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Benefits of Hybrid Lateral Transshipments in Multi-Item Inventory Systems under Periodic

Replenishment

Abstract

Lateral transshipments are a method of responding to shortages of stock in a network of

inventory-holding locations. Conventional reactive approaches only seek to meet immediate

shortages. The paper proposes hybrid transshipments which exploit economies of scale by

moving additional stock between locations to prevent future shortages in addition to meeting

immediate ones. The setting considered is motivated by retailers who operate networks of

outlets supplying car parts via a system of periodic replenishment. It is novel in allowing

non-stationary stochastic demand and general patterns of dependence between multiple item

types. The generality of our work makes it widely applicable. We develop an easy-to-compute

quasi-myopic heuristic for determining how hybrid transshipments should be made. We obtain

simple characterisations of the heuristic and demonstrate its strong cost performance in both

small and large networks in an extensive numerical study.

Keywords: Inventory Control, Multi-Item, Lateral Transshipments, Dynamic Programming

Submitted September 2011. Accepted February 2014 by Prof. J. Swaminathan after three

revisions.

1 Introduction

Increased information in modern inventory networks offers managers the opportunity to pool risk

through cooperation between replenishment points. Lateral transshipments are stock movements

between locations in the same echelon of an inventory system. This transportation of goods can be

used to rebalance stock proactively across the system or to meet shortages reactively as they occur.

When a reactive transshipment is triggered conventional policies only meet the immediate

shortfall. Stock is moved from a location with a surplus to the one experiencing the shortage.

However, in many practical scenarios a large proportion of the associated vehicle, fuel and labour

costs are independent of the amount transshipped. In such cases conventional reactive approaches

ignore the economies of scale and the risk of future shortages which may make it beneficial to
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transship more than is required to meet the immediate shortfall. Proactive approaches to transship-

ment have conventionally rebalanced stock through the logistically complex and costly device of

reallocating the entire network’s inventory at isolated time points. The hybrid approach proposed

here exploits the above potential for cost savings by rebalancing stock between pairs of locations

when a shortage occurs at one of them. It thus has the same triggering mechanism as conventional

reactive transshipments and minimal additional implementation overhead.

A scenario of particular interest to this paper is the sale of car parts including tyres and exhaust

systems from networks of depots which typically fit new parts and conduct repairs. Common

features of such networks include the following: stock for replenishment is from a central store

from which large trucks conduct tours to resupply parts of the network. The determination of such

tours is outside of the scope of this work and we shall suppose that the periodicity of each location’s

replenishment is fixed. Depots are often in centres of population where rents are high and space

for inventory is limited. This may force inventory levels lower than an (unconstrained) economic

analysis might indicate and will fuel the need for the pooling of stock. Demand for items is likely

non-stationary as well as stochastic. For example, the demand pattern at weekends may well be

different from that during the working week. Further, individual customers are unlikely to require

a single item. Individual demands will typically be for one or more of each of several item types.

The model considered in the paper assumes the periodic review and replenishment of stock. It

develops the reactive transshipment model of Archibald et al. (2010) in a way which captures the

features mentioned in the preceding paragraph. It is novel in the literature in the generality of its

characterisation of demand. Demand instances are assumed to occur in a non-stationary manner,

while individual customer requirements (how many of each item type) are drawn from a general

joint distribution. This is a huge advance over the customary assumption of a stationary Poisson

process of singleton demands for one item type only. Hence the work not only delivers significant

cost savings over current proposals but is also relevant to a wider range of practical scenarios.

Following a review of the existing literature in Section 2, a detailed description of the model

is given in Section 3. Section 4 is the analytical heart of the paper and is where the hybrid trans-
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shipment heuristic is developed. Key contributions include a characterisation of policy structure,

analytical insight into the setting of replenishment levels and the development of an easily com-

puted numerical lower bound for the cost rate achievable in some cases where locations are replen-

ished simultaneously. Section 5 contains an account of an extensive numerical study designed to

evaluate the performance of the new policy. Results elucidate the considerable performance gain

achieved over existing approaches and suggests that the hybrid proposal closes a large part of the

suboptimality gap left by them.

