,t .  In particular, [(fH – fL) / ( Eπ(1,n,t) -

fL)] = 1/2 – 1/[2t(n+1)].  When the industry capacity t⋅ (n+1) = 1, this set is empty because a

secondary contract cannot increase expected profits.  As  t⋅ (n+1)→∞ with an increase in t (or n),

the subset (fL,fH) approaches 50% of the set Fn,t , and does so rapidly.23

An equal split of the input requirements (α = β = 1/2) cannot be optimal.  Even if an equal

split can induce entry by the (n+1)st supplier (see Corollary 3.2), it is easy to show that the

expected price will be higher: c3(n+1) > c2(n).24  The upper bound on the optimal secondary

contract is β(n) = 1 - α(n) = 1/(n+1) ≤ 1/3, and this occurs at f = fH.

                                                
23  When (n+1) = 3, (fL,fH) is one-third of the range of Fn,t for t=1.  But for (n+1) = 5, (fL,fH) is 40% of Fn,t for t=1.

Thus, the set (fL,fH) is small only when t is substantially less that unity.

24  Seshadri, Chatterjee, and Lilien (1991) assume that the contracts have an equal share of the input
requirements.  In our model, two equal-size contracts would have to generate two or more entrants in order to
lower the expected price.  Even if the expected price were lower, this would not be optimal for the reasons
discussed in Appendix 3.  Equal-size contracts generate the highest expected price, c3(n), and the largest
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7. An Illustration of the Optimal Secondary Contract

The benefit of an optimal secondary contract can be illustrated using the uniform cost

distribution G(c,1) where t = 1.  For this case, fL = [(n+1)·(n+2)]-1.  With α(n) = n/(n+1), fH =

(n+1)-2.  Thus, for fL < f < fH , the optimal primary contract is α*(f) = 2 – (n+1)⋅ (n+2)·f, and the

expected price is EP(α*(f),n+1,t) = 2⋅(n+1)⋅f.  For fH < f < Eπ(1,n,1) = [n·(n+1)]-1, the optimal

secondary contract is β*(f) = 0, resulting in a sole-source auction with n suppliers.

For this case, Figure 3(a) illustrates the size of the optimal primary and secondary contracts

which the buyer would employ for any given fixed entry cost.  The fixed cost determines the number

of suppliers as illustrated.  The lines starting at 2 on the α-axis are the functions α*(f).  For example,

when 1/20 < f < 1/16, the number of suppliers with a sole-source auction would have been n = 3.

However, by creating a secondary contract β*(f), and reducing the size of the primary contract to

α*(f), the buyer maintains n+1 = 4 suppliers participating in the auctions.  For 1/16 < f < 1/12, the

buyer could continue to reduce the size of the primary contract and maintain 4 suppliers, but the

expected price is lower by having a sole-source auction with 3 suppliers.  Then, for 1/12 < f < 1/9,

the buyer again creates a secondary contract to maintain 3 suppliers.  Finally, for f  > 1/9, buyer

uses a sole-source auction with two suppliers.  The optimal secondary contract β*(f) = 1 - α*(f)

could be as large as 20% of the input requirements in order to maintain 5 suppliers, as large as 25%

to maintain 4 suppliers, and as large as 33% to maintain 3 suppliers.

Figure 3(b) illustrates the expected price paid by the buyer using an optimal secondary

contract.  The expected price increases as the higher fixed cost reduces the number of suppliers

participating in the auctions.  With a sole-source auction, the expected price would be a step

function, rising to EP = 2/5 at f = 1/30, to EP = 1/2 at f = 1/20, and to EP = 2/3 at f = 1/12.

However, an optimal secondary contract lowers the expected price in the regions of fixed costs

where β*(f) > 0.  In these regions, the expected price increases with f as the size of the optimal

secondary contract increases.  Figure 3(b) illustrates that a split-award auction is potentially

                                                                                                                                                       
efficiency loss (1/2)⋅[c2(n) - c1(n)].  Thus, it is no surprise that optimal secondary contract is significantly smaller

than the primary contract.
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beneficial to the buyer for any number of suppliers, but can be very beneficial when the number of

suppliers is small.25

8. The Intuition for the Optimal Secondary Contract

Even though a split-award auction results in a higher expected price with a fixed number of

suppliers, the entire schedule of expected prices as a function of the size of the secondary contract

shifts downward with an increase in the number of suppliers (see Figure 2(a)).  If the fixed entry cost

is relatively low (close to fL), the buyer can induce the (n+1)st  supplier to enter with a relatively

small secondary contract.  The increase in expected price which would otherwise occur from

introducing the secondary contract is more than offset by the reduction in expected price caused by

the additional supplier.

