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What can we learn about effective early mathematics teaching? 

 

Abstract 

This study investigates the impact of teacher characteristics and instructional strategies 

on the mathematics achievement of students in kindergarten and first grade and tackles the 

question of how best to use longitudinal survey data to elicit causal inference in the face of 

potential threats to validity due to nonrandom assignment to treatment. We develop a step-by-

step approach to selecting a modeling and estimation strategy and find that teacher certification 

and courses in methods of teaching mathematics have a slightly negative effect on student 

achievement in kindergarten, whereas postgraduate education has a positive effect in first grade. 

Various teaching modalities, such as working with counting manipulatives, using math 

worksheets, and completing problems on the chalkboard, have positive effects on achievement in 

kindergarten, and pedagogical practices relating to explaining problem-solving and working on 

problems from textbooks have positive effects on achievement in first grade. We show that the 

conclusions drawn depend on the estimation and modeling choices made and that several prior 

studies of teacher effects using longitudinal survey data likely neglected important features 

needed to establish causal inference. 
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1. Introduction 

This study investigates the impact of teacher characteristics and instructional strategies 

on the mathematics achievement of students in kindergarten and first grade. Understanding the 

factors that make some teachers more effective than others is vital to achieving and supporting 

high quality instruction. Early teaching, in particular, can be crucial to the future academic 

progress of children, as well as in determining later economic well being and other nonacademic 

outcomes (Barnett, 1995; Currie & Thomas, 2000; Kilpatrick, Swafford & Findell, 2001; Chetty 

et al., 2010).  

Evidence of “what works” in elementary mathematics instruction can be obtained from 

multiple sources:  experiments, observations, administrative data, and surveys. This study 

utilizes survey data and provides a framework to guide the estimation of causal effects in 

nonexperimental settings. Although experimental evidence of effects is generally considered the 

gold standard, true educational experiments are rare, centered primarily around interventions, 

and difficult to impose or implement. In addition, they are generally conducted on a small scale, 

yielding potentially ambiguous conclusions regarding the effects of scaled-up interventions. 

Classroom observations provide an in-depth picture of teaching but are costly to conduct on a 

large scale and can be difficult to parse into identifiable, quantifiable elements of instruction that 

overcome inter-rater reliability issues. Administrative data are often used to uncover associations 

between factors like teacher training and student achievement. However, these data contain only 

the most basic teacher and student characteristics required for reporting and compliance purposes 

and often suffer from missing, and sometimes inaccurate, data records. Large sample survey 

data, if representative of the population of interest and sufficiently detailed, can represent an 

improvement over administrative data. They are less costly to collect than classroom 
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observations on a large scale, and they can provide information on treatments that cannot be 

investigated through experiments. Much of the body of knowledge on teacher effectiveness 

consists of estimates derived from survey data, such as National Educational Longitudinal Study 

(NELS) and Early Childhood Longitudinal Study, Kindergarten Class of 1998–99 (ECLS-K). 

However, these data have significant limitations, as well. They generally rely on self-reported 

activities and characteristics and often suffer from item non-response, even when overall survey 

response rates are high. In addition, sample attrition in longitudinal surveys can pose a threat to 

representativeness if it is nonrandom. 

The fundamental disadvantage of survey data with respect to experimental data, however, 

is that students are not randomly assigned to treatments, rendering causal inference inherently 

difficult—a disadvantage shared with observational and administrative data. Survey data can 

compensate for this handicap to varying degrees, however, by providing a rich set of control 

variables that might reduce omitted variable bias in estimates. This paper tackles the question of 

how best to use longitudinal survey data to elicit causal inference with respect to teacher-related 

factors impacting early mathematics achievement in the face of potential threats to validity due 

to nonrandom assignment to treatment. Researchers have several tools at their disposition to deal 

with these threats. Methodological decisions can be complex, however, and, as we show, results 

can be sensitive to the approach selected. As such, it is imperative to understand why 

inconsistencies occur and which methods are best in a given situation.  

The goals of this paper are thus twofold: (1) to lay out a careful approach for selecting an 

appropriate model and estimation method to investigate teacher effects using longitudinal survey 

data and (2) to apply this approach in answering our specific research question—i.e., the extent 

to which the observable background characteristics and instructional practices of kindergarten 
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and first grade teachers produce gains in the mathematics achievement of their students. We use 

data from ECLS-K, a nationally representative sample of kindergarteners followed over time. 

The data include student assessments in mathematics and reading at each wave as well as 

detailed information from parents, teachers, and school administrators and are therefore well 

suited to an investigation of our research question.  

Through a step-by-step analysis of the data, we select a modeling and estimation strategy.  

Our findings indicate that teacher certification and courses in methods of teaching mathematics 

have a slightly negative effect on student achievement in kindergarten, whereas postgraduate 

education has a positive effect in first grade. Various teaching modalities, such as working with 

counting manipulatives, using math worksheets, and completing problems on the chalkboard, 

have positive effects on achievement in kindergarten, and pedagogical practices relating to 

explaining problem-solving and working on problems from textbooks have positive effects on 

achievement in first grade.  

We find that the models and estimators previously employed to estimate teacher 

characteristic and practice effects using longitudinal survey data likely neglected important 

features needed to establish causal inference. Importantly, we show that the conclusions drawn 

depend on the estimation and modeling choices made, underscoring the importance of setting out 

a clear strategy for choosing among the many possibilities available. 

This paper is organized as follows. In section 2, we outline a framework for selecting a 

model and method for estimating teacher effects using longitudinal survey data. Then, in section 

3, we review the relevant literature pertaining to our specific research question—i.e., what 

teacher characteristics and practices affect student achievement in the early grades?—with 
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particular attention to the estimation methods used. Section 4 describes our data, section 5 

outlines our methods, section 6 presents and discusses results, and section 7 concludes. 

2. Modeling and Estimation Framework   

Models 

A very general cumulative effects model views current achievement as a function of all 

relevant current and past inputs, a student specific effect, and a random error term (Hanushek, 

1979; Todd & Wolpin, 2003; Harris, Sass, & Semykina, 2010; Guarino, Reckase, & Wooldridge, 

2011): 

(1)  

   
where 

 

 = achievement of child i with teacher j in school s at time t 

   = time-varying education production function relating inputs to achievement 

 = time-varying child, family, and neighborhood inputs for child i in period t 

 = time-varying schooling inputs (such as teaching practices, peer effects, etc.) 

   = time-invariant child effect 

uijst   = unobserved error term 

 

          Researchers make several assumptions to render (1) tractable for analysis. As a first step, 

the function ft is generally assumed to be linear in the parameters. These assumptions yield the 

linear cumulative effects (LCE) model: 

(2) 0 1 1 0 0 1 1 0... ...it t it it i t it it i t t i itY X X X Z Z Z c u                   

Our interest lies primarily in estimating the  parameters, which in this case convey the partial 

effects of teacher characteristics and practices on math achievement. Typically, data on all inputs 

prior to kindergarten—e.g., preschool or daycare characteristics—are unavailable, and the 

student effect ci, sometimes thought of as unmeasured innate student ability or motivation, is 

0( , , , , , , , )ijst t it i it io i ijstY f X X Z Z c u

ijstY

tf

itX

itZ

ic


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generally unobservable. To address the lack of prior inputs, it is customary to impose an 

additional assumption:  namely, that the effect of the inputs decays at a geometric rate equal to λ. 

In terms of the parameters, this assumption requires     
    and     

    for        . 

The geometric decay assumption on the input effects allows one to eliminate the lagged inputs 

and rewrite equation (2) as a geometric distributed lag (GDL) model:
1
 

(3)  

 

A second common restriction is that , indicating that the child-specific effect has 

the same effect on achievement in every period. Note that under this assumption there is no loss 

of generality by denoting as 1 in these models if a constant is present in the model.  

(4)  

 

Equation (4) is generally referred to as a dynamic linear model due to the presence of 

lagged achievement on the right-hand side. Estimation of (4) is generally feasible, as it requires 

only contemporaneous inputs and a lag of achievement. However, many researchers proceed to 

subtract prior achievement from both sides of the equation and estimate what is often referred to 

as a gain score model. This results in the following: 

(5)  

 

Of course, if , then the piece of prior achievement left in the error term with a 

negative coefficient disappears. If not, it causes an omitted variables problem as well as negative 

serial correlation. Thus, in choosing this model specification, researchers are essentially 
                                                
1
 Algebraically, (3) is derived from (2) by adding and subtracting λYit-1 from both sides of (2), imposing the GDL 

assumption, substituting and simplifying terms. See Guarino, Reckase, and Wooldridge (2011) and Harris, Sass, and 

Semykina (2010) for a detailed explanation of the geometric distributed lag assumption and its application to value-

added modeling. 

1 0 0

1

it t it it it t i it

it it it

Y Y Z X c e

e u u

    







     

 

t 



1 0 0it t it it it i itY Y Z X c e        

1 0 0 1(1 )it it t it it i it itY Y Z X c e Y           

1 
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assuming that (i.e., that there is no decay in the impact of prior inputs on current 

achievement) or that the consequences of violating this assumption are unimportant in estimating 

the parameters of interest.   

To relate equations (4) and the constrained version (5) directly to our research questions, 

we now rewrite them under all the assumptions hitherto mentioned using terms specific to our 

study:  

(6) 
 

 
(7)  

    
, 1 1 2 3 4 , 1( 1)ijst i t jst jst jst ijst t s j i ijst i tY Y PDG TC Class X c Y                    

 

where 

PDG = the set of pedagogical practices used by teacher j 

TC = the set of background characteristics of teacher j 

CLASS = a set of classroom characteristics  

X = a set of child- and family-related control variables 

τj = an unobserved teacher-specific effect 

δs = an unobserved school-specific effect 

εijst = a random error term 

 

In our study, we use data from three time periods.  ECLS-K assessed kindergarten and 

first grade children’s achievement in the full sample in the fall of the kindergarten year (t = 0), in 

the spring of the kindergarten year (t = 1), and in the spring of the first grade year (t = 2).
2
 In our 

modeling, the fall test score in kindergarten is lagged relative to the spring test score. For first 

grade, the spring kindergarten test score is lagged relative to the spring first grade test score.
3
 

The characteristics of kindergarten teachers were recorded in the fall, and corrected in the spring 

if children’s teachers changed. Information on teaching practices was recorded in the spring. For 

first grade teachers, all information was recorded in the spring.  

                                                
2
 A subsample of first grade children was assessed in the fall; we do not use that partial wave. 

3
 Thus the intervals between current and lagged tests differ across grades.  We take this into account by controlling 

for time elapsed between tests and, in some cases, by interacting lagged achievement with a grade indicator. 

1 

, 1 1 2 3 4ijst i t ijst ijst ijst ijst t s j i ijstY Y PDG TC Class X c                 
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In these new equations (6) and (7), the composite error term ( ) contains 

unobserved school and teacher effects as well as the child effect ci  and the idiosyncratic term εijst. 

By including the terms δs and τj, we allow for the possibility that in our focus on the specific 

teacher characteristics and pedagogical behaviors contained in PDG and TC, certain teacher and 

school-level factors that are relevant to predicting achievement may be omitted.
4
  It is important 

to note, however, that δs can be explicitly estimated through the inclusion of school dummy 

variables
 
rather than left as a component of the unobserved error term, whereas fixed teacher 

effects τj—e.g., an unobserved teacher quality component—cannot be estimated separately from 

the observed teacher variables of interest unless we observe more than one class of students for 

each teacher.
5
  

For notational simplicity, we do not include interactions in this model, although in our 

investigations, we explore the possibility that the effects of teacher characteristics and 

instructional practices on achievement differ across grades.  

