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Abstract 

With funding from the UK’s Royal Academy of Engineering, the University of 

Edinburgh has developed a set of three truly interdisciplinary group design 

exercises aimed at improving penultimate-year undergraduate students’ ability 

to operate across disciplines and improve their preparation for transfer into 

industry. Three exercises on: hydropower system design; potable water supply; 

and a micro-system accelerometer, are each designed and led by a Visiting 

Industrial Professor. They are both challenging and popular with students and 

have achieved several very successful outcomes: experience of real system 

design; enhanced appreciation of other engineering disciplines; experience of 

team working where participants have different skills and expertise; 

demonstration of the links between design and economic viability; introduction 

to non-technical areas essential to fulfilling the UK Standard for Professional 

Engineering Competence, etc. 
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1 Introduction 

The supply of qualified and skilled engineering graduates is essential for the modern 

economy. However, a significant number of UK engineering firms report engineering 

graduate shortages and skills deficiencies in problem solving, application of theory to 

real problems and inadequate breadth of knowledge (Spinks et al. 2006). With less 

than half of the engineering graduate cohort entering the engineering profession after 

graduation (Engineering and Technology Board, 2007) there is a need to develop 

graduates with these enhanced skill sets.  

The skills expected from UK undergraduate degree courses are specified by the 

Engineering Council UK, the body responsible for ‘setting and maintaining realistic 

and internationally recognised standards of professional competence and ethics …’ 

Their standards (UK-SPEC 2008) specify a range of learning competencies: 

underpinning science and mathematics; engineering analysis and design; the 

economic, social, and environmental context; and engineering practice (Engineering 

Council 2008). Many of these requirements are a challenge for universities to teach 

when they relate much more to practical industrial experience. 

The challenges are compounded by the evolving role of graduate engineers. The 

traditional mono-disciplinary model of engineering assumes graduates will work as 

specialists (Royal Academy of Engineering 2006). As a result, students identify 

strongly with their own engineering discipline and are often ignorant (and sometimes 

dismissive) of other disciplines. However, large employers expect graduates to join 

multi-functional teams designing complex systems within which graduates of 

traditional single-discipline degree courses are ill-prepared. Additionally employees 

within SMEs must cross disciplines by handling and integrating a variety of 

technologies and techniques (Royal Academy of Engineering 2006).  

The preparation of engineering graduates for industrial careers features frequently in 

industrial and academic literature (Lee and Messerschmitt 1998, Martin et al. 2005). 

In the USA, “Capstone” courses draw together knowledge gained in earlier years and 

apply it in open-ended ‘real world’ projects (Todd et al. 1995, Dutson et al. 1997, 

Todd and Magleby 2005). There is recent evidence that industrial input is attractive to 

students and possibly attracts higher grades (Mendez 2008).  In the UK, the Royal 



Academy of Engineering (2006) suggests that undergraduate syllabi can better 

prepare graduates by promoting “integrated system engineering” within a holistic 

approach. With this in mind they instigated a ‘Visiting Professors’ (VP) scheme to 

help universities teach engineering design to undergraduates that relates closely to 

engineering practice. It finances the involvement of industrialists – the ‘VP’ – in the 

design, delivery and assessment of specialist course modules. To date, four 

programmes have been set up in: Principles of Engineering Design (Skates 2003), 

Engineering Design for Sustainable Development, Integrated System Design and 

Innovation and Design. The Integrated System Design programme initiated a series of 

interdisciplinary group design exercises at the University of Edinburgh. 

2 Interdisciplinary Design Exercises 

Four UK universities took part in the 2005 pilot scheme of the Integrated System 

Design programme (Royal Academy of Engineering 2006). Following open 

competition a further six universities joined the scheme in 2006. With each university 

able to interpret the brief in a different way, VP’s have been tasked with encouraging 

systems integration principles and interdisciplinary activities, extending existing 

teaching of systems engineering or providing lectures on fundamental concepts early 

in the degree programme. Rather than implement a formal course, Edinburgh sought 

to involve the VP’s in designing realistic interdisciplinary group design exercises, 

that, due to the involvement of multiple engineering disciplines, were totally different 

from the conventional single-discipline design projects in many BEng/MEng degree 

programmes. 