The additional supplier causes two effects which result in a lower expected price.  The first

effect arises from the fact that the new supplier adds additional capacity to the industry.  This new

capacity lowers the expected costs of production for both the primary and secondary contracts

because it lowers the expected value of the first and second lowest costs of the suppliers.  An

optimal secondary contract allows the buyer to internalize this reduction in expected costs in the

form of a lower expect price.  The second effect arises from the fact that the new supplier lowers the

expected profits of the existing suppliers.  In particular, Eπ(1,n,t) > Eπ(α*,n+1,t) = f .  Thus, the

optimal secondary contract allows the buyer to extract all of the expected rents of the n existing

suppliers defined as their expected profits minus their fixed costs.26

We can identify the relative magnitude of these two effects.  Note that the expected profits

of all the suppliers, defined by EΠ(α,n) = n⋅ Eπ(α,n) using (10), is equal to the expected price

EP(α,n) from (6), minus the expected costs EC(α,n) from (9).  Thus, the reduction in the expected

                                                
25  For t=1, the ratio of fixed costs to production costs for f ∈ Fn,t  ranges from 1/(n+2) to 1/n.
26  Anton and Yao (1989) have an example in which investment by the higher cost supplier can result in a lower
expected price from split-award contracts.  The higher cost supplier has no incentive to invest if the buyer is only
awarding a sole-source contract because the investment cannot lower the costs sufficiently.  However, if the
buyer awards two contracts, the investment is profitable because it increases the profits from a split award.  The
investment lowers the price because it lowers the sole-source costs faster than it increases the economies from
splitting the production.  Thus, a split award can induce investment that would lower the price.  In this example,
the price reduction is driven by the decline in the sole-source production costs of the higher cost supplier which
are an important determinant of the price.  This differs from the two effects causing the price reduction in our
model.
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price from an optimal secondary contract is simply the reduction in expected costs, EC(1,n) –

EC(α∗,n+1), plus the reduction in expected industry profits, EΠ(1,n) – EΠ(α∗,n+1).  These

expressions are easy to calculate for G(c;t) with H(c) uniform on [0,1].  We find that the share of

the reduction in the expected price attributable to these two effects is independent of the size of the

primary contract.  As a result, the share of the reduction attributable to extracting rents from the

existing suppliers has the following simple form:

(13) SΠ (n,t) = [t⋅(n+1) – 1] / [2tn]  .

Since industry capacity T(n+1) = t⋅ (n+1) > 1, the share attributable to rent extraction increases with

t, and approaches (n+1)/(2n) in the limit as t→∞ .  Thus, as the cost distribution of the suppliers

becomes more favorable to low cost realizations, the share attributable rent extraction is larger and

the share attributable to cost reduction is smaller.  When t = 1, the reduction in expected price is

shared equally between a reduction in the expected industry rents and a reduction in the expected

industry costs.27

9. Conclusions

The buyer’s control over the size of the primary and secondary contracts is crucial for his

ability to induce entry and lower the expected price.  In particular, the benefits to the buyer depend

on its ability to choose a primary contract which is significantly larger than the secondary contract.

Split-award contracts of equal size are never optimal because they generate the largest inefficiency in

production and the least aggressively bidding on the primary contract.  The higher expected profits

on the equally large secondary contract provide a large opportunity cost that is incorporated into the

bidding on the primary contract.  Thus, split-award contracts of equal size generate the highest

expected price for a given number of suppliers.  With a smaller secondary contract, the buyer can

limit the productive inefficiency from the secondary contract and maintain aggressive bidding for the

primary contract. When smaller secondary contracts can induce entry, then may also reduce the

expected price.

                                                

27  When t > 1, the share attributable to rent extraction is decreasing with n.  For this case, the share attributable
to rent extraction declines from .75 (when t→∞) to .5 as n→∞.  In other words, rent extraction becomes somewhat
less important when there is a larger number of existing suppliers.  The opposite occurs when t < 1, and the share
attributable to rent extraction is increasing with n.
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Appendix 1

The expected value of the lowest cost from n independent draws:
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The expected value of the second lowest cost from n independent draws:

 

[ ]

[ ]

[ ] [ ]

[ ] [ ] .   
11)1(

)1(2
            

1

1

1)1()1(

1
  )1(            

)1()1( )1(            

)1( )1(1 )1()1(            

)(1 )()()1(),(

1 

0 
11)1(

1 

0 
)2(1

1 

0 

2
2

+⋅+−
−−=









+

−
+−−

⋅⋅−=

−−−⋅⋅−=

−−−−⋅−=

−⋅−=

∫

∫

∫

−−−

−−

−

tnnt
ttn

tntnntnt
tnn

dxxxxxtnn

dxxxxtxnn

dxxGxGxgxnntnc

tnnt

nttt

n

The expected value of the third lowest cost from n independent draws:

[ ]

[ ]

[ ]

[ ] [ ] [ ]
( )

[ ] [ ] [ ] .   
11)1(1)2(

123)1()1(3
            

1

1

1)1()1(

2

1)2()2(

1
  

2

1
            

 )1()1(21 )1( 
2

1
            

)1()1(1 )1(
2

1
            

)(1 )]()[(
2

1
),(

2

1 

0 
21)2(

1 

0 
)3(2 1

1 

0 

3 2
3

+⋅+−⋅+−
+−−−−=









+

+
+−−

−
+−−

⋅⋅






 −
=

−+−−−⋅⋅




 −
=

−−−−⋅




 −
=

−⋅




 −
=

∫

∫

∫

−−

−−

−

tnntnt
tnttnnt

tntnntntntnt
t

n
n

dxxxxxt
n

n

dxxxxtx
n

n

dxxGxGxgx
n

ntnc

ttnt

nttt

n



30

Appendix 2

Corollary 2.1: Assume the costs are drawn from G(c;t) with H(c) uniform on [0,1]. The

premium ∆(α,n,t)  with a split-award auction is

(i) increasing with t for t < t*(n), and decreasing with t for t > t*(n),

where 1/n < t*(n), and t*(n) < 3/n < .75  for n ≥  4 .