Estimators 

Several estimation strategies can be applied to models (6) and (7). The estimators 

associated with these two models—the lag score and the gain score—are outlined below and 

summarized in Figure 1. Both models can be estimated using either cross-sections of data (i.e., 

data for each grade separately) or data that are pooled across kindergarten and first grade. 

 If the equations are estimated using cross-sections of data, two primary approaches are 

possible: ordinary least squares (OLS) estimation and maximum likelihood estimation with 

random effects assumptions. The OLS estimator will be consistent if student heterogeneity and 

the other error components are uncorrelated with either the input or output variables. We can 

                                                
4
 In our notation, we impose the simplifying assumptions that the unobserved school and teacher effects are constant 

across students and over time.  
5
 In ECLS-K, we have only one classroom per teacher. The possible effects of this limitation are later discussed. 

s j i ijstc    
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relax that assumption with respect to , if need be, by putting in school dummy variables. In 

Figure 1, this set of choices is represented by the OLS portion of the tree on the left side of the 

diagram for cross-sectional data. 

Efficiency gains may be possible using maximum likelihood if we exploit the nested 

structure of the data (in our case, children within classrooms within schools) and assume that the 

teacher and school terms ( and ) are normally distributed random effects. Such estimation 

strategies are often referred to as mixed or hierarchical linear models (HLM). This strategy 

effectively accounts for correlation among test scores for students with the same teacher and 

within the same school in the estimation of the pedagogy and teacher effects. Here again, we can 

treat the school effects as fixed rather than random by including school dummy variables, and 

use an HLM estimator with just teacher random effects (see the HLM portion of the tree diagram 

in Figure 1).  

If the data are pooled across the grades, OLS can still be used on either model (6) or (7) 

under the same independence assumptions as in the cross-section data case (see the right portion 

of the figure under “panel”). However, panel data allow us to make use of approaches that deal 

with the presence of unobserved student heterogeneity. 

In the lag score model (6), pooling across grades allows for the elimination of 

heterogeneity by first differencing and then instrumenting for the endogenous lagged test score 

gain with the twice-lagged test score. A common estimator that accomplishes this is the 

generalized method of moments (GMM) approach described in Arellano and Bond (1991), 

which we will henceforth refer to as AB. This approach not only accounts for unobserved student 

heterogeneity but also allows us the flexibility of leaving λ unconstrained. However, it relies on 

the assumptions that the error term in equation (6) is serially uncorrelated and that all other 

s

s s
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inputs satisfy a “strict exogneity” assumption—namely, that errors εit in one time period are 

uncorrelated with inputs in all other time periods (Wooldridge, 2002, ch. 10, pp.252-254).  

In the gain score model (7), in which λ is constrained to equal 1, random effects (RE) or 

fixed effects (FE) estimators can be used to mitigate problems associated with student 

heterogeneity. RE assumes the child-specific heterogeneity and the inputs are uncorrelated, strict 

exogeneity, as well as a particular structure to the error covariance matrix, and may result in 

efficiency gains over OLS if these assumptions are met (Wooldridge 2002, ch. 10, pp. 252-254). 

FE estimation relaxes the assumption of zero correlation between heterogeneity and observed 

right-hand-side variables but maintains strict exogeneity. Note that the strict exogeneity 

assumption required by RE and FE is violated in model (6) because the lagged test score variable 

on the right-hand side is a function of the error term in the previous period. Thus, RE and FE 

estimators will be inconsistent for (6) and will only apply to the gain score model.  

The modeling and estimation choices that we have described—18 in total and 

summarized in Figure 1—will be those considered in our study. In section 4, we outline a 

strategy for selecting the appropriate method. But first, we review prior survey-based research 

pertaining to our research question with careful attention to the methods chosen in these studies. 

Divergence of our findings from earlier findings may be traceable, at least in part, to the different 

choices of methods.  

3. Prior survey-based research on the impact of teacher characteristics and teaching 

practices on student achievement in the early grades 

Although a number of prior studies have used survey data to examine the relationship 

between student achievement and observable teacher characteristics and practices, using a 

variety of model specifications and estimation methods (see Wayne and Youngs, 2003, for a 
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review), relatively few have examined these relationships in the context of early elementary 

mathematics teaching. Rowan, Correnti, and Miller (2002) estimated a gain score model using 

HLM with both teacher and school random effects to analyze a longitudinal data set on 

elementary school children across the US in the early 1990s. They found no effect of teacher 

certification status or subject-matter preparation on achievement growth in mathematics but 

found a positive relationship between teaching experience and growth for students going from 

third to sixth grade and a negative relationship between advanced degrees and growth for 

students in both the early and upper elementary grades. Among a small set of pedagogical 

practices examined, only time spent on whole class instruction was positively related to 

mathematics achievement. Other studies focused on links between teacher-reported instructional 

practices and early mathematics achievement have tended to explore the use of “reform-based” 

or “standards-based” practices that emphasize problem solving and inquiry. Le et al. (2006), in a 

study of third grade students in five districts across the U.S. followed longitudinally for three 

years estimated a lag score model for achievement using OLS. They found weak and inconsistent 

relationships between student-centered practices and mathematics achievement. Reform-based 

practices showed positive effects on measures related to problem solving but negative effects on 

measures designed to capture a student’s grasp on mathematical procedures. Cohen & Hill 

(2000) also estimated a lag score model using OLS to study links between teacher responses on a 

survey administered to elementary teachers in California in 1994 and student achievement on the 

California Learning Assessment System during the same year. They found that teacher-reported 

frequency of use of reform-based practices was positively related to mathematics test scores 

among fourth-graders. Hamilton et al. (2003) conducted a meta-analytic synthesis of teacher 

survey data from grades three through seven at several National Science Foundation-funded 
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Systemic Reform Initiative sites to investigate the effect of reform-based teaching practices on 

mathematics and science learning. Their results were based on OLS regressions, although it is 

not clear whether gain or lag scores were used and specifications differed across sites depending 

on the availability of data. They combined several specific practice items into a “reform-based” 

scale and found small and weak but fairly consistent positive relationships between teachers’ use 

of reform-based practices and student achievement.  

In addition to the studies cited above, three prior studies estimated the effects of teacher 

characteristics and instructional practices on the mathematics achievement of early elementary 

students using ECLS-K. All three relied on a single cross-section of the ECLS-K for the main 

analysis, with Guarino, Hamilton, Lockwood, and Rathbun (2006) and Bodovski and Farkas 

(2007) focusing on kindergarten and Parlady and Rumberger (2008) focusing on first grade. All 

employ HLM estimation.  

Guarino et al. (2006), using a gain score model, found no evidence of a direct relationship 

between the background characteristics of teachers and student achievement but found that 

spending more time on subject was associated with relatively large gains in achievement. They 

constructed instructional practice scales, combining several practice measures into aggregate 

indexes using factor analysis. Among the scales designed to capture pedagogical approaches, 

those describing an emphasis on traditional practices and computation, measurement and 

advanced topics, advanced numbers and operations, and student-centered instruction (e.g., 

having students explain how problems were solved) were positively associated with mathematics 

achievement gains.  

Bodovski and Farkas (2007) also focused on kindergarten and created instructional 

practice scales but utilized a lag score model in their analysis. They found that both traditional 
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and interactive approaches, along with practices that focused on advanced counting, practical 

math and single-digit operations were related to larger gains in achievement. On the other hand, 

spending additional time on basic numbers and shapes was found to be associated with lower 

achievement gains. They also mention obtaining similar results from an unreported fixed effects 

estimation which relies on the pooled kindergarten and first grade data available in the ECLS-K 

as evidence that their results approximate causal effects.  

Parlady and Rumberger (2008) used a lag score model and focused on first grade rather 

than kindergarten. They found that the use of math worksheets and calendars raised student 

mathematics achievement, whereas the use of geometric manipulatives lowered it. They 

restricted their sample to a 30 percent subsample of students who were tested in the fall of first 

grade and used the fall exam score as an explanatory variable in the analysis.  

The relationships found in these survey-based studies cannot be interpreted as causal 

unless the assumptions underlying the models and estimators used are met. In this paper, we 

analyze the ECLS-K data using a step-by-step approach to justify our modeling and estimation 

choices, the goal being to provide estimates with the best claim to causal inference. We then 

compare our results with those obtained in earlier studies using other methods.  

4. Data 

The ECLS-K selected a nationally representative sample of approximately 22,000 

children who were enrolled in approximately 1,000 kindergarten programs in the United States, 

during the 1998-99 school year. The children were selected from both public and private 

kindergartens offering full-day and part-day programs. The sample consisted of children from 

different racial-ethnic and socioeconomic backgrounds and included an oversample of Asian 

children and private school kindergartners. The sample design for the ECLS-K was a dual-frame, 
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multistage sample. First, 100 Primary Sampling Units were selected (PSUs were counties or 

groups of counties). Schools within the PSUs were then selected; public schools from a public 

school frame and private schools from a private school frame. In the fall of 1998, approximately 

23 kindergartners were selected within each of the sampled schools (Tourangeau et al., 2001). 

The ECLS-K followed these children at various intervals through eighth grade. Three of 

the seven available waves of the data are utilized in this study. The first two waves of data were 

collected in the fall and spring of the 1998-1999 kindergarten year, respectively. The third and 

fourth waves were collected in the fall and spring of the first grade year, but the third wave (fall 

of the first grade year) was collected only on a relatively small (30 percent) sub-sample of the 

children and is therefore not used in this study. For this study, we restrict the data to the fall and 

spring kindergarten and spring first grade waves. The fifth, sixth, and seventh waves are 

excluded because they occur after intervals of two or three years—thus the variation in children’s 

learning gains is likely to be only loosely connected to the practices and abilities of 

contemporaneous teachers. In the three waves selected for the study, we make use of several 

categories of data—achievement assessments, teacher interviews, and student and family 

characteristics.  

Achievement Assessments 

Assessments that included cognitive components were conducted with the sampled 

children through one-on-one tests administered by trained individuals at each wave. The full 

achievement assessment used a computer-assisted personal interview and took approximately 50-

70 minutes to complete. It included tests of reading and mathematics as well as other 

components that differed by wave (e.g., general knowledge in the kindergarten wave and science 

in the third grade). The test was untimed, and the kindergarten test required children to respond 
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verbally or through pointing; no writing was required. Each test was conducted using a two-stage 

design. The first stage consisted of a routing section that was administered to all students, and the 

second stage consisted of one of several alternative forms, the choice of which depended on the 

child’s performance on the first stage. Only the assessments in mathematics are utilized in this 

study. The mathematics assessments had low, middle, and high difficulty second-stage options. 

The purpose of the adaptive design was to maximize accuracy of measurement and minimize 

administration time.
6
 

The content of the mathematics assessments was selected to represent cognitive skills that 

are typically taught at each stage of development and that are important for the development of 

later proficiency (Rock & Pollack, 2002). Efforts were made to accommodate children who 

spoke a language other than English in the kindergarten and first grade assessments. Prior to 

administering these assessments, a language-screening test—the Oral Language Development 

Scale (OLDS)—was administered to those children identified from their school records (or by 

their teacher, if no school records were available) as coming from a home in which the primary 

language spoken was not English. Children whose performance exceeded an established cut 

score on the OLDS received the full English direct assessment in mathematics. Students who did 

not pass the OLDS but who spoke Spanish were given a translated form of the mathematics 

assessment. Various methods were used to confirm that the psychometric properties of the 

Spanish mathematics assessment were comparable to those for the English version (Rock & 

Pollack, 2002). 