The School of Engineering at the University of Edinburgh is a multi-disciplinary 

budget unit, which readily facilitated involving students from all disciplines. Students 

take common first year courses before selecting to study one of the four main 

engineering disciplines (Chemical, Civil, Mechanical and Electrical/Electronics) from 

their second year onwards. Academic staff within the School are organised 

thematically by research institute (e.g., Materials and Processes, Integrated Systems, 

Energy Systems) together with their post doctoral researchers and PhD students and 

they flexibly deliver teaching across the disciplines. This allows areas like Energy 

Systems, in which interdisciplinary research is critical, to be configured as a cross-

disciplinary, thriving, focussed research institute. 



With the honours year headcount being of the order of 250 students it was decided to 

restrict these group design exercises to the circa 150 students on the MEng 

programmes. To manage numbers and to cater for students’ preferences and the 

relative popularity of disciplines, three separate design exercises were initially 

developed. The scope and subject matter aimed to offer opportunities for true inter-

disciplinarity. This differentiates them from many other interdisciplinary projects 

mentioned in the literature which mainly involved teaming electrical and electronics 

engineers with other disciplines: mechatronics (with mechanical engineers, O’Connor 

et al. 2001); sensors (with physics); wearable computers (with computer science; 

Amon et al. 1995); and educational toys (with mechanical, IT and design; Ivins 1997). 

We aimed to enable our students to work within such multidisciplinary teams, to 

soften their perception that boundaries exist between disciplines and to introduce them 

to the industrial design environment. Our fundamental aim was to improve the student 

awareness of engineering as a whole and the exercises were not intended to influence 

in any way the student’s ultimate career choice. Our group design exercises strongly 

reflect aspects of the School’s research expertise and represent exemplars of complex 

and interdisciplinary undertakings where we were able to secure an appropriate VP 

appointment: hydropower, potable water supply and micro-systems. We could have 

selected other appropriate engineering topics, provided they satisfied our educational 

goal of introducing interdisciplinary study which applies taught theory to real 

problems and expands the students overall knowledge. These exercises provide 

different combinations of disciplinary involvement (Table 1) over a wide range of 

scales from nanometre-scale in micro-systems, up to kilometres for the other two. The 

workload and assessment procedures for each exercise are broadly aligned and an 

element of cross-marking is undertaken to ensure consistency in rewarding students 

for their achievements in these exercises, compared with their other taught modules 

(Mendez 2008). A VP together with a local academic team designs and leads each 

exercise and offers considerable freedom for the VP to introduce challenging design 

goals. In 2009, a further exercise was introduced on passive house design, for all 

engineering disciplines, to better address the building services sector and energy 

consumption issues. 

 



 

 

 Discipline 
Electrical Mechanical Civil Chemical 

     
Hydropower Yes Yes Yes No 
Potable Water Supply Yes Yes Yes Yes 
Microsystems Yes Yes No Yes 
     

Table 1: Engineering discipline participation matrix in three design exercises 

3 Group Design Exercises 

3.1 Hydropower system design  

The aim here is to develop a well-balanced, feasible, small hydropower system design 

for Glen Kinglas in western Scotland (Harrison et al. 2007). As well as producing a 

study for presentation for funding, technical aspects have to be fully investigated and 

calculated before being delivered in the final report. Engineers, Table 1, work in 

groups of six or seven students and investigate all aspects of the hydropower design. 

This covers hydrology, civil construction and pipelines, turbine and generator 

selection, control and auxiliary systems, grid connection as well as environmental 

impacts. The requirement is that the student designs be as economically viable as 

possible to reinforce that engineering activity is not independent of the wider market. 

The key feature of the hydropower design process is to achieve a viable project where 

all major project components are optimised. Figures 1 and 2 showing an example 

design and further information on the exercise can be found in (Harrison et al. 2007). 