2 Literature

Research on transshipments in inventory networks has primarily focussed on their use in the con-

text of stationary demand for a single item type. The broad approach taken to transshipping has

been reactive, proactive or a hybrid of the two. We now consider these approaches in turn.

Much of the literature on reactive transshipments assumes periodic replenishment. Krishnan

and Rao (1965) assume demand is met at the end of each review period, so transshipments can

be arranged after all demand for the period has been observed. Taking a similar approach to the

modeling of demand, Robinson (1990) shows that an order-up-to policy is optimal while Lien et al.

(2011) explore optimal network configurations. In many situations customers require, or at least

value, immediate service. An assumption that demand for a period can be observed before trans-

shipments are planned is plainly not always appropriate. Archibald et al. (1997) allow multiple

transshipments in each review period. A location makes a transshipment request whenever a short-

age occurs, but transshipment requests are not always met (a situation known as partial pooling).

The form of an optimal replenishment and transshipment policy is established for networks with

two locations. Çömez et al. (2012) characterise an optimal transshipment policy for two locations

in a similar setting with positive replenishment and transshipment lead times. Archibald (2007)

and Archibald et al. (2010) also consider reactive transshipments whenever a shortage occurs, but

develop heuristic policies that can be applied to networks of any size. The current work extends

the latter inter alia by introducing a proactive element into the transshipment policies considered
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and through its much more general setting of non-stationary demand for many item types.

Other inventory problems related to reactive approaches arise in a multi-product setting where

substitution with products of higher specification (Xu et al., 2011; Rao et al., 2004) and allocation

of stocks of unfinished products (Swaminathan and Tayur, 1998) or common components (Gerchak

and Henig, 1986) serve a similar purpose to transshipments. However, products in this stream of

work correspond to our locations and so when these problems are viewed as transshipment prob-

lems they concern single items only and are hence less general than our multiple item scenarios.

These problems also contrast with ours in offering no incentive for proactive action and decisions

about which items to ’transship’ and in what quantity are purely reactive.

Research on proactive transshipment focuses predominantly on periodic replenishment. It is

possible to think of proactive transshipments as including an element of reactive transshipment in

the sense that they aim to rebalance inventory to best satisfy existing shortages and future demand

(Lee et al., 2007). However in most cases, transshipment is only allowed at fixed points in each

review period (Gross, 1963; Lee et al., 2007). The approach of Agrawal et al. (2004) is closest in

spirit to the current work as the timings of transshipments are determined dynamically. However,

in contrast to the current work, only one proactive transshipment is allowed per period and inven-

tory is redistributed across all locations. These papers all demonstrate some benefit from stock

rebalancing which purely reactive approaches do not exploit.

Reactive and proactive transshipments have also been considered in the context of continuous

review replenishment, but this is of less relevance to the current work which focuses on periodic

review. For a more detailed review of the literature, the reader is referred to Paterson et al. (2010).

Zhao et al. (2008) consider reactive and proactive transshipments together. Their production

based model uses a conventional reactive transshipment when shortages occur but also separately

allocates new stock when it is produced. To the authors’ knowledge, hybrid transshipments of the

type considered in this paper have previously only been considered by Paterson et al. (2012). That

study develops heuristics for continuous replenishment review under compound Poisson demand

for a single item. The methods used are very different from those in the current work.
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We are unaware of any contributions in the literature which match the generality of our mod-

eling of demand. Few consider either non-stationary demand or many item types. Herer and Tzur

(2001, 2003) do consider time-varying demand but it is deterministic. Hence they can plan for

known future demand in a manner which is not possible in a stochastic setting. In Archibald et al.

(1997), replenishment decisions for many item types are linked via a storage space constraint while

in Wong et al. (2005) and Kranenburg and van Houtum (2009) there is a linking constraint on av-

erage service time. Our stochastic non-stationary model for multi-item demand is a huge advance

in generality on previous work and has great relevance for applications.