                                                
6 See the User’s Manual for the ECLS-K Base Year Public-Use Data Files and Electronic Codebook, NCES 2001-

029 (U.S. Department of Education, National Center for Education Statistics, 2001) or the ECLS-K Psychometric 

Report for Kindergarten through First Grade (Rock and Pollack, 2002) for a more complete description of the 

assessment procedures. 
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Three types of scores were reported for each test: (1) the number of questions answered 

correctly on the first-stage routing test, (2) item response theory (IRT) scale scores, and (3) 

standardized (t-scale) scores. The most appropriate of these for the purpose of this study are the 

IRT scores, because IRT scores are designed to make it possible to calculate scores that can be 

compared regardless of which second-stage form a child took in the adaptive test. They 

compensate for the possibility of a low-ability student guessing several items correctly. In 

addition, they make possible longitudinal measure of gain in achievement over time, even though 

the tests administered are not identical at each point (Tourangeau et al., 2001).   

Teacher-level variables   

Information on the teachers in both kindergarten and first grade was gathered in a set of 

self-administered paper-and-pencil questionnaires that included questions about their 

backgrounds and instructional practices. Background characteristics used in this study consisted 

of indicators for race/ethnicity, teaching experience, certification, educational attainment, and 

completion of courses in methods of teaching mathematics.
7
 Other relevant variables consisted 

of time spent on preparation, and, most importantly, a set of instructional practices described in 

the next section. 

 Instructional Practices  

The spring teacher questionnaires include sets of items that address instructional practices 

in mathematics. The items address a wide range of practices that may occur in classrooms in the 

early grades and were selected to align with the skills tapped by the ECLS-K achievement 

assessments. 

                                                
7
 Based on exploratory analysis, (i) we trichotomized years of teaching experience as 0-4, 4-10, 10+; (ii) we 

dichotomized coursework as 0-2 versus 3+ courses.   
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Both the kindergarten and first grade teachers were asked very similar questions 

regarding their instructional practices; thus we were able to construct nearly identical sets of 

practices that apply to the two time periods. Specific pedagogical practices are listed as items in 

the ECLS-K teacher questionnaire under the question:  “How often do children in the class do 

each of the following math activities?”  The kindergarten teacher questionnaire includes 17 

activities representing different pedagogical modalities. The first grade teacher questionnaire 

included the same items, with very few differences.
8
  We code teacher responses on all of these 

items to reflect days per month.
9
  

In addition to these items, we include a measure of time spent on mathematics in our 

analyses. Teachers were asked how often they teach mathematics and how much time they spend 

on the subject on the days they teach it. We combined the responses to both questions to estimate 

the total hours per week a teacher reported spending on mathematics. In addition, teachers were 

asked the extent to which they utilized divided achievement grouping, without special reference 

to mathematics. This was coded as hours per week the student’s spent in such groups. 

Content Coverage  

In addition to the pedagogical variables, the surveys contain several items relating to 

content coverage. The stem question is:  “How often is each of the following math skills taught 

in the class?” and 29 skill or content areas are then listed. We use these items as control variables 

to enable us to isolate the effect of pedagogical techniques holding constant content emphases 

that might align to a greater or lesser degree with the tests. They are recoded in a manner similar 

                                                
8
 The first grade questionnaire adds “Work on problems for which there are several appropriate methods or 

solutions” and “Do worksheet or workbook page emphasizing routine practice or drill” to the 17 kindergarten 

pedagogy questions. 
9
 We code the response categories for mathematics activities using what is essentially interval midpoint scaling:  

“never” → 0 days per month;  “once a month or less” → 1 day per month; “two or three times a month”  → 2.5 days 

per month; “once or twice a week” → 6 days per month; “three or four times a week” → 14 days a month; “daily” 

→ 20 days per month. The metric assumes a standard of four weeks in a month and five working days per week.   
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to that of the pedagogy variables.
10

 Appendix Table 1 displays descriptive statistics for the 

teacher variables included in the model. 

Classroom Characteristics   

Teachers were also asked to describe demographic characteristics of their classes. 

Reported are class size and the percentages of children of different racial-ethnic groups and with 

disabilities. We include these in our analyses to control for differential teacher responses to 

variation in classroom composition.  

Child and Family Variables   

Student-specific variables used in our analyses include the number of days elapsed 

between tests, indicators for disability status, attending a full day kindergarten, whether the child 

is repeating kindergarten, and whether the child takes the test in Spanish. In addition, we include 

several controls that capture socioeconomic status (e.g., parent education and income), family 

behaviors (e.g., parental involvement, the number of extracurricular activities in which the child 

engages, how often the child reads, and the number of educational activities in which the child 

participates in the home), and family structure (e.g., single parent, number of siblings). ECLS-K 

provides a rich set of such variables, allowing us to capture child effects that are often omitted in 

administrative data.  The full set of these controls and their descriptive statistics are also included 

in Appendix Table 1.  

Sample Adjustments 

Although item non-response for the variables in our study is typically low (e.g., around 

one to two percent for the pedagogy practices, as shown in Appendix Table 2), the combined 

                                                
10 The response categories for the skills (content) items are the same as those for the activities (pedagogical 

modalities) items, except that the “never” category was named “not taught” and expanded into “taught at a higher 

grade level” and “children should already know.”  We code the “not taught” categories as 0 times per month. 
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effect of missing item responses across all variables leads to a sample decrease of  more than 60 

percent in kindergarten and more than 65 percent in first grade. This drop in the number of 

observations hinders our ability to estimate the pedagogy and teacher characteristic effects with 

precision. To counter the loss of information stemming from item non-response, we used 

Royston's (2004) Stata implementation of chained multiple imputation (Van Buuren, Boshuizen 

& Knook, 1999) to impute missing values for all variables except student test scores. Forty 

imputed data sets were produced for each of three types of data—pooled data from both 

kindergarten and first grade, data from kindergarten only, and data from first grade only. The 40 

pooled data sets were each composed of 21,232 student-year observations representing students 

with test score at all three waves. The separate kindergarten and first grade cross-sectional 

imputed data sets were composed of 16,356 and 11,780 student observations, respectively, 

including students with non-missing current and lagged test scores only in the particular grade 

imputed. Post-imputation estimation was carried out using Stata routines influenced by Carlin, 

Galati & Royston (2008). Following ECLS-K guidelines, we used sampling weights supplied 

with the data in the imputation to better approximate the initial population. 

5. Methods 

Here we outline a decision-making process to choose among the 18 model/estimation 

choices described in Section 2 and illustrated in Figure 1. To decide among these alternatives, we 

undertake a multi-step investigation. Each step pertains to one of the decisions needed:  lag score 

versus gain score, cross-section versus panel, and ultimately choosing an estimator.  

Gain Score vs. Lag Score  

Deciding between a gain score or lag score model amounts to testing whether the 

assumption λ=1 in equation (6) is justifiable. In addition to merely observing the coefficient of 
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the lagged test score when estimating equation (6), we make use of a test proposed by Harris, 

Sass, and Semykina (2011). Applied to our problem, this test amounts to testing the joint 

significance of including a set of variables representing the first lags of all the inputs in the gain 

score equation (7) for first grade. Formally, this is a test of the null hypothesis that . The test 

is motivated by the idea that the lagged score, with the coefficient constrained to equal one, 

effectively serves as a sufficient statistic for past inputs. Therefore, if the gain score approach 

properly controls for past inputs, the included lagged inputs should not be statistically 

significant. It should be noted, however, that since we observe only two grades, the test of 

will pertain only to first grade because there are no lags of inputs available for kindergarten. 

Cross Section vs. Panel 

 The decision to use panel data versus separate cross-sections in our analyses is based on 

three considerations:  whether the impact of teacher characteristics and practices changes across 

grades, whether there are precision gains due to increased sample sizes, and whether there is a 

need for panel data methods to eliminate time-invariant unobserved child heterogeneity, which 

may bias estimates of teacher effects related to PDG and TC.  

To investigate whether the impact of teaching practices varies across grades, we estimate 

equation (6) or (7) (depending on whether we choose a gain score or a lag score model) using the 

pooled data and including interactions between a grade dummy and all teacher characteristics 

and practices. If several characteristics and practices interact significantly with grade, it would 

indicate that either the interactions should be included in any panel analyses or that cross-

sectional regressions should be run separately by grade.  

Possible precision gains from using the panel, due to the increased number of 

observations, might be a reason to prefer the panel regressions, but such gains are likely to be 




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quite small. As mentioned in the previous section, the grade-specific sample sizes in ECLS-K 

(N=16,356 for kindergarten and N=11,780 for grade 1) are likely large enough to mitigate 

concerns over lack of precision.  

The most important driver of the decision regarding the panel versus the cross-sections is 

the question of whether unobserved child-specific heterogeneity ci is likely to bias the teacher 

effect estimates. Only panel data methods (i.e., FE in the gain score model and AB in the lag 

score model) address this problem by eliminating the effects of heterogeneity. Assessing the 

influence of heterogeneity is not straightforward and the tools and tests at our disposal provide 

only suggestive evidence of the extent of the problem. Nevertheless, we can make use of the 

following set of procedures. 

A common approach to assessing the influence of unobserved heterogeneity on the effect 

estimates is to use a Hausman (1978) test in which the coefficients from random and fixed 

effects estimators are compared, or a related variable addition test suggested by Wooldridge  

(Wooldridge, 2002, ch.10, p.288-291).
11

 It should be noted, however, that in our achievement 

regression, the RE and FE estimators are consistent only for the gain score model; thus we can 

seek evidence from these tests only under the assumption that λ=1. Therefore, if our results from 

step one indicate that the gain score model is not a viable option, these tests cannot be viewed as 

reliable. Similarly, both estimators require strict exogeneity of the included regressors, and a 

violation of this assumption limits the reliability of this test. 

Another approach to assessing the influence of unobserved heterogeneity that is 

applicable in both the gain score model and the lag score model is to investigate how observable 

child and family characteristics vary across different levels of exposure to particular teacher 

                                                
11 This is accomplished by estimating the gain score equation (7) with the addition of variables representing the 

within-child average values across time of all the time-varying variables.  If a joint significance test of all the time 

averages rejects, it provides evidence that the random effects assumption is not justified. 
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characteristic (TC) or teaching practices (PDG). To do so, we adapt the common balance of 

covariates approach, in which the mean observable characteristics across levels in TC or PDG 

are compared. First we explore whether the variables in TC or PDG (which we can refer to as 

“treatments”) vary with the child-specific observables—prior achievement and the variables 

contained in Xijst—in the following regression:
12

  

(8) 
, 1Teacher variablei t i t it itY X v       

If a test of joint significance of all the right-hand-side variables in (8)—i.e., a test of the 

null that all β and ξ are zero—does not reject, then there is strong evidence that treatment is 

unrelated to these observed child characteristics. In this case, we have more confidence that 

selection on unobservables is also negligible. If instead the test rejects, then we conclude that 

exposure to treatment differs systematically across child characteristics and, unless we believe 

that our set of observables is so complete as to eliminate anything that might be left in ci (e.g., 

individual intelligence or motivation) which is correlated with treatment, we might continue to 

worry about unobserved heterogeneity.  

If the test rejects, a possible reason might be that systematic variation of treatment across 

child and family characteristics is due to the sorting of children with particular characteristics 

into particular schools. To verify this, we can run the following regression, which includes both 

the child variables and school dummies, and again test the joint significance of the child 

variables: 

(9) , 1Teacher variablei t i t it s itY X v         

 If the inclusion of school dummies removes the significance of the child variables, then 

we can assume that treatments are distributed randomly across child characteristics within 

                                                
12

 For computational feasibility, when the dependent variable is dichotomous, we use a linear probability model with 

discrete regressors.  
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schools. This would offer evidence that, at least within schools, selection on observables is 

negligible. If we again rely on the assumption that selection on the unobservables, ci, should be 

no more threatening than that related to our rich set of observables, then we can argue that panel 

data methods that remove ci are unnecessary, and that the inclusion of school dummies in either 

the cross-sectional or panel regressions will suffice to remove this threat. If instead, evidence of 

unobserved heterogeneity is non-negligible, then the panel will be needed at the cost of requiring 

the additional assumptions discussed in Section 2 for consistent estimation of the treatment 

effects. 