3.2 Potable water supply design 

This is perhaps best described by an extract from the design brief supplied to students: 

“As a result of pressure for new housing, it has been decided to open up a hilly area 

on the edge of the town of North Kilbride for development. This requires the 

upgrading of water supply. It has been decided to construct a new water treatment 

facility to replace the existing supply to a population of 30,000 and provide for 4,000 

new homes... It is further proposed to refurbish and use the existing Buzzardland 

reservoir… originally constructed to provide water and power to serve a previous 

local mining activity. A survey of the area has been carried out, including an 



assessment of the earth dam. No construction records exist for this, but it appears to 

be stable, and has been so for over 100 years. Location plan and site details are 

provided. You are required to achieve a design solution for the supply of treated water 

to the existing and new developments. You are further required to design electricity 

substations for the provision of domestic and industrial power to the area of new 

development. Upgraded supply of water and power to the village of Buzzardland, 

population 650, should also be included. Note that it will be necessary to take account 

of the Buzzardland Muir Site of Special Scientific Interest (SSSI) in any design 

proposals. A waste water treatment works of sufficient capacity is available on the 

opposite side of the town.” 

This exercise involved estimating the quantity of potable water to be supplied, the 

reliable yield of the catchment and an analysis of 10 years of raw water quality data to 

determine the processes needed to produce potable quality water. It required options 

to be assessed for raw water abstraction and delivery, processes for treating water to a 

potable standard and the resultant waste, treated water delivery and waste disposal 

taking into account whole life costs, environmental impact, sustainability and health 

and safety. The output was the selected design, with detailed costs and construction 

schedule. These reports cover a wide range of engineering topics plus the non-

technical areas essential for completion of a project of this type such as health and 

safety, sustainability, environmental risk assessment, and social issues. 

3.3 Miniature accelerometer design  

The newly emergent MEMS (Micro-Electro-Mechanical-Systems) and micro-systems 

technologies are inherently multi-disciplinary requiring co-ordination between 

physicists, chemists, material scientists, and process engineers to establish micro-

machining fabrication processes as well as multi-disciplined teams of mechanical, 

electrical and electronics engineers to exploit the technology to realise sophisticated 

micro devices and systems.  

This group design exercise challenged mechanical, electrical, electronic and chemical 

engineers to design, in detail, an accelerometer (a miniature vibration measurement 

instrument), which could be incorporated into an engine or pump diagnostic system. 

The overall aim was for each multi-disciplinary group to put forward a convincing 

system solution that satisfies a realistic list of performance, environmental and 



operational specifications. The exercise was embellished further to include thermal 

management and fluidic aspects to increase the engagement of chemical engineers 

(Table 1) by specifying challenging environmental operating conditions, such as “the 

instrument must be able to measure vibrations on hot (250°C) engine blocks”. Each 

group was required to design the MEMS component (against a standard MEMS 

fabrication process) along with the associated readout and conditioning electronics. 

Other subsystem aspects such as packaging and thermal management needed to be 

considered before a convincing full microsystem solution could be proposed. 

The exercise ran as a contract design project with the VP acting as the customer and 

multidisciplinary teams of engineers acting as design consultants. In real industrial 

situations, the “customer” will always want to be kept up-to-date with progress 

therefore, in addition to the usual project output (final report), each team was required 

to prepare or organise interim progress reports, presentations, telephone and 

videoconferencing sessions. As well as acting the role of “customer”, the VP also 

supported and advised the teams as required.   

At the beginning of the exercise, students have little or no prior experience of MEMS 

technology, however their knowledge and confidence increases rapidly within the 

multi-disciplinary team environment. One example of a MEMS accelerometer design 

submitted by a typical group of 10 students is shown in Figure 3. The design 

incorporates six vibrometer plates equally placed on either side of a seismic mass, 

which is suspended at either end by means of two springs, disconnected from the 

substrate to form variable capacitors between the protruding fingers. To obtain a 

sufficiently high response a 3×3 vibrometer array design was implemented measuring 

approximately 4.5×4.5 mm. To improve the performance of this device, the plates 

were paired so that, as the mass is given a deflection in the working direction, the 

capacitive gap of one set of fingers increases while the other set decrease. This 

differential arrangement is often used by MEMS design experts to improve device 

linearity, however this technique is fraught with potential pitfalls all of which were 

identified and circumvented by the students, working across disciplines, to analyse the 

electro-mechanical coupling phenomena.   