3 Inventory System Model

We consider a network with N locations, each of which carries an inventory of X distinct item

types. Locations are replenished periodically from a central depot. The review period for location

i is Ti and hence all item types at i are replenished at times t∗i + nTi, n ∈ �, where t∗i ∈ [0,Ti) is the

time of the first replenishment at i after 0. For reasons given in the Introduction the replenishment

periods Ti, 1 ≤ i ≤ N, will be taken as given and fixed throughout the paper. Distinct locations

across the network may have different review periods and so locations are not assumed to replenish

simultaneously. We deploy the notation ti(t) for the time from some arbitrary t ∈ �+ until the next

replenishment at i. Should a replenishment epoch for location i occur at some time t∗i + nTi,

the inventory of each item type x is restored to the level Six(t∗i + nTi). The dependence of the

replenishment levels upon the time at which replenishment occurs can be exploited in cases where

the non-stationarity of the demand is very strong. See subsection 4.3 for further comments on the

determination of the order-up-to levels Six(t∗i + nTi), n ∈ �. Until then, we shall regard them as

fixed. Due to the dependence of the replenishment levels on time, it is theoretically possible for

the inventory level of an item at a replenishment epoch to exceed the intended replenishment level.

For the purposes of the model we develop, it is assumed that any excess inventory at a location

is removed during ‘replenishment’. In practice this situation would be extremely rare and so this

assumption will not have a significant impact on the performance of the heuristics developed.
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Customers arrive at location i according to a non-homogeneous Poisson process independently

of arrivals at other locations, with rate at time t given by λi(t). We assume that successive demands

at location i are independent and identically distributed. We shall use Di ≡ (Di1,Di2, . . . ,DiX) for

the random X-vector denoting a single customer demand at location i, with Dix denoting the size of

a single customer’s demand for item type x. Plainly P
(

X∑
x=1

Dix ≥ 1
)

= 1. We shall use the notation

fid ≡ P (Di = d) for the multivariate probability mass function (pmf) for location i demands and

write

fix ≡ P (Dix ≥ 1) =
∑
{d:dx≥1}

fid (3.1)

for the probability that a single customer at location i demands at least one item of type x. If such a

demand occurs, we refer to the customer as an x-customer. A customer may be an x-customer for

several distinct x. The pmf for the size of demands for item type x from x-customers is denoted by

fixd ≡ P (Dix = d | Dix ≥ 1) =

∑
{d:dx=d} fid

fix
. (3.2)

The above implies that x-customers arrive at location i according to a non-homogeneous Poisson

process whose rate at time t is fixλi(t) with the size of x-demand from individual x-customers deter-

mined by the pmf { fixd, d ≥ 1}, the latter having finite mean and variance µix and σ2
ix respectively.

Additionally, we use f n
ixd for the derived probability that n x-customers together demand exactly d

of item type x at location i.

A consequence of allowing composite multivariate demand is that shortages may be of more

than one piece of inventory and/or of multiple item types. However, in the description of our

methodology in the next section we shall assume that transshipments come from a single loca-

tion. This common constraint derives principally from practice as coordinating movements from

more than one location can considerably complicate operating the policy. Further, we shall allow

transshipments which meet only part of a current shortage. However an indication will be given in

Section 4 of how our methodology may be extended to allow transshipments of a more complex

structure and/or meet an ’all or nothing’ demand requirement.

Several costs are involved in the operation of an inventory network and most influence the
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potential benefit of a transshipment. The only cost assumed exogenous is the initial cost to purchase

a piece of inventory. Holding costs are incurred at location i for items of type x at a rate hix per

unit of stock and per unit of time. Further, penalty costs are incurred whenever demand cannot be

met immediately. Two methods of penalising unmet demand are considered. A one-off cost of Lix

per unit of unmet demand of item type x is incurred if it is lost from the system. Alternatively, the

demand can be backordered with a penalty cost bix which is incurred per unit of item type x and

per unit of time the item remains out of stock. We are able to address both cost structures. Finally,

the cost associated with each transshipment from location j to location i has two elements: a fixed

cost per transshipment R f
ji, and a cost per unit of item type x transshipped, Ru

jix.

4 Development and analysis of the hybrid transshipment heuristic

To develop a heuristic for transshipment decisions (from where and how much) we broadly fol-

low Axsäter (2003) and Paterson et al. (2012) in their espousal of a quasi-myopic approach to

an otherwise intractable problem. Under this approach all decisions are taken in the light of an

assumed future for the system which has no transshipments. Expressed technically, the dynamic

transshipment policy produced is obtained by performing a single dynamic programming policy

improvement step from a no transshipment policy.