Choosing an Estimator 

The above analyses provide a strategy for choosing between the lag and the gain score 

model and deciding whether to pool or separate the data across grades. After gathering the 

information from these analyses, we can substantially narrow down the set of 18 choices 

illustrated in Figure 1. The gain score/lag score decision, coupled with the cross-section/panel 

decision will lead to a small number of estimators for further consideration. In addition, the 

assignment to treatment analysis helps determine whether or not to include school dummies. At 

this point, if more than one model/estimation method remains viable, we will compare their 

findings and discuss the similarities and differences found. 

6. Results 

Gain Score vs. Lag Score:  Results 

To choose between using the lag score equation (6) or the gain score equation (7) we first 

visually inspect the coefficient on prior test scores in (6) and then apply the test proposed by 

Harris, Sass, and Semykina (2011). When we use OLS to estimate (6) with the panel, our 

estimate of is 0.7505 and when we estimate it with the cross-sections, the estimate of is  
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0.9070 for kindergarten and 0.6998 for first grade. All three estimates are statistically different 

from 1, with the p-value equal to 0.0000 in each case for the test of the null hypothesis that λ=1. 

For the formal test, we estimate equation (7) and include the lagged inputs in the first grade 

specification. We find the lagged inputs to be statistically significant when included in equation 

(7), with a p-value for the joint test of significance of 0.0005. Given these results, we choose the 

lag score specification found in equation (6).  

Cross Section vs. Panel:  Results 

To investigate whether teaching practices should be allowed to vary across grades, we 

estimated equation (6) using the pooled data and including interaction terms between the grade 

dummy and all the teacher practices and characteristics. The results are shown in Table 1. Due to 

the large number of controls included in the model, we only display those relevant to our 

research question – i.e., the teaching practices and teacher characteristics. We find significant 

interactions with grade for a small number of teacher characteristics and teaching practices. Post-

graduate education matters more in predicting higher achievement in first grade than in 

kindergarten. Working with counting manipulatives predicts lower achievement in first grade 

than in kindergarten—outweighing the positive main effect. Overall, we find that pooling the 

data and constraining the coefficients to be the same across grades can obscure grade-specific 

relationships in a sufficient number of instances so as to make it helpful to separate our 

regressions by grade.   

To assess whether there is evidence of selection on observables, we estimate equations 

(8) and (9)—i.e. the treatment regressions. The p-values for the joint F-test for these regressions 

are presented by grade in Table 2. For equation (8), our results show that for most teaching 

practices and most teacher characteristics we consider, the child variables are found to be jointly 
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significant, indicating that treatments are not randomly distributed across these observable 

characteristics. However, once we condition on the school attended by including school dummies 

in equation (9), the child variables are jointly significant in only one case—having a Hispanic 

teacher.
13

 In effect, all other teacher characteristics and instructional practices appear to be 

randomly assigned to students with different observable characteristics within schools. This 

offers evidence that the selection on observables is random within schools. Because of the rich 

set of observables these data provide, it can be argued that selection on unobservables should 

also be negligible. Thus, panel data methods that remove child effects (i.e., FE and AB) may be 

overly cautious—with the first differencing removing too much variation—if we already control 

for school differences with these data. Using AB instead of a simpler estimator with school 

dummies will likely increase standard errors due to the lost variation in the data and reduce our 

ability to detect significant effects. Furthermore, AB requires additional assumptions, such as no 

serial correlation in equation (6) and strict exogeneity of the other inputs.
14

  By eschewing AB, 

we do not rely on these assumptions to obtain consistent estimates.  

As a result of these analyses, we narrow down the model/estimation choices in Figure 1 

to those that use cross-section data (and thus preserve maximum flexibility) and include school 

dummies. 

Note that previous studies relying on HLM techniques (e.g., Guarino et al. 2006, 

Bodovski & Farkas 2007, Parlady & Rumberger 2008, Rowan, Correnti, & Miller 2002) 

assumed random school effects, which are uncorrelated with the teacher characteristics and 

practices experienced by the child, rather than fixed school effects, which do not impose this 

                                                
13

 Further investigation (not shown in a table) revealed that some racial/ethnic matching may take place within 

schools, which led us to include interactions between teacher and child race categories on our achievement 

regressions.  
14

 AB also requires that the coefficient on the lagged dependent variable not be close to one.  In that case, it breaks 

down due to a weak instrument problem.   
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assumption. The above analyses suggest that this assumption is unlikely to hold in ECLS-K, thus 

leading estimators with random school effects to be inconsistent.  

Choosing an Estimator:  Results 

At this point, the remaining estimation choices among those outlined in Figure 1 are OLS 

and HLM on the lag score model with school dummy variables. Table 3 presents results for 

teacher characteristics and teaching practices using these estimators side by side. Certain teacher 

characteristics and practices—though relatively few—show evidence of producing achievement 

effects.  The two methods produce very similar results.
15

 The main difference between the two 

approaches lies in the computation of the standard errors.  We used cluster-robust standard errors 

at the school level in the OLS regressions, producing standard errors that tended to be slightly 

more conservative. 

Teacher characteristics show different effects in kindergarten and first grade as expected 

due to our previous investigation of interaction terms.  In kindergarten, we find evidence that 

having a teacher who is certified reduces achievement in kindergarten by approximately .43 IRT 

scale points (a small effect of about 1/25 of a standard deviation
16

) and that having taken more 

than two courses in methods of teaching mathematics reduces achievement by a little more than 

half that amount.  In first grade, we find, however, that certification and coursework does not 

matter one way or the other, but that training in the form of advanced degrees has a positive 

effect: having a teacher with post-graduate education raise test scores by roughly four IRT scale 

points—i.e., more than one-third of a standard deviation. The differences in the effects of 

                                                
15

 In fact, the coefficients themselves are more or less identical for OLS and HLM in kindergarten due to the fact 

that the estimated unexplained variance in achievement due to differences in teachers within schools is very close to 

zero.  In first grade, this variance component is somewhat larger.
16

 As shown in Appendix Table 1, the standard 

deviation in test scores is 8.84 in kindergarten and 8.65 in first grade. 
16

 As shown in Appendix Table 1, the standard deviation in test scores is 8.84 in kindergarten and 8.65 in first grade. 
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background training and education between kindergarten and first grade—discussed further in 

the next section—are noteworthy.   

Small but for the most part strongly significant effects emerged in both grades with 

respect to teaching practices, and, again, the effects of specific practices differ across grades. In 

kindergarten, teachers who emphasize the use of counting manipulatives and the chalkboard 

have a positive impact on achievement. The effects are small—using any of these practices for 

an additional 10 days per month will raise test scores by less than 1/25 of a standard deviation in 

IRT scale points. The smaller standard errors in the HLM regression also point to weak evidence 

that using math worksheets has a small positive effect and using creative movement to teach 

math has a small negative effect. 

In first grade, teachers who spend more time engaging students in explaining how a 

mathematics problem is solved raise test scores by approximately .05 IRT scale points, and the 

coefficient is highly significant. Although somewhat larger than the other coefficients, it 

indicates that using this practice an extra 10 days per month will raise achievement by 1/20 of a 

standard deviation—still a modest effect.  A smaller and weakly significant positive effect is 

detected for doing mathematics problems from a textbook.  In addition, the HLM regression 

provides some evidence that working on problems for which there are several solutions has a 

positive impact on achievement, a finding that complements the strong finding for explaining 

math problems. 

Discussion 

If we assert that the findings are causal, some policy implications emerge. Even though 

kindergarten and first grade represent closely spaced points on a continuum of early childhood 

education, we find that few characteristics and practices have a consistent effect in both grades. 
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Our results could be interpreted as suggesting that training and pedagogy that is geared toward 

analysis or explanation is appropriate for first grade but not necessarily for kindergarten. There 

are three possible explanations for this. One is that the ECLS tests measure very different 

constructs in the two grades. However, given that the tests are constructed by the same 

assessment teams so as to provide a certain amount of continuity, this seems unlikely. Or, 

secondly, curricular differences across the two grades may be such that they align more with 

standardized tests in first grade. However, given the large set of content coverage controls in our 

models, this also seems unlikely. A third explanation, that the cognitive development of a child 

differs markedly across these two periods of growth, is perhaps more likely. As a corollary to 

this hypothesis, the negative finding for certification in kindergarten warrants further 

investigation and suggests either that the approach to mathematics pedagogy in early elementary 

teacher trainings programs may not be geared toward achieving the kind of learning that can be 

measured by standardized tests administered at that point in time, or that it is not well aligned 

with learning development at the kindergarten stage.  It is important to note that teacher training 

programs generally group kindergarten, early elementary, and upper elementary training into the 

same mathematical content and pedagogy courses.  Thus training is not fine-tuned toward 

specific developmental stages.  

Our findings with respect to the specific practices suggest that the developmental needs 

of students change from kindergarten to first grade and may require different teaching 

techniques. The use of counting manipulatives, although fairly frequently used in both grades, 

with kindergarten teachers using it an average of 12.5 times per month and first grade teachers 

using it an average of 11 times a month (see Appendix Table 1), only affected achievement in 

kindergarten. A possible explanation might be that the usefulness of this type of manipulative in 



What can we learn about effective early mathematics teaching? 
 

 28 

influencing learning reaches a plateau; kinesthetic approaches may prove effective among 

kindergarteners, whereas first grade students may outgrow their use. Also effective in 

kindergarten only is the use of chalkboards. Kindergarten teachers report using this practice only 

4.7 times per month on average while first grade teachers use it almost twice that amount, 

suggesting that its relatively non-routine practice in kindergarten produces a helpful boost to 

achievement. On the other hand, the more verbally-oriented pedagogical technique of asking 

students to explain how a problem is solved influences achievement for first grade students but 

not for kindergarten students. It is encouraging to note that this practice is utilized relatively 

often in first grade (on average, 12.8 times per month in first grade versus 8 times per month in 

kindergarten).  

Several explanations might be offered for the small pedagogical effects. First, it is 

important to acknowledge the limitations of retrospective survey items in accurately capturing 

the frequency of use.  Although some studies have validated survey responses by comparing 

them with measurements taken during classroom observations (Mayer, 1999; Stipek & Byler, 

2004), some measurement error and possibly recall bias may remain.
17

 Measurement error, if 

random, would attenuate coefficients.  Another possible explanation is that pedagogical activities 

as isolated and specific as those we measure may have a small effect on learning and that several 

“best practices” or artful combinations of them are needed to produce substantial learning gains. 

Finally, it may be the case that it is not so much what a teacher does but how she does it that 

matters in producing learning. Thus measures of frequency and not quality of teaching modalities 

do not capture all the essential components of pedagogy.  In other words, the effect of an 

effective kindergarten teacher who completes math problems on a chalkboard might differ from 

                                                
17

 That the “continuous” frequency scale was derived from more approximate, discrete frequency categories 

undoubtedly contributes to measurement error. 
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that of an ineffective one who does the same thing. In this sense, it should be acknowledged that 

despite the steps we have taken to select an estimation strategy, an impediment to claiming that 

our results are causal remains. The remaining issue is that neither the OLS nor the HLM 

estimator deals with the possibility that omitted teacher effects, represented in (6) and (7) by τj 

are nonrandom. As we have mentioned, one concern might be that high quality teachers tend to 

use certain teaching techniques but that such techniques, if adopted less skilled teachers, would 

produce little effect. Or, it is possible the seeming ineffectiveness of particular techniques may 

be due to inadequate training in those methods. Thus there is a question whether the technique 

itself or the ability of teachers to properly use the technique matters. 