4.  Group Operation and Outcomes 

4.1 Group Structure and Operation 

Prospective MEng students are asked to specify their preferences between the 

exercises, but the final allocations are made with the aim of ensuring that each group 

has an appropriate mix of students from relevant disciplines. These exercises rely 

upon interaction with others, especially in the final analysis and iteration towards the 

optimum design. Most groups had two students from each discipline which helped to 

achieve peer feedback, confidence in operation and often innovative thinking. 

Groups are encouraged to organise themselves by appointing a team manager and 

deciding at an early stage how sub-activities are allocated and co-ordinated. The most 

successful groups develop a matrix type of approach to the exercises. The result is a 

well-balanced piece of work which develops in a comparative rather than piecemeal 

manner. Alternative solutions are identified at an early stage and well-argued reasons 

evolve for choosing their optimum solution. 

Each group tends to work differently, as is the experience in industry, dependant upon 

individuals’ experience of working outside their own discipline, and their ability to 

view the project as a whole. Individuals who question rather than accept what is 

expected of them ultimately are found to contribute more to the final system design. 

The exercises were designed explicitly to make the disciplines interact for these 

design tasks. As the exercises progress, they collaborate in the reporting and 

presentation and developed varying degrees of integration. By the end of the 

exercises, few students work solely within their own specialism. The true test of 

combined working is readily seen from the final reports: the better groups manage to 

provide a comprehensive document in which it is difficult to differentiate between the 

authors of the individual sections. Feedback from students (see Panels 1 and 2) 

indicated that, once they realised that they had to collaborate, their working 

relationships developed rapidly and, as time progressed, became more rewarding. 

4.2 Overall Organisation 

These design exercises take place within a strict ten week period from initial group 

selection and project definition to final presentation. Counting for a significant 

fraction of the final degree mark, (20 credit points out of an annual total of 120) these 

exercises represent a third of students’ nominal semester work load, the remainder 



being traditional exam-based lecture courses. The tight timeframe serves to motivate 

the students and provides a realistic simulation of industrial pressures. Each course 

website provides administration, guidance, reading lists, contacts and tutorial 

presentations. 

One day a week when all students could, if necessary, work together was provided in 

each disciplines’ timetable. Supporting lectures were given on this day and the VP 

was available for ‘surgery’ sessions for groups or individuals. This day also included 

the formal reporting sessions. With all of the VPs living away from Edinburgh the 

students were also introduced to progress meetings conducted by webcam and 

teleconference, see Panel 3 comments. 

Groups’ design freedom was inbuilt and the large variation across the final submitted 

system designs show that this was, to a large extent, successful. A review was 

provided of essential topics that are not covered in the MEng syllabi. Our experience 

is that the supporting lectures and notes minimise staff loading by reducing the 

requests for assistance. This approach mirrored the supplementary instruction of 

Capstone courses (Todd et al. 1995). 

It is rare to find academics or industrialists who are technically competent to support 

students across three or more disciplines. However, we identified a small number of 

staff, able to handle the deeper system-wide queries, to provide this support. 

Assessment of the work was based around a series of milestones: an initial planning 

document, a short mid-exercise update and a final report supplemented by an oral 

presentation to a multi-disciplinary panel. Marks for each of the milestones were 

brought together to form the group score with the final written report carrying the 

most weight. The majority of the marks available were based on groups’ performance 

in evaluating the technical options open to them, their approach to integrating the 

design as well as their skill in design, analysis and costing of system components. The 

marks for individual students were calculated by combining the group mark with the 

outcome of a peer marking exercise that allowed students to score their colleagues 

(but not themselves) based on their perceived contribution to the final design. 

Ensuring accurate and reasonable assessment of group study projects is the subject of 



ongoing investigation including the possible incorporation of student self-assessment 

to complement peer assessment. 

4.3 Increasing Student Capability 

The amount of work required from the students was significant though, in some 

aspects, not too technically demanding. As might be expected the work rate grew 

exponentially with time! Bonding was evident in almost all groups. Confidence grew 

rapidly in the preparation and delivery of presentations, as the exercise progressed. 

The development of students’ ability and comfort in handling material from outside 

their discipline was assessed using questionnaires at commencement and the end of 

the project (see Panels 1 and 2). In most cases students became more comfortable with 

other engineering disciplines and the use of economic information in decision-

making. We noted a particular increase in the understanding between civil and 

mechanical engineers, reflecting the commonality between these disciplines. 