We proceed to give computations of the expected costs incurred under an assumption that no

future transshipments are made. In what follows we use ILix for the inventory level of item type x

at location i at some arbitrary time t ∈ �+ (deemed the current epoch) and t + s, s ≤ ti(t) for some

future time no later than location i’s next replenishment. We write ILi ≡ (ILi1, ILi2, . . . , ILiX) for

the vector of inventory levels of all item types at i and denote by vi

{
ILi, t, s

}
the expected inventory

costs incurred at location i during the time interval (t, t + s).

Before continuing we note that, notwithstanding the fact that demands across distinct item types

may well be correlated, the expectation operator is linear so we can give an additive decomposition
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of total costs at location i which give contributions from individual item types. Hence,

vi

{
ILi, t, s

}
=

X∑
x=1

vix

{
ILix, t, s

}
=

X∑
x=1

(
vix

{
ILix, t, s; hold

}
+ vix

{
ILix, t, s; lost

}
+ vix

{
ILix, t, s; back

})
, (4.1)

where (4.1) expresses a decomposition of the total costs per item type into costs due to the holding

of inventory (first term on the rhs of (4.1)) and costs associated with not being able to meet demand

(second and third terms). In practice we either have Lix > 0, bix = 0 ∀i, x (lost sales model)

or Lix = 0, bix > 0 ∀i, x (backordered sales model). Please note that if bix > 0 any inventory

level ILix may be negative, this corresponding to a number of currently backordered items; we use

IL+
ix ≡ max (ILix, 0) and IL−ix = max (−ILix, 0).

In order to compute vix

{
ILix, t, s; hold

}
we further disaggregate into a sum with a contribution

from each of the ILix units of stock of type x present at location i at time t, considered in the order

in which they are demanded. If κi jx is the holding cost of the jth unit of type x stock at i and E
(
κn

i jx

)
is its conditional expectation when the jth unit of type x stock is demanded by the nth x-customer

at i, then

vix

{
ILix, t, s; hold

}
=

ILix∑
j=1

E
(
κi jx

)
=

ILix∑
j=1

j∑
n=1

E
(
κn

i jx

)
· Pn

ix j, (4.2)

where we use Pn
ix j for the probability that the jth unit of type x inventory is demanded by the nth

x-customer at location i after time t. Please note that the quantities Pn
ix j may be easily recovered

from the quantities f m
ixd defined in Section 3. Now choose a time τ ∈ (t, t + s). The number of

x-customers arriving at location i during the interval (t, τ) has a Poisson distribution with mean

Λix(t, τ) ≡ fix

τ∫
t
λi(u) du. It follows that the probability that the nth x-customer after t arrives during

the interval (τ, τ + δτ) has the form qix(n, t, τ) δτ + o(δτ) where

qix(n, t, τ) = fixλi(τ)
(
Λix(t, τ)

)n−1

(n − 1)!
exp {−Λix(t, τ)} . (4.3)

By conditioning on the time at which the nth customer after t arrives we deduce that

E
(
κn

i jx

)
= hix · (Aix (n, t, s) + s · (Bix (n, t, s))) , (4.4)
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where Aix(n, t, s) and Bix(n, t, s) are given by

Aix(n, t, s) =

t+s∫
t

(τ − t) · qix(n, t, τ) dτ (4.5)

and

Bix(n, t, s) = 1 −

t+s∫
t

qix(n, t, τ) dτ =

n−1∑
m=0

(
Λix(t, t + s)

)m

m!
exp {−Λix(t, t + s)} . (4.6)

Substituting into (4.2) we now have that

vix

{
ILix, t, s; hold

}
=

ILix∑
j=1

j∑
n=1

hix ·
(
Aix(n, t, s) + s · Bix(n, t, s)

)
· Pn

ix j. (4.7)

A similar analysis yields that expected costs from lost sales are given by

vix

{
ILix, t, s; lost

}
=

∞∑
j=IL+

ix+1

j∑
n=1

Lix ·
(
1 − Bix(n, t, s)

)
· Pn

ix j. (4.8)