Our data follow a single cohort of students and do not provide the type of longitudinal 

information on their teachers that would permit us to control for time-constant teacher effects.  

We have no econometric technique at our disposition that allows us to eliminate unobserved 

teacher effects. We might argue, however, that the inclusion of the extensive set of teacher 

characteristics, content coverage variables, and school indicators, as well as our practices of 

interest, substantially narrows the range of what can be attributed to an unobserved teacher 

effect. Furthermore, in sensitivity analyses
18

 in which teacher characteristics are omitted from the 

model, the practice estimates change very little, suggesting that their use is not driven by training 

or experience in ways that affect achievement. 

Sensitivity of Findings to Other Specifications and Estimators 

As mentioned in our review of the literature, prior survey-based studies have tended to 

use different models and estimators from those selected in our analysis. In order to demonstrate 

the importance of taking careful steps in selecting the methods used, Table 4 shows the 

sensitivity of findings to the choice of model and estimator. The table displays results for HLM 

                                                
18

 These analyses are not shown in the paper but are available from the authors upon request. 
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estimation with random school effects on the kindergarten and first grade cross-sections in the 

first four columns—analytic approaches that have been more prevalent in the literature than our 

preferred approaches—and results for the child fixed effects estimator applied to the panel in the 

last column. The HLM estimation is carried out for both the lag score and the gain score model. 

Before discussing the differences between these approaches and our preferred 

approaches, it is interesting to note the differences between the lag and gain score models in the 

results displayed here in Table 4.  Moving to a gain score model has little effect on the 

magnitude of the estimates for kindergarten but a noticeable effect on those for first grade. Recall 

that in these data, the coefficient on lambda was fairly close to one for kindergarten and much 

lower for first grade.  In addition, our test of the λ=1 assumption applied only to first grade. Thus 

it appears that using the gain score model in the ECLS-K data is relatively costless in 

kindergarten, but these results serve to support our claim that doing so in first grade introduces a 

noticeable amount of bias.  

Given this evidence, it seems all the more unlikely that the FE estimator in column five 

has much insight to offer, since it not only relies on a gain score model but also constrains the 

coefficients on teacher characteristics and practices to be the same across grades and relies on the 

strict exogeneity assumption.  It is also interesting to note that the FE estimator, having removed 

a great deal of variation by time-demeaning the data, displays larger standard errors and thus 

finds no variable to be significant at the .05 level. For instance, the point estimate for the effect 

of having a teacher with regular certification is of similar or greater magnitude to the others; 

however the standard error is approximately twice as large. Differences in significance due to 

large changes in the point estimates (for example, see the coefficient on “very experienced”), on 

the other hand, may be due to bias—for example due to violations of strict exogeneity. Overall, 
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the FE estimator, applied to these data and research questions, offers little in the way of policy-

relevant information with regard to our research question.  

Moving now to a comparison of results from the HLM estimators containing random 

school effects (i.e., those commonly used in the literature) with those derived from our preferred 

estimators, shown in Table 3, we find a few similarities but some notable differences.  With 

regard to teacher characteristics, the HLM results from Table 4 generally display coefficients 

with slightly lower magnitudes for certification and coursework in kindergarten and coefficients 

with more notably lower magnitudes for postgraduate study in first grade.   

With regard to instructional practices, the Table 4 HLM estimates diverge from those in 

Table 3 in several instances.  In kindergarten, they show a significant negative effect of counting 

out loud, the use of geometric manipulatives, engaging in calendar-related activities, whereas 

these are not significant when school effects are treated as fixed.  In addition, although both sets 

of results display significant coefficients for working with counting manipulatives and 

completing problems on the chalkboard, the magnitudes differ slightly.  In first grade, the 

magnitude and significance of counting out loud, the use of calendars, and working on problems 

with several solutions differs across the two sets of results, and the magnitude of the most robust 

results—that of explaining how problems are solved—is somewhat understated.  

It is important to reiterate why we might see the differences outlined above. Differences 

in the conclusions based on different estimators can be driven either by differences in the point 

estimates or in the standard errors. Of the two HLM approaches, the school random effects 

specification tends to produce smaller standard errors due to the additional covariance structure 

imposed on the estimation. However, it is not the case that differences in the conclusions drawn 

between the two HLM estimators are purely due to smaller standard errors. Rather, it is typically 
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the case that the magnitude of the point estimates changes enough to alter the significance level. 

Such differences in the point estimates likely occur because estimates with school random effects 

do not properly control for the sorting of students into different schools, whereas when the 

random school effects are replaced by fixed effects, this sorting is explicitly accounted for.
19

  

It is important to note that not only our preferred approaches but also our sensitivity 

analyses using HLM with random school effects produce some results that differ from the HLM 

studies in the prior literature and lead to different conclusions, particularly for first grade. This 

happens despite our attempts to mimic their methods in our sensitivity analyses. In these cases, 

specification and sample differences account for much of the divergence. 

It is difficult to compare our findings with those of the two kindergarten studies we cited 

(Guarino et al., 2006 and Bodovski and Farkas, 2007), because the prior studies used 

instructional practice scales rather than individual practice variables. Both prior studies found 

that “traditional approaches” were positive and significantly related to achievement and thus 

conflated the effects of some of the variables we use (i.e., worksheets, textbooks, and 

chalkboard), one of which we find highly significant. However, our findings did not concur with 

other findings of theirs, such as the positive impact of student centered instruction in Guarino et 

al. (a scale composed of items such as explaining how mathematics problems are solved, playing 

games, and using music or creative movement), and interactive instruction in Bodovski and 

Farkas (a scale composed of items such as explaining how mathematics problems are solved, 

solving problems in small groups or with a partner, and peer tutoring).  

The differences between our results and those of Parlady and Rumberger’s 2008 study of 

first grade are more stark and seemingly due to sample differences.  The prior study used the 30 

percent subsample of first graders who were sampled in the fall as well as the spring and did not 

                                                
19

 In other words, by controlling explicitly for δs in equations (6) and (7), rather than assuming it is random. 
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impute missing data. Their findings that the use of math worksheets and calendars raise and the 

use of geometric manipulatives lower first grade achievement are not supported in our study 

based on the full sample, even when we employ methods that are similar to theirs. 

7. Summary and Conclusions 

Survey data on instructional practices, if well designed and carefully analyzed, have the 

potential to address questions regarding the means by which effective teachers can affect student 

success. Simple teacher performance studies based on administrative data can be useful in 

showing that quality matters but have access to very limited information on teachers and provide 

little insight regarding policy prescriptions needed to improve overall effectiveness. Surveys that 

use richly detailed survey data to focus on teachers’ actions and how they affect student 

outcomes can hold the key to designing policy instruments, assuming the results they find are 

causal. 

A source of concern in non-experimental research on teacher effects, however, is the 

sensitivity of findings to different modeling and estimation techniques. This paper has outlined a 

process for selecting an appropriate model and estimation method to investigate teacher effects 

on student achievement using longitudinal survey data. We applied this process in a series of 

sequential steps to data from ECLS-K and found little evidence to support many of the modeling 

and estimation choices heavily relied upon in the literature—for example, models with gain 

scores or random school effects or models that constrain coefficients to be the same across 

grades.  

Our study clearly illustrates how methodological choices can influence results. Although 

a few of our findings concur with those in prior research, most diverge. Prior studies find little or 

no relationship between teacher background characteristics and mathematics achievement in 
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either kindergarten or first grade, but we find evidence that teacher certification may slightly 

lower achievement in kindergarten and that postgraduate education may contribute to relatively 

substantial achievement gains in first grade. In addition, whereas prior studies claim that student-

centered or interactive pedagogy improves achievement in kindergarten and that worksheets and 

calendars are important tools in first grade, we find that working with counting manipulatives 

and completing math problems on the chalkboard improve achievement in kindergarten and that 

explaining how mathematics problems are solved is important in first grade.  Taken as a whole, 

our findings suggest that there may be important developmental differences in the mathematics 

learning capabilities of children in kindergarten versus first grade and that training and pedagogy 

should be structured appropriately. 

Importantly, there is no finding that holds up under all the many specification and 

estimation approaches available to researchers—a circumstance that highlights the need to 

ground the selection of a model and estimation method on sound reasoning. Clearly, it is 

important that researchers justify their methodological choices through a thorough investigation 

of related assumptions and sensitivities. The guidelines for empirical investigation in the 

longitudinal survey data context provided in this study can aid researchers in selecting a credible 

set of results and advancing causal claims.  
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Table 1: OLS Estimates of Lag Score Specification  Pooled with Grade Interactions with School Dummies 

 
Base 1st Grade  Interaction 

 Teacher Characteristics 
  Black -0.3012 -0.4136 

 
(0.5627) (0.7835) 

Other -0.1369 0.0286 

 
(0.4828) (0.6619) 

Hispanic -0.4883 0.7102 

 
(0.5501) (0.8390) 

Novice -0.1978 0.1326 

 
(0.2303) (0.3360) 

Very experienced -0.5538*** 0.4035 

 
(0.2018) (0.3001) 

Above BA 0.1938 1.9183** 

 
(0.1999) (0.8159) 

Masters or above 0.1571 2.1143** 

 
(0.2151) (0.8216) 

Regular certification -0.3349 -0.1044 

 
(0.2591) (0.3528) 

Courses in methods for teaching math 0.0142 0.0365 

 
(0.1567) (0.2191) 

Paid preparatory time 0.0514 -0.0789 

 
(0.1994) (0.2572) 

Non-paid preparatory time 0.1030 -0.0463 

 
(0.1525) (0.1994) 

Pedagogy Practices 
  Hours per week teaching math 0.0208 0.0073 

 (0.0408) (0.0648) 

Hours per week in math groups -0.0633 0.0486 

 (0.0765) (0.1009) 

Count out loud -0.0341* 0.0132 

 (0.0202) (0.0239) 

Work with geometric manipulatives -0.0333** 0.0379* 

 (0.0139) (0.0224) 

Work with counting manipulatives to learn basic operations 0.0544*** -0.0680*** 

 (0.0175) (0.0221) 

Play mathematics-related games -0.0220 0.0140 

 (0.0145) (0.0201) 

Use a calculator for math 0.0219 0.0029 

 (0.0327) (0.0476) 

Use music to understand mathematics concepts -0.0016 -0.0319 

(0.0144) (0.0313) 

Use creative movement or drama to understand mathematics 
concepts 

-0.0226 -0.0012 

(0.0189) (0.0315) 
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Work with rulers, measuring cups, spoons, or other measuring 
instruments 

-0.0153 -0.0284 

(0.0202) (0.0298) 

Explain how a mathematics problem is solved 0.0144 0.0181 

(0.0128) (0.0183) 

Engage in calendar-related activities 0.0162 -0.0069 

 (0.0244) (0.0285) 

Do mathematics worksheets 0.0217 -0.0075 

 (0.0133) (0.0181) 

Do mathematics problems from the textbook 0.0297** -0.0082 

(0.0135) (0.0162) 

Complete mathematics problems on the chalkboard 0.0359** -0.0202 

(0.0141) (0.0180) 

Solve mathematics problems in small groups or with a partner 0.0001 0.0139 

(0.0154) (0.0224) 