4.4 Evolution and Outcomes 

These design exercises are gauged as a success based on the continuing high quality 

of the final feasibility study reports, the oral presentations and the subsequent 

industrial impact. The students quickly adapted to working in a multi-disciplinary 

group environment and developed a selfless approach to the tasks. The technical 

conclusions of the design exercises, although varied, addressed all the necessary 

issues and were accurate in observations and results. 

The issue of how to prevent students being unduly influenced by the previous years 

designs has been overcome in different ways. For example, the micro-systems 

exercise changes the instrument parameters from year to year while the hydropower 

exercise requires groups to devise the economically optimal scheme and attempt to 

‘beat’ the performance of the real life scheme. An added benefit of the latter is it 

emphasises economics as the basis for decision-making and justification. 

Sustainability issues are now incorporated throughout the design exercises to further 

enhance the students’ knowledge and skills (Nair 1998). 

This is generally the first time students have been challenged on the regulatory, 

economic, social, and environmental context of their engineering work as required by 

UK-SPEC. Excellent examples of this include exposure to real-life legal, planning and 



technical standards, e.g. electricity grid connection standards for small generators, as 

well as the environmental regulations relating to water abstraction. Also exposure to 

design uncertainty issues was incorporated, both through there not being unique 

‘right’ answers and the challenge of designing a component part of a complex system.  

Feedback from external bodies has been very positive. Accreditation visits from UK 

engineering institutions have specifically commended the School for their efforts in 

these interdisciplinary design exercises (see Panel 3). An external consulting engineer 

invited to the hydropower panel presentations was impressed with the degree of 

understanding, detail and enthusiasm in the oral reports and the accuracy of the final 

reports. He also thought that there was a definite link between the course and 

successful job prospects within the UK hydropower sector: to this end, approximately 

10 employment positions were offered to the 2008 graduating class by UK renewable 

energy companies, giving a clear indication of the ever growing demand for 

renewable energy engineers. Other UK-level recognition has come in the form of a 

prestigious 2008 Rushlight Award for innovation with the top 2007/08 hydropower 

group winning the hydropower category for their “Estimator” automated design 

software (see Figure 4).  

5. Discussion 

During the operation of these exercises there have been several successful outcomes: 

1. They have given the students an appreciation of other engineering disciplines. 

2. Students experience working as a team, in which each member has different skills 

and expertise to contribute. 

3. The exercises demonstrate how engineering design and economic viability are 

inextricably linked in designs of this type. 

4. They provide an excellent opportunity to introduce students to non-technical topics 

(e.g., legal, sustainability, economic, regulatory) that are difficult to teach by 

traditional means, but are required for the degree accreditation requirements, and 



5. Feedback from students (Panel 4) suggests that these exercises are enhancing 

students’ interest in these technology sectors and also alerting students’ to future 

career opportunities. 

On the last point it is important to reiterate that the design exercises are not intended 

to influence future career destinations but are there to introduce interdisciplinary 

group working. As we do not hold graduand destination information, other than by 

company, we are not able to assess directly whether they do influence future career 

choices. The anecdotal evidence shown in Panel 4 suggests that for some students it 

may have the effect of making them aware of a sector or will confirm an existing 

interest. 

It is interesting to note that several students commented that they found these design 

exercises every bit as stressful and demanding as examined lecture courses. Panels 1 

and 2 provide extracts from the student’s personal feedback on these exercises. 

Following several years of operation, our advice to others organising similar group 

design exercises is to ensure a balance in: 

1. The Task: It is essential that students from each engineering discipline feel that 

they make a significant contribution from their own discipline.  

2. The Groups: It is very desirable that each group has an approximately equal 

number of students from each discipline, to avoid students from a less well 

represented discipline becoming unduly pressurised. In the hydropower project, it 

was noted that the students reading the joint degree programme “Electrical and 

Mechanical Engineering” were highly valued for the breadth of their knowledge 

base. 

3. The Support: It is unlikely that any academic or industrial staff member will be 

able to provide the necessary support for all aspects of these tasks. It is therefore 

necessary to involve several staff from different backgrounds, to avoid students 

from one discipline feeling inadequately supported. 