Write Dix(t, s) for the demand for x-items at location i between times t and t+s. It is straightforward

to show that the expression in (4.8) may alternatively be expressed as

∞∑
j=IL+

ix+1

Lix · P
(
Dix(t, s) ≥ j

)
, (4.9)

which may be well approximated by a corresponding finite sum
Mix(t,s)∑
j=IL+

ix+1
where Mix(t, s) is chosen to

make P
(
Dix(t, s) ≥ Mix(t, s)

)
sufficiently small. In practice we choose

Mix(t, s) = E
(
Dix(t, s)

)
+ 3

√
var

(
Dix(t, s)

)
= µix ·Λix(t, t + s) + 3

√(
µ2

ix + σ2
ix

)
· Λix(t, t + s). (4.10)

For the backorder costs a similar argument to that involving the above calculation of holding costs

is needed to compute vix

{
ILix, t, s; back

}
. Each unit of potential excess x-demand incurs a backorder

cost over the period between the corresponding x-customer arrival time and t + s. Further, x-items

already on backorder at t incur backorder costs over the entire period. This gives

vix

{
ILix, t, s; back

}
= bix ·

 ∞∑
j=IL+

ix+1

[
s −

j∑
n=1

(
Aix(n, t, s) + s · Bix(n, t, s)

)
· Pn

ix j

]
+ s · IL−ix

 , (4.11)
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which may also be well approximated by a finite sum. We can now use (4.7), (4.8) and (4.11) to

obtain the key quantity vi

{
ILi, t, s

}
from (4.1).

4.1 Development of the hybrid heuristic via DP policy improvement

We consider a scenario in which the system has inventory levels {(IL jx), 1 ≤ x ≤ X, 1 ≤ j ≤ N}

at some time t ∈ �+ when a demand di which cannot be fully met from local stock arises at

location i. Hence dix > ILix for some x. We denote by zi the vector of excess demand at i, namely

(ILix − dix)−, 1 ≤ x ≤ X. Our range of actions is considerable. We may transship from any single

location with stock and we may transship any quantities which do not exceed the stock levels at

the sending location. Alternatively, we may choose not to transship at all and incur costs for lost

sales and/or backordered demand at i. Our definition of excess demand includes any outstanding

backorders at location i. We assume that items in a transshipment are used to clear backorders

and/or meet the current demand before building inventory to help meet future demand. One minor

constraint we impose is that we never transship so much stock of any type that the corresponding

inventory level at the receiving location exceeds its next replenishment level.

Our approach to decision-making is to choose the sending location and inventory-type quanti-

ties (if any) for the transshipment to minimise the expected costs incurred over any large horizon

H under an assumption that no transshipments are made following the current decision. We fix

horizon H to be any real number in excess of max
i

Ti. If the current excess demand zi at location i

occurring at time t is met in whole or in part through a transshipment of u jix ≤ IL jx units of type x

stock from j, 1 ≤ x ≤ X, then the costs to be incurred at both i and j over the time interval (t, t + H)

may be computed. For sending location j this total expected cost is given by the expression

R f
ji +

X∑
x=1

[
Ru

jix · u jix + v jx

{
IL jx − u jix, t, t j(t)

}]
+ v j

{
t + t j(t), t + H

}
, (4.12)

where the quantities v jx

{
·, ·, ·

}
are computed as above and v j

{
t + t j(t), t + H

}
is the expected cost in-

curred at location j under no transshipments from the time of the first replenishment after t (at time

t + t j(t)) until the end of the horizon (at t + H). Please note that this latter quantity is independent of

the decision made at the current epoch t. The expression in (4.12) disaggregates the total expected
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cost incurred at location j over horizon H into the immediate cost of the transshipment (first two

terms), the subsequent expected inventory cost until the first replenishment (third term) and the

expected cost from the first replenishment to the end of the horizon (fourth term). Similarly, the

total expected cost incurred over the horizon H at location i may be expressed as