Work on mathematics problems that reflect real-life situations 0.0043 0.0045 

(0.0149) (0.0208) 

Work in mixed achievement groups -0.0074 0.0052 

 (0.0113) (0.0155) 

Peer tutoring -0.0037 0.0118 

 
(0.0121) (0.0180) 

   Observations 21,232 

Standard errors clustered at the school level in parentheses; estimation with 40 imputed data sets 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2: Random Assignment Test p-values: Joint Significance of Child Characteristics and Lagged Score 

 
Kindergarten 1st Grade 

Dependent Variable 
Without School 

Dummies 
With School 

Dummies 
Without School 

Dummies 
With School 

Dummies 

Pedagogy Practices 
    

Hours per week teaching math 0.0000 0.6841 0.1145 0.9220 

Hours per week in math groups 0.0000 0.1051 0.0000 0.9683 

Count out loud 0.0011 0.2916 0.0000 0.8087 

Work with geometric manipulatives 0.0000 0.4642 0.0000 0.9678 

Work with counting manipulatives to learn basic 
operations 

0.0003 0.2363 0.0004 0.3322 

Play mathematics-related games 0.0928 0.1510 0.3604 0.8725 

Use a calculator for math 0.3464 0.9923 0.0001 0.9976 

Use music to understand mathematics concepts 0.0008 0.2787 0.0136 0.9748 

Use creative movement or drama to understand 
mathematics concepts 

0.0000 0.6779 0.0000 0.8972 

Work with rulers, measuring cups, spoons, or other 
measuring instruments 

0.0046 0.2788 0.2348 0.2008 

Explain how a mathematics problem is solved 0.0000 0.7656 0.2025 0.2329 

Engage in calendar-related activities 0.0170 0.3226 0.0002 0.9661 

Do mathematics worksheets 0.0000 0.9823 0.2742 0.6238 

Do mathematics problems from the textbook 0.0000 0.9489 0.0000 0.8261 

Complete mathematics problems on the chalkboard 0.0000 0.9054 0.0000 0.9381 

Solve mathematics problems in small groups or with 
a partner 

0.0000 0.9257 0.0048 0.8505 

Work on mathematics problems that reflect real-life 
situations 

0.0200 0.9708 0.0209 0.9313 

Work in mixed achievement groups 0.0033 0.3245 0.0000 0.7647 

Peer tutoring 0.0037 0.6531 0.0000 0.9711 

Do worksheets or workbook page emphasizing 
routing practice or drill 

  0.0025 0.9871 

Work on problems for which there are several 
solutions 

  0.0000 0.6069 

Teacher Characteristics     

Black 0.0000 0.4198 0.0000 0.7903 

Other 0.0017 0.8295 0.0004 0.5561 

Hispanic 0.0000 0.0002 0.0000 0.0105 

Novice 0.0762 0.5053 0.0014 0.9622 

Very experienced 0.0026 0.3906 0.0012 0.9528 

Above BA 0.0000 0.8872 0.0001 0.7972 

Masters or above 0.0000 0.8701 0.0000 0.7798 

Regular certification 0.0000 0.4256 0.0000 0.9374 

Courses in methods for teaching math 0.2598 0.5452 0.0660 0.8519 

Paid preparatory time 0.0000 0.9813 0.0000 0.9950 
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Non-paid preparatory time 0.0004 0.6177 0.0089 0.9681 
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Table 3: Main Model and Estimation Results 

 

Estimation and Modeling Choices 

Estimation Method OLS MLE/HLM OLS MLE/HLM 

Specification Lag Lag Lag Lag 

School Effect Fixed Fixed Fixed Fixed 

Teacher Effect None Random None Random 

Grades Kindergarten Kindergarten 1st Grade 1st Grade 

 Teacher Characteristics         

Black 0.1236 0.1236 -0.8861 -0.5563 

 
(0.4491) (0.3879) (0.6216) (0.4933) 

Other -0.0395 -0.0395 0.3187 0.453 

 
(0.3962) (0.3331) (0.5209) (0.3942) 

Hispanic -0.0002 -0.0002 0.245 0.6662 

 
(0.4823) (0.4108) (0.7377) (0.6330) 

Novice -0.1474 -0.1474 0.3012 0.2489 

 
(0.2128) (0.1767) (0.2790) (0.2252) 

Very experienced -0.1395 -0.1395 -0.0922 -0.0997 

 
(0.1897) (0.1499) (0.2383) (0.1957) 

Above BA -0.1015 -0.1015 4.066** 3.7029** 

 
(0.1813) (0.1641) (2.0097) (1.5919) 

Masters or above 0.1616 0.1616 4.1721** 3.8633** 

 
(0.1871) (0.1635) (1.9963) (1.5822) 

Regular certification -0.4326* -0.4326** -0.209 -0.2528 

 
(0.2462) (0.2042) (0.3037) (0.2489) 

Courses in methods for teaching math -0.2555* -0.2555** 0.0069 -0.0291 

 
(0.1434) (0.1261) (0.1879) (0.1538) 

Paid preparatory time 0.0041 0.0041 0.0072 -0.0333 

 
(0.1862) (0.1556) (0.2297) (0.1956) 

Non-paid preparatory time 0.1785 0.1785 0.1188 0.1176 

  (0.1551) (0.1250) (0.2054) (0.1595) 

Pedagogy Practices 
    Hours per week teaching math 0.0138 0.0138 0.0171 0.012 

 
(0.0385) (0.0327) (0.0657) (0.0594) 

Hours per week in math groups -0.0114 -0.0114 -0.0733 -0.0799 

 
(0.0722) (0.0617) (0.0786) (0.0615) 

Count out loud -0.0247 -0.0247 -0.024 -0.0274** 

 
(0.0189) (0.0156) (0.0166) (0.0133) 

Work with geometric manipulatives -0.0096 -0.0096 0.0084 0.0081 

 
(0.0141) (0.0112) (0.0192) (0.0153) 

Work with counting manipulatives to learn 
basic operations 

0.0323** 0.0323** -0.0162 -0.0174 

(0.0152) (0.0129) (0.0180) (0.0150) 

Play mathematics-related games -0.017 -0.017 -0.0152 -0.0107 

 
(0.0122) (0.0107) (0.0183) (0.0155) 



What can we learn about effective early mathematics teaching? 
 

 43 

Use a calculator for math -0.0021 -0.0021 -0.0016 -0.0058 

 
(0.0299) (0.0240) (0.0358) (0.0304) 

Use music to understand mathematics 
concepts 

0.0049 0.0049 -0.0355 -0.0306 

(0.0127) (0.0109) (0.0289) (0.0236) 
Use creative movement or drama to 
understand mathematics concepts 

-0.0264 -0.0264* 0.0091 0.0141 

(0.0163) (0.0136) (0.0271) (0.0235) 
Work with rulers, measuring cups, spoons, or 
other measuring instruments 

-0.0018 -0.0018 -0.027 -0.0213 

(0.0177) (0.0149) (0.0274) (0.0217) 
Explain how a mathematics problem is solved -0.0026 -0.0026 0.0494*** 0.0489*** 

(0.0114) (0.0101) (0.0165) (0.0130) 

Engage in calendar-related activities 0.0123 0.0123 -0.0027 -0.0023 

 
(0.0237) (0.0204) (0.0196) (0.0162) 

Do mathematics worksheets 0.0206 0.0206* 0.0078 0.0066 

 
(0.0127) (0.0109) (0.0177) (0.0144) 

Do mathematics problems from the textbook 0.0088 0.0088 0.0275* 0.0272** 

(0.0145) (0.0127) (0.0143) (0.0115) 
Complete mathematics problems on the 
chalkboard 

0.0280** 0.0280** 0.0172 0.0174 

(0.0127) (0.0117) (0.0142) (0.0113) 
Solve mathematics problems in small groups 
or with a partner 

-0.0055 -0.0055 0.0114 0.0084 

(0.0141) (0.0117) (0.0201) (0.0157) 
Work on mathematics problems that reflect 
real-life situations 

0.0003 0.0003 -0.0211 -0.0217 

(0.0128) (0.0106) (0.0177) (0.0143) 

Work in mixed achievement groups 0.0063 0.0063 0.0102 0.0123 

 
(0.0106) (0.0086) (0.0141) (0.0115) 

Peer tutoring -0.0096 -0.0096 0.0164 0.0187 

 
(0.0118) (0.0096) (0.0159) (0.0135) 

Do worksheets or workbook page emphasizing 
routing practice or drill   

0.005 0.0021 

  
(0.0173) (0.0141) 

Work on problems for which there are several 
solutions   

0.0237 0.0286** 

  
(0.0171) (0.0141) 

     Observations 16,356 16,356 11,780 11,780 

Source: ECLS-K;  Standard errors clustered at the school level in parentheses; estimation with 40 imputed data sets 

*** p<0.01, ** p<0.05, * p<0.1 

All specifications include class size, class racial percentages, teacher content practices, family welfare status, prior 
test score, time between exams, household size, number of siblings, level of parental involvement, how often the 
child reads, participation in extracurricular activities, number of children's books; indicators for completing the 
Spanish math exam, student disability, mother's education level, household income level, mother's employment 
status, single parent family, father absent, pay tuition, child's race, speak non 
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Table 4: Alternative Models and Estimators 
  
  
  

 
Estimation and Modeling Choices 

Estimation Method MLE/HLM MLE/HLM MLE/HLM MLE/HLM FE 

Specification Lag Gain Lag Gain Gain 

School Effect Random Random Random Random None 

Teacher Effect Random Random Random Random None 

Grades Kindergarten Kindergarten 1st Grade 1st Grade Pooled 

 Teacher Characteristics      

Black 0.0820 0.1019 -0.7731 -0.6880 -0.9328 

 
(0.4290) (0.4302) (0.5019) (0.5146) (0.9257) 

Other -0.3261 -0.2909 0.0946 0.3276 -0.1778 

 
(0.3042) (0.3024) (0.4084) (0.4344) (0.8656) 

Hispanic -0.2503 -0.1968 0.8086 0.6579 -0.2694 

 
(0.4181) (0.4222) (0.6257) (0.6573) (0.9521) 

Novice -0.2577 -0.2569 0.0533 0.0218 -0.2632 

 
(0.1625) (0.1626) (0.2289) (0.2414) (0.3565) 

Very experienced -0.1416 -0.1616 -0.0957 -0.1045 -0.5128* 

 
(0.1363) (0.1358) (0.1955) (0.2073) (0.2958) 

Above BA -0.1562 -0.1394 2.3174*** 2.5012*** -0.3458 

 
(0.1420) (0.1411) (0.7260) (0.7687) (0.4092) 

Masters or above 0.0017 0.0126 2.5502*** 2.8267*** 0.0018 

 
(0.1473) (0.1474) (0.7256) (0.7685) (0.4388) 

Regular certification -0.4011** -0.3845** -0.2826 -0.3401 -0.4328 

 
(0.1730) (0.1728) (0.2399) (0.2483) (0.4258) 

Courses in methods for teaching math -0.1980* -0.1772 -0.2060 -0.1873 0.0441 

 
(0.1145) (0.1136) (0.1514) (0.1617) (0.2566) 

Paid preparatory time -0.0333 -0.0458 -0.1171 -0.1895 -0.0019 

 
(0.1279) (0.1282) (0.1713) (0.1856) (0.3024) 

Non-paid preparatory time 0.1539 0.1520 0.1777 0.1018 0.0746 

 
(0.1086) (0.1091) (0.1499) (0.1582) (0.2534) 

Pedagogy Practices 
 

    

Hours per week teaching math 0.0419 0.0462 0.0647 0.0349 0.0973 

(0.0289) (0.0288) (0.0564) (0.0587) (0.0694) 