6. Conclusions 

This paper has shown how interdisciplinary design exercises can be used to improve 

penultimate-year MEng students’ ability to operate across disciplines and improve 



their preparation for transfer to industry. These exercises and the VP supervision have 

increased the direct industrial involvement in engineering teaching and the panels 

show that we have achieved several very successful outcomes: increased appreciation 

of other engineering disciplines; direct experience of working in multi-skilled teams; 

demonstration of the links between engineering design and economic viability; 

introduction to non-technical areas essential to the UK-SPEC; and enhancing interest 

in industry sectors in technological and career terms.  
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9. Text Panels and Figures 

Panel 1:  Extracts from Student Group Comments 

Learning Outcomes 
“This project has allowed us to learn and develop many of the varied skills that an 
engineer requires, including design skills, team working skills, communication skills 
and report writing.” 
Team working 
“We have learned the importance of working together to ensure that the work being 
done is compatible and to ensure that no work is being duplicated. We have learned 
the importance of nominating a project coordinator who can oversee the entire 
design.” 
Communications 
“We have vastly improved both our verbal and written communication skills through 
group discussions, discussions with the client and email correspondence with the 
client to rest of the group to avoid misconceptions about what work is being done.” 
Time management  
“These skills were of paramount importance in this project. Setting interim deadlines 
and weekly objectives through meeting minutes, allowed us to clearly evaluate the 
progress of the work.” 
Computing 
“We increased our knowledge of different computer packages including Word, Excel 
and Endnote. We also had the opportunity to learn about programs not normally used 
in our own discipline, for example AutoCAD and Solid Edge.” 
 
Design skills 



Chemical: “This project helped us to understand how chemical engineering can be 
utilised in real-life situations and expanded our knowledge of different processes used 
in the industry.”  
Civil:  “This project allowed us to improve on previously gained design skills and to 
learn new skills. We expanded our knowledge of reinforced concrete design and steel 
design. We also learned about designing with new materials, such as stainless steel 
for the acid tanks and we learned about designing new structures.” 
Mechanical: “Taking part in the project has developed our project design skills by 
taking us out of our comfort zones to study material from other disciplines. In 
particular we have developed detailed knowledge of pump and hydraulic design.”  
 
Report writing  
“The report writing element of this project allowed everyone in the group to improve 
upon their writing and computer skills. It was very important to work together. We 
met up to plan and write the report together and this allowed us to complete the 
report quicker and much more efficiently.” 

 

Panel 2: Extracts from Individual Student Comments 

Structural Engineering with Architecture 
“I have a broad understanding of water treatment process from a civil/structural 
angle. I learned about writing up client action plans and the areas in which a client 
should be involved in a project. I know how to fully design a reinforced concrete 
liquid retaining structure. It has also allowed me to understand how to design other 
elements such as ground slabs, bunds and retaining walls.”  

Mechanical Engineering 
“From this project I have learned of the different methods available for producing 
drinkable water from a raw supply. I have learnt the relative merits of different forms 
of screening and intake structure. I have also furthered my knowledge in the factors 
which affect the head loss of water flow in pipe systems and networks, as well as the 
range of pumps available for various situations.” 

Chemical Engineering 
“In this project, I have learned to work with others.  I have seen the effectiveness of 
approaching and solving problems together. I have also learned more about time 
management and communication with others in the group”. 

Chemical Engineering 
“I have learnt the importance of combining the knowledge of many different 
disciplines to reach a solution to a problem which spans all engineering areas. In 
previous group projects, which have been conducted exclusively within my disciple, 
little or no consideration was given to the Mechanical or Civil design”. 

Civil Engineering 
“From all the design work and layouts constructed the primary thing I have learned 
is that design work is an iterative process. By performing detailed designs of the 



service reservoir I have gained knowledge in flat slab design, and concrete column 
design. I also learned how to design thin walled structures and members”. 

Civil and Environmental Engineering 
“I have increased my knowledge of concrete slab and column design and, by 
validating other member’s designs, I have learnt about circular design of concrete 
members and foundations, I have increased my knowledge of steel design and learnt 
how to use Excel to aid my design work for steel and concrete.  I now have a 
significant amount of knowledge on construction scheduling, including production of 
accurate Gantt Charts in Microsoft Project”. 
 