(ii) increasing with n for t < t**(n), and decreasing with n for t > t**(n),

where  t**(n) < t*(n) and t**(n) < .6  for n ≥ 3 .

Proof of (i): The sign of the derivative of the premium with respect to t depends on a cubic equation

in t:  2 + 3·(n-1)·t - n·(n-1)·(n-2)·t3 = 0.  The left-hand side of this equation is clearly positive for

small t, but becomes negative for large t.  There are two imaginary roots and one real positive root

defined as t*(n).  Thus, it is clear that the premium is increasing (decreasing) with t when t > (<)

t*(n).  Figure 1 depicts t*(n).

For a given number of suppliers, the premium is maximized at t = t*(n).  The explanation for

this finding follows from the behavior of the premium as t → 0 and t ∞→ .  When t → 0, the

expected price approaches the upper bound on the cost distribution, normalized to 1, irrespective of

the number of suppliers or the size of the α-contract.  Thus, there can be no premium.  Similarly,

when t ∞→ , the expected price approaches the lower bound on the cost distribution, normalized to

0, irrespective of the number of suppliers and the size of the α-contract.  Thus again, there can be no

premium.  Once capacity exceeds t*(n), the premium decreases with further increases in the

capacity of each supplier.  In particular, for n ≥  4, the premium is declining with t for all t > 3/n.

Note that ∆(α,3,1) > ∆(α,4,1).  Since we are only interested in integer numbers of suppliers, this

implies that the premium is declining in integer n for all t > 1.

Proof of (ii): The sign of the derivative of the premium with respect to n depends on another cubic

equation in t:  1 - 2⋅ n – 3⋅ (n-1)2⋅ t + (2-4n+3n2)⋅ t2 + n2⋅ (n-1)2⋅ t3 = 0.  This equation is clearly

positive for large t, but becomes negative for small t.  There are two imaginary roots and one real
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positive root defined as t**(n). Thus, it is clear that the premium is increasing (decreasing) with n

when t < (>) t**(n).  Figure 1 depicts t**(n).

For a given t < t**(n), the premium declines when the number of suppliers in reduced

below n.  This surprising finding is limited to a small range of the parameter space.  Thus, when t >

t**(n), and the premium declines when the number of suppliers is increased from n.  Since t**(n) ≈

.56, this case occurs for all distributions skewed in favor of low costs, the uniform distribution, and

many distributions skewed in favor of high costs.

Appendix 3

There is no gain to the buyer from inducing entry by more than one additional supplier.  This

is easy to demonstrate when t = 1.  Let e > 0 be the number of new entrants, and define α′(e;n) as

the largest α such that a split-award auction would induce e new entrants.  Thus, 1 - α′(e;n) is the

minimal secondary contract for e entrants.  If there is no entry, a sole-source auction minimizes the

expected price so define α′(0;n) = 1.  We can solve for α′(e;n) by setting the expected profits

equal to the fixed cost:
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When t = 1, the expected price from (9) becomes a simple linear expression in terms of α:
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.

Substituting α′(e;n), we obtain EP(α′(e;n),n+e,1) = 2⋅ (n+e)⋅ f .  Since the expected price is

increasing in e, the optimal secondary contract would induce only one new entrant: α*(f) = α′(1,n).

One new supplier will lower the expected price if f < fH = (n+1)-2, but two new suppliers will

provide no further reduction in the expected price.  Note that the expected industry costs are

EC(α′(e;n),n+e,1) = (n+e)⋅ f .  Thus, the minimal secondary contract for each new entrant

generates progressively higher expected costs.
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We can also show that two additional suppliers cannot further reduce the price for all t  >

1/n (T(n) > 1).  As in the case of t = 1, the proof begins by expressing the expected price as a

function of the number of entrants using α′(e;n), the largest primary contract which induces e

entrants.  One can then show that the expected price with two entrants must be larger than the

expected price with one entrant for all t > 1/n and all f such that fL < f < fH .  The proof is very

awkward, but the intuition is clear.  The optimal secondary contract defined by β*(f) = 1 - α′(1;n)

exactly eliminates the expected rents of all the suppliers.  Moreover, it has been shown (see McAfee

and McMillan (1987)) that the optimal number of entrants can be induced by a sole-source auction.

Therefore, the decline in the expected price with a split-award auction can arise only if it is

accompanied by the extraction of some significant supplier rents.  Consequently, no further gains are

possible for the buyer beyond the optimal secondary contract β*(f) which induces one additional

supplier.