Hours per week in math groups 0.0271 0.0241 -0.0460 -0.0151 -0.0225 

(0.0584) (0.0587) (0.0643) (0.0657) (0.1082) 

Count out loud -0.0337** -0.0309** -0.0183 -0.0011 -0.0354 

 
(0.0136) (0.0137) (0.0121) (0.0132) (0.0245) 

Work with geometric manipulatives -0.0185* -0.0181* 0.0036 0.0072 -0.0335 

 
(0.0096) (0.0097) (0.0149) (0.0154) (0.0228) 

Work with counting manipulatives to learn 
basic operations 

0.0253** 0.0274** -0.0181 -0.0095 0.0446* 

(0.0113) (0.0112) (0.0136) (0.0148) (0.0258) 

Play mathematics-related games -0.0170* -0.0191** -0.0052 0.0029 -0.0084 

(0.0092) (0.0093) (0.0149) (0.0157) (0.0217) 

Use a calculator for math -0.0027 -0.0040 0.0090 -0.0014 0.0550 

 
(0.0225) (0.0224) (0.0304) (0.0313) (0.0517) 
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Use music to understand mathematics 
concepts 

0.0152 0.0171* -0.0102 0.0042 -0.0005 

(0.0100) (0.0100) (0.0265) (0.0279) (0.0280) 

Use creative movement or drama to 
understand mathematics concepts 

-0.0255* -0.0264** -0.0144 -0.0155 -0.0479 

(0.0132) (0.0133) (0.0248) (0.0255) (0.0356) 

Work with rulers, measuring cups, spoons, 
or other measuring instruments 

-0.0085 -0.0102 -0.0060 -0.0025 -0.0330 

(0.0133) (0.0132) (0.0204) (0.0216) (0.0302) 

Explain how a mathematics problem is 
solved 

-0.0016 -0.0038 0.0372*** 0.0288** 0.0059 

(0.0085) (0.0085) (0.0122) (0.0127) (0.0208) 

Engage in calendar-related activities 

0.0311* 0.0314** 0.0239* 0.0221 0.0120 

(0.0158) (0.0158) (0.0138) (0.0144) (0.0300) 

Do mathematics worksheets 0.0240*** 0.0243*** 0.0197 0.0209 0.0290 

(0.0082) (0.0082) (0.0127) (0.0137) (0.0203) 

Do mathematics problems from the 
textbook 

-0.0028 -0.0027 0.0331*** 0.0349*** 0.0240 

(0.0090) (0.0090) (0.0096) (0.0100) (0.0178) 

Complete mathematics problems on the 
chalkboard 

0.0309*** 0.0312*** 0.0123 0.0133 0.0320 

(0.0094) (0.0094) (0.0110) (0.0118) (0.0202) 

Solve mathematics problems in small 
groups or with a partner 

0.0106 0.0115 -0.0102 -0.0113 0.0066 

(0.0111) (0.0111) (0.0147) (0.0155) (0.0234) 

Work on mathematics problems that 
reflect real-life situations 

0.0029 0.0032 -0.0009 -0.0039 0.0232 

(0.0097) (0.0097) (0.0134) (0.0143) (0.0221) 

Work in mixed achievement groups 

-0.0027 -0.0030 0.0043 0.0038 -0.0082 

(0.0077) (0.0077) (0.0112) (0.0119) (0.0178) 

Peer tutoring -0.0058 -0.0040 0.0122 0.0146 -0.0050 

 
(0.0087) (0.0087) (0.0130) (0.0134) (0.0189) 

Do worksheets or workbook page 
emphasizing routing practice or drill  

 0.0069 0.0113  

 
 (0.0128) (0.0137)  

Work on problems for which there are 
several solutions  

 0.0204 0.011  

 
 (0.0134) (0.0140)  

  
    

Observations 16,356 16,356 11,780 
 

11,780 21,232 

Source: ECLS-K;  Standard errors clustered at the school level in parentheses; estimation with 40 imputed data sets 
*** p<0.01, ** p<0.05, * p<0.1 

All specifications include class size, class racial percentages, teacher content practices, family welfare status, prior test 
score, time between exams, household size, number of siblings, level of parental involvement, how often the child reads, 
participation in extracurricular activities, number of children's books; indicators for completing the Spanish math exam, 
student disability, mother's education level, household income level, mother's employment status, single parent family, 
father absent, pay tuition, child's race, speak non-English in home, repeating kindergarten, attend full day kindergarten 
Specifications without school dummies also include school level variables: minority percentage, private religious, private 
non-religious, school enrollment, region, suburban, rural, gang problems, crime problems 
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Appendix Table 1: Summary Statistics for Forty Imputed Data Sets         

 
Pooled Kindergarten 1

st
 Grade 

 
Mean SD Mean SD Mean SD 

Child and Family Variables         

Math score 36.41 11.67 27.71 8.84 44.08 8.65 

Female 0.498 0.500 0.493 0.500 0.495 0.500 

Non-English at home 0.111 0.314 0.122 0.327 0.126 0.331 

Age in months 80.95 7.383 74.67 4.44 86.97 4.21 

Household size 4.722 1.781 2.077 0.268 8.942 6.415 

Number of siblings 1.487 1.116 1.406 0.507 1.423 0.510 

Mother work before KG 0.747 0.435 0.746 0.435 0.741 0.438 

How often child reads 4.649 2.339 4.439 2.513 4.811 2.182 

Children's books in home 82.76 61.58 74.41 59.31 85.11 62.46 

Welfare participant 0.076 0.266 0.128 0.335 0.055 0.229 

Pay tuition 0.210 0.407 0.213 0.409 0.209 0.407 

Spanish exam 0.022 0.147 0.032 0.177 0.016 0.127 

Full day KG 0.559 0.496 0.558 0.497 0.569 0.495 

Disabled 0.142 0.349 0.140 0.347 0.158 0.365 

Single parent household 0.200 0.400 0.223 0.416 0.241 0.428 

Father absent 0.207 0.405 0.227 0.419 0.242 0.428 

Days between exams 275.3 90.82 186.3 21.26 364.2 20.14 

KG repeater 0.041 0.198 0.045 0.208 0.042 0.201 

Child Black 0.132 0.338 0.150 0.357 0.136 0.343 

Child Hispanic 0.161 0.368 0.173 0.379 0.162 0.368 

Child Asian or Pacific-Islander 0.057 0.232 0.059 0.235 0.060 0.237 

Child other race 0.044 0.205 0.044 0.205 0.043 0.204 

Mother below high school 0.116 0.320 0.134 0.340 0.128 0.334 

Mother high school 0.300 0.458 0.305 0.460 0.296 0.457 

Mother some college 0.336 0.472 0.326 0.469 0.332 0.471 

Mother BA or above 0.083 0.276 0.079 0.269 0.083 0.275 

Only Child 0.146 0.354 0.001 0.023 0.001 0.023 

Mother work full time 0.470 0.499 0.462 0.499 0.481 0.500 

Mother work part time 0.229 0.420 0.217 0.413 0.223 0.416 

Parental school involvement 3.973 1.522 3.679 1.576 4.035 1.539 

Extracurricular activities 1.328 1.258 1.056 1.138 1.489 1.312 

Income less than $20k 0.203 0.402 0.239 0.427 0.226 0.418 

Income more than $100k 0.220 0.414 0.191 0.393 0.223 0.416 

Teacher Characteristics 
  

    

Teacher Black 0.062 0.242 0.065 0.246 0.066 0.248 

Teacher Hispanic 0.057 0.232 0.063 0.243 0.057 0.232 

Teacher other race 0.050 0.217 0.048 0.213 0.056 0.230 

More than two course in teaching math 0.445 0.497 0.426 0.495 0.461 0.499 

Less than five years experience 0.199 0.399 0.184 0.388 0.228 0.420 

More than nine years experience 0.621 0.485 0.618 0.486 0.600 0.490 

Certification status 0.874 0.331 0.858 0.349 0.876 0.329 

Degree greater than BA 0.323 0.467 0.349 0.477 0.298 0.457 
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Degree MA or above 0.523 0.499 0.353 0.478 0.692 0.461 

More than two hours paid preparatory time 0.715 0.451 0.710 0.454 0.705 0.456 

More than five hours non-paid preparatory time 0.431 0.495 0.406 0.491 0.444 0.497 

Teacher Pedagogy Practices 
  

    

Count out loud 15.49 6.256 17.91 4.220 13.31 6.942 

Work with geometric manipulatives 7.624 6.237 9.616 6.484 5.918 5.511 

Work with counting manipulatives to learn basic operations 11.63 6.284 12.514 6.087 11.096 6.474 

Play mathematics-related games 9.508 6.344 10.623 6.551 8.376 6.033 

Use a calculator for math 0.952 2.424 0.609 2.296 1.310 2.548 

Use music to understand mathematics concepts 2.692 4.719 4.045 5.607 1.461 3.243 

Use creative movement or drama to understand mathematics   
concepts 2.369 4.075 

3.285 4.775 1.577 3.165 

Work with rulers, measuring cups, spoons, or other measuring 
instruments 3.734 4.568 

3.542 4.396 4.070 4.839 

Explain how a mathematics problem is solved 10.48 7.238 8.198 7.098 12.831 6.684 

Engage in calendar-related activities 18.27 4.725 19.03 3.624 17.61 5.434 

Do mathematics worksheets 11.77 7.190 9.21 7.075 14.41 6.413 

Do mathematics problems from the textbook 7.666 8.633 3.737 6.788 11.640 8.519 

Complete mathematics problems on the chalkboard 6.902 7.066 4.666 6.187 9.291 7.211 

Solve mathematics problems in small groups or with a partner 7.102 6.252 6.301 6.215 7.949 6.226 

Work on mathematics problems that reflect real-life situations 8.905 6.693 7.968 6.760 9.853 6.519 

Work in mixed achievement groups 9.638 7.718 9.978 7.872 9.407 7.521 

Peer tutoring 6.108 6.771 5.545 6.912 6.823 6.688 

Do worksheets or workbook page emphasizing routing practice or drill 
  

  11.60 6.729 

Work on problems for which there are several solutions 
  

  7.200 6.570 

Teacher Content Practices 
  

    

Correspondence between numbers and quantity 11.43 7.721 14.163 6.109 9.020 8.230 

Writing all numbers from 1 to 10 8.933 7.876 11.296 6.892 6.882 8.236 

Counting by 2s, 5s, and10s 10.06 7.352 9.409 7.710 10.73 6.943 

Counting beyond 100 6.475 7.473 6.051 7.810 7.092 7.224 

Writing all numbers from 1 to 100 4.112 5.799 2.883 5.267 5.522 6.124 

Recognizing and naming geometric shapes 6.480 6.316 8.326 6.898 4.994 5.439 

Identifying relative quantity 9.701 6.695 9.880 6.799 9.606 6.679 

Sorting objects into subgroups according to a rule 5.976 5.550 7.301 6.077 4.855 4.884 

Ordering objects by size or other properties 5.314 5.167 6.415 5.657 4.412 4.636 

Making, copying, or extending patterns 8.170 6.840 9.738 6.976 6.693 6.324 

Recognizing the value of coins and currency 7.771 7.070 5.956 6.516 9.610 7.145 

Adding single-digit numbers 11.62 7.022 8.582 6.944 14.864 5.632 

Subtracting single-digit 10.37 7.319 6.598 6.708 14.392 5.811 

Place values 9.192 8.313 6.647 8.631 11.733 7.118 

Reading two-digit numbers 13.23 7.216 12.609 7.782 14.003 6.546 

Reading three-digit numbers 6.985 7.981 5.514 7.969 8.408 7.795 
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Mixed operations 1.855 4.368 0.586 2.693 3.139 5.330 