Panel 3: Extracts from Engineering Accreditation visit reports 

IEE 2005: “The multidisciplinary MEng group project, which is supported by RAE 
visiting professors, was also highlighted as an example of good practice.”  
 
Joint Board of Moderators 2006 (Civil and Structural): “The current students 
described the interdisciplinary group design project as the most interesting 
coursework that they had done. They appeared to relish the challenges that the 
interdisciplinary nature brought to the project and it was clear - not least from talking 
to recent graduates - that the School has continued to improve this part of the degree 
programmes.  …  The Team commended the School on the very good interdisciplinary 
projects and was particularly pleased to see that exposing the students to working 
with other disciplines was not achieved at the expense of exposure to in-depth civil 
engineering problems.” 

IMechE 2008: “The  panel noted that students on the renewable programmes are 
typically allocated the hydropower topic with approximately 60 students, grouped 
into 10’s and is run by visiting professor, who attends once a week. The visiting panel 
commended the fact that the multidisciplinary projects really were multidisciplinary 
and noted that the level of work seen in the projects was impressive; a reflection of 
this is that recently a student was encouraged to take their project idea to a 
manufacturing and commercial level.  
 
The interdisciplinary projects are a good vehicle to develop their communication 
skills to work across various sectors and to get a good opportunity to deal with 
technical uncertainty. Cost drivers are addressed and it highlights a good opportunity 
to manage their data and how students will cope with their projects.  
 
A range of VPs input to these projects; in an advisory role. The ‘Belbin model’ is used 
to select teams and to give an understanding of group dynamics. Peer assessment is 
applied formulaically and then the visiting professor reviews the outcomes, this is 
used against a marking matrix focusing on contribution to the project where 
allocation of marks is awarded. Staff meet with students for 3 hour meetings each 
week and have a good grasp on how the students are coping and their input to and 
attendance at group work sessions.” 

 



Panel 4: Comments relating to student career choices 

MEMS : “ The design exercise gave me an insight into a completely new field of 
engineering. I found that the work allowed me to apply both my mechanical and 
electrical engineering knowledge together in a single project, making QinetiQ an 
attractive placement opportunity as a company where both disciplines were 
integrated. The six months spent with QinetiQ helped identify the different 
engineering problems associated with MEMS technology and gave me the opportunity 
to realise which of these interested me the most. I have now undertaken an MEng 
individual project closely linked to some of the work on my placement and I am now 
currently searching for graduate jobs in the MEMS sector.”  
 
Hydropower:  “I was in the hydropower stream of the interdisciplinary design 
project in 2005. The project had a direct influence on my career path; I gained an 
interest in hydropower and subsequently joined [Kendal-based] turbine manufacturer 
Gilbert Gilkes and Gordon Ltd for an industrial placement. Following graduation, I 
went to New Zealand and joined a smaller, younger company called HydroWorks Ltd 
who also specialised in turbomachinery design and manufacture… I returned to 
Edinburgh after two years to follow up my growing interest in computational fluid 
dynamics, but I am indebted to the interdisciplinary project for introducing 
hydropower as an interesting and important renewable resource. I maintain contact 
with Gilkes and HydroWorks and hope to work with the hydropower industry again in 
future.” 
 
Hydropower:  “The hydropower project felt real, as if we were a team of engineers 
with a problem to solve and some money to make. The learning curves were steeper 
than we were accustomed to, but this was a good thing. The opportunity to work with 
other engineering disciplines to solve the problem from the physics to the finances 
exposed us to the specialities of each discipline and gave us valuable insight into the 
work relationships found in industry. The financial implications of each decision was 
almost an overwhelming concept even for the proven technology of hydropower… 
There has been a natural drive [for me] to take this learning and apply it to the other 
renewable sectors.” 
 
 
 
 



 
 
Figure 1 Location map detailing location of pipelines, electricity network and 
hydropower powerhouse. 
 
 

 
 
Figure 2 Example elevation of hydro scheme powerhouse. 
 
 
 



 
 
 
 

 
Figure 3  Single vibrometer design and a nine component vibrometer array 
 
 
 

 
Figure 4 University of Edinburgh undergraduate Jeffrey Steynor receiving the 2008 
Rushlight Hydropower Award on behalf of his project group. 
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