Reading simple graphs 7.291 6.612 7.439 6.967 7.248 6.276 

Performing simple data collection and graphing 5.457 5.909 5.108 5.992 5.944 5.897 

Fractions 2.656 3.927 1.761 3.391 3.622 4.268 

Ordinal numbers (e.g., first, second, third) 7.607 7.043 8.556 7.485 6.756 6.490 

Using measuring instruments accurately 3.351 4.292 2.717 3.905 4.088 4.679 

Telling time 8.006 7.458 5.828 6.874 10.275 7.411 

Estimating quantities 5.223 5.612 4.560 5.431 5.893 5.735 

Adding two-digit numbers 3.519 5.735 0.919 3.478 6.424 6.504 

Carrying numbers in addition 0.918 3.387 0.309 2.129 1.691 4.488 

Subtracting two-digit numbers 2.716 5.197 0.508 2.729 5.155 6.237 

Estimating probability 2.116 3.886 1.393 3.502 2.848 4.186 

Writing mathematics equations to solve word problems 4.889 6.270 1.828 4.063 8.019 6.634 

Class Characteristics 
  

    

Class percent Asian 0.038 0.079 0.121 0.055 0.102 0.048 

Class percent Hispanic 0.130 0.236 0.168 0.114 0.140 0.100 

Class percent Black 0.148 0.247 0.177 0.118 0.145 0.095 

Class percent other race 0.009 0.028 0.106 0.029 0.086 0.017 

Class percent disabled 0.082 0.102 0.153 0.072 0.124 0.058 

Hours per week on math 3.711 1.807 3.045 1.829 4.368 1.540 

Hours per week in math divided achievement groups 0.699 1.166 0.482 1.025 0.927 1.279 

School Characteristics 
  

    

Minority Percent Quintile 2.620 1.530 2.720 1.551 2.690 1.549 

Gang problems 0.294 0.456 0.333 0.471 0.275 0.446 

Crime problems 0.380 0.485 0.422 0.494 0.354 0.478 

Private religious 0.187 0.390 0.172 0.377 0.189 0.392 

Private non-religious 0.025 0.157 0.042 0.201 0.024 0.153 

Midwest 0.256 0.436 0.246 0.431 0.252 0.434 

South 0.337 0.473 0.331 0.470 0.349 0.477 

West 0.225 0.417 0.229 0.420 0.218 0.413 

Suburban 0.383 0.486 0.384 0.486 0.392 0.488 

Rural 0.231 0.422 0.209 0.407 0.229 0.420 

Enrollment 300 to 499 0.305 0.460 0.279 0.448 0.304 0.460 

Enrollment 500 to 749 0.273 0.446 0.291 0.454 0.252 0.434 

Enrollment greater than 749 0.185 0.388 0.161 0.368 0.213 0.410 

N (Single Imputed Set) 21,232 16,356 11,780 

Source: ECLS-K; Multiply imputed data 
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Appendix Table 2: Summary of Missing Data 

 

Kindergarten 1st Grade 

  

Non-
missing 

Obs 

Percent 
of 

Possible 

Non-
missing 

Obs 

Percent 
of 

Possible 

 
    

Math score 16356 100.00% 11780 100.00% 

Math score lag 16356 100.00% 11780 100.00% 

Teacher Black 16356 100.00% 11780 100.00% 

Teacher other race 16356 100.00% 11780 100.00% 

Teacher Hispanic 16356 100.00% 11780 100.00% 

Less than five years experience 16261 99.42% 11525 97.84% 

More than nine years experience 16261 99.42% 11525 97.84% 

Degree greater than BA 15379 94.03% 11483 97.48% 

Degree MA or above 15379 94.03% 11483 97.48% 

Certification status 15715 96.08% 11402 96.79% 

More than two course in teaching math 15307 93.59% 10925 92.74% 

More than two hours paid preparatory time 15637 95.60% 11157 94.71% 

More than five hours non-paid preparatory time 15908 97.26% 11525 97.84% 

Class percent disabled 15005 91.74% 11464 97.32% 

Class percent Black 14550 88.96% 11069 93.96% 

Class percent Hispanic 14567 89.06% 11069 93.96% 

Class percent Asian 14551 88.96% 11069 93.96% 

Class percent other race 14338 87.66% 11069 93.96% 

Spanish exam 16356 100.00% 11780 100.00% 

Days between exams 16356 100.00% 11780 100.00% 

Disabled 15291 93.49% 10758 91.32% 

Mother below high school 15566 95.17% 10752 91.27% 

Mother high school 15566 95.17% 10752 91.27% 

Mother some college 15566 95.17% 10752 91.27% 

Mother BA or above 15566 95.17% 10752 91.27% 

Income less than $20k 15803 96.62% 10289 87.34% 

Income more than $100k 15803 96.62% 10289 87.34% 

Household size 15183 92.83% 10784 91.54% 

Number of siblings 15183 92.83% 10784 91.54% 

Only Child 15183 92.83% 10784 91.54% 

Welfare participant 14551 88.96% 10741 91.18% 

Single parent household 15183 92.83% 10784 91.54% 

Father absent 15183 92.83% 10784 91.54% 

Mother work full time 14948 91.39% 10494 89.08% 

Mother work part time 14948 91.39% 10494 89.08% 

Pay tuition 15098 92.31% 10745 91.21% 
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Parental school involvement 16356 100.00% 11780 100.00% 

How often child reads 15137 92.55% 10767 91.40% 

Extracurricular activities 16356 100.00% 11780 100.00% 

Children's books in home 15166 92.72% 10729 91.08% 

Age in months 16353 99.98% 11779 99.99% 

Female 16355 99.99% 11780 100.00% 

Child Asian or Pacific-Islander 16325 99.81% 11764 99.86% 

Child Black 16325 99.81% 11764 99.86% 

Child Hispanic 16325 99.81% 11764 99.86% 

Child other race 16325 99.81% 11764 99.86% 

Non-English at home 15772 96.43% 10940 92.87% 

KG repeater 15291 93.49% 11168 94.80% 

Full day KG 16356 100.00% 11780 100.00% 

Mother work before KG 15155 92.66% 11059 93.88% 

Hours per week on math 15772 96.43% 10835 91.98% 

Hours per week in math divided achievement groups 14746 90.16% 8159 69.26% 

Count out loud 16356 100.00% 11677 99.13% 

Work with geometric manipulatives 16182 98.94% 11646 98.86% 

Work with counting manipulatives to learn basic operations 16250 99.35% 11647 98.87% 

Play mathematics-related games 16196 99.02% 11665 99.02% 

Use a calculator for math 16228 99.22% 11716 99.46% 

Use music to understand mathematics concepts 16277 99.52% 11709 99.40% 

Use creative movement or drama to understand mathematics concepts 16236 99.27% 11692 99.25% 

Work with rulers, measuring cups, spoons, or other measuring instruments 16260 99.41% 11660 98.98% 

Explain how a mathematics problem is solved 16108 98.48% 11720 99.49% 

Engage in calendar-related activities 16248 99.34% 11690 99.24% 

Do mathematics worksheets 16219 99.16% 11735 99.62% 

Do mathematics problems from the textbook 16144 98.70% 11687 99.21% 

Complete mathematics problems on the chalkboard 16281 99.54% 11750 99.75% 

Solve mathematics problems in small groups or with a partner 16262 99.43% 11748 99.73% 

Work on mathematics problems that reflect real-life situations 16217 99.15% 11709 99.40% 

Work in mixed achievement groups 16272 99.49% 11662 99.00% 

Peer tutoring 16197 99.03% 11600 98.47% 

Do worksheets or workbook page emphasizing routing practice or drill   11735 99.62% 

Work on problems for which there are several solutions   11631 98.74% 

Correspondence between numbers and quantity 15951 97.52% 11410 96.86% 

Writing all numbers from 1 to 10 16120 98.56% 11603 98.50% 

Counting by 2s, 5s, and10s 16061 98.20% 11656 98.95% 

Counting beyond 100 15965 97.61% 11509 97.70% 

Writing all numbers from 1 to 100 16015 97.92% 11560 98.13% 

Recognizing and naming geometric shapes 16144 98.70% 11655 98.94% 

Identifying relative quantity 16193 99.00% 11702 99.34% 

Sorting objects into subgroups according to a rule 16169 98.86% 11645 98.85% 
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Ordering objects by size or other properties 16101 98.44% 11592 98.40% 

Making, copying, or extending patterns 16190 98.99% 11675 99.11% 

Recognizing the value of coins and currency 16056 98.17% 11653 98.92% 

Adding single-digit numbers 16130 98.62% 11731 99.58% 

Subtracting single-digit 15895 97.18% 11711 99.41% 

Place values 16011 97.89% 11629 98.72% 

Reading two-digit numbers 16071 98.26% 11624 98.68% 

Reading three-digit numbers 16015 97.92% 11539 97.95% 

Mixed operations 16067 98.23% 11604 98.51% 

Reading simple graphs 16071 98.26% 11641 98.82% 

Performing simple data collection and graphing 16201 99.05% 11719 99.48% 

Fractions 16076 98.29% 11619 98.63% 

Ordinal numbers (e.g., first, second, third) 16079 98.31% 11663 99.01% 

Using measuring instruments accurately 15990 97.76% 11524 97.83% 

Telling time 15931 97.40% 11595 98.43% 

Estimating quantities 15821 96.73% 11441 97.12% 

Adding two-digit numbers 16143 98.70% 11358 96.42% 

Carrying numbers in addition 16211 99.11% 11610 98.56% 

Subtracting two-digit numbers 16112 98.51% 11542 97.98% 

Estimating probability 16051 98.14% 11499 97.61% 

Writing mathematics equations to solve word problems 16192 99.00% 11631 98.74% 

Sample Weight 16356 100.00% 11780 100.00% 

Minority Percent Quintile 15973 97.66% 11619 98.63% 

Private religious 16356 100.00% 11780 100.00% 

Private non-religious 16356 100.00% 11780 100.00% 

Enrollment 300 to 499 16237 99.27% 11685 99.19% 

Enrollment 500 to 749 16237 99.27% 11685 99.19% 

Enrollment greater than 749 16237 99.27% 11685 99.19% 

West 16356 100.00% 11780 100.00% 

South 16356 100.00% 11780 100.00% 

Midwest 16356 100.00% 11780 100.00% 

Suburban 16356 100.00% 11731 99.58% 

Rural 16356 100.00% 11731 99.58% 

Gang problems 13917 85.41% 10507 89.19% 

Crime problems 13960 83.70% 10548 89.54% 

 
    

All Variables 6271 38.34% 3923 33.30% 

Source: ECLS-K; Multiply imputed data 
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Figure 1. Tree Diagram of Possible Model/Estimation Strategies 

 
 
 
 

Lag Score 

Cross Section 

OLS 

without school 
dummies 

with school 
dummies 

HLM 

with random 
teacher and 

school effects 

with random 
teacher effects 

and school 
dummies 

Panel 

OLS 

without school 
dummies 

with school 
dummies 

AB 

without school 
dummies 

with school 
dummies 

Gain Score (λ=1) 

Cross Section 

OLS 

without school 
dummies 

with school 
dummies 

HLM 

with random 
teacher and 

school effects  

with random 
teacher effects 

and school 
dummies 

Panel 

OLS 

without school 
dummies 

with school 
dummies 

RE 

without school 
dummies 

with school 
dummies 

FE 

without school 
dummies 

with school 
dummies 


	PWP-CCPR-2011-013 a
	20111231-ECLS-achievement-paper-complete-ccpr