X∑
x=1

[
Lix ·

(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}]
+ vi

{
t + ti(t), t + H

}
, (4.13)

where ĨLix(u jix) represents the inventory level of item x at location i after demand and transship-

ment. Under the lost sales model ĨLix(u jix) =
(
ILix + u jix − dix

)+
and the first term in (4.13) is the

one-off cost associated with any residual unmet demand. However, under the backordered sales

model, inventory levels are not restricted to be positive and ĨLix(u jix) = ILix + u jix − dix. The backo-

rder costs for each item of unmet demand apply for the remaining time until the next replenishment

and these are absorbed into the second term in (4.13). Finally, for any location k , i, j which is

not a party to the transshipment, the total expected cost over the horizon H may be denoted Vk and

written

Vk =

X∑
x=1

vkx

{
ILkx, t, tk(t)

}
+ vk

{
t + tk(t), t + H

}
. (4.14)

Hence, aggregating over locations using (4.12) - (4.14), the total expected cost incurred across the

entire network over horizon H may be expressed as

R f
ji +

X∑
x=1

[
Ru

jix · u jix + Lix ·
(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}
+ v jx

{
IL jx − u jix, t, t j(t)

}
− vix

{
ILix, t, ti(t)

}
− v jx

{
IL jx, t, t j(t)

}]
+

N∑
k=1

Vk. (4.15)

The total expected cost of making no transshipments either at t or throughout (t, t + H) is

X∑
x=1

[
Lix ·

(
IL+

ix − dix
)−

+ vix

{
ĨLix(0), t, ti(t)

}
− vix

{
ILix, t, ti(t)

}]
+

N∑
k=1

Vk. (4.16)

Our decision will be taken to secure the smallest possible value of the costs in (4.15) or (4.16).

To express this more succinctly, we develop the index ∆
(
u ji | di, ILi, IL j, t

)
to reflect the benefit

of making a transshipment of size u ji ≡
{
u jix, 1 ≤ x ≤ X

}
at time t from j to i when a demand di

12



results in a shortage at i and the inventory levels at i and j are ILi and IL j respectively. We write

∆
(
u ji | di, ILi, IL j, t

)
= R f

ji +

X∑
x=1

[
Ru

jix · u jix + Lix ·
(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}
+ v jx

{
IL jx − u jix, t, t j(t)

}
− vix

{
ILix, t, ti(t)

}
− v jx

{
IL jx, t, t j(t)

}]
(4.17)

and

∆ (0 | di, ILi, t) =

X∑
x=1

[
Lix ·

(
IL+

ix − dix

)−
+ vix

{
ĨLix(0), t, ti(t)

}
− vix

{
ILix, t, ti(t)

}]
(4.18)

for the no transshipment index. Our hybrid heuristic mandates a transshipment at t that achieves

min
{

min
j,u ji

{
∆

(
u ji | di, ILi, IL j, t

) }
; ∆ (0 | di, ILi, t)

}
, (4.19)

where the choice of u ji in the second minimisation in (4.19) is constrained by the stock levels at j

and the requirement that stock levels at i should not go above Six
(
t + ti(t)

)
. Hence we require that

0 ≤ u jix ≤ min
{
IL jx, Six

(
t + ti(t)

)
− ILix + dix

}
, 1 ≤ x ≤ X, and 0 < u jix for some x. (4.20)

If the minimum in (4.19) is achieved by ∆
(
0 | di, ILi, IL j, t

)
then no transshipment is made. Oth-

erwise, the transshipment uses the pair ( j∗,u∗ji) achieving the inner minimisation.

The above approach is flexible and can accommodate a range of important model variants. We

can, for example, easily extend the above to allow transshipments from more than a single location

while in subsections 4.2 and 4.4 we shall suppose that transshipments may be additionally con-

strained by the number or weight of items which may be included. Further, the possible ‘all or

nothing’ nature of demand mentioned in Section 3 may be easily incorporated into the above by

modifying costs in the analysis to reflect the fact that the demand di will not be lost in total follow-

ing a shortage if and only if the triggered transshipment u ji satisfies ILix + u jix ≥ dix, 1 ≤ x ≤ X.

In practice the above heuristic can be obtained with modest computational effort, especially

so when X, the number of item types, is small. We recommend an online implementation of the

minimisation in (4.19) which computes the key quantities ∆
(
u ji | di, ILi, IL j, t

)
and ∆ (0 | di, ILi, t)

as needed. In the event of a shortage at some location i, the relevant values of di, ILi and t are fixed

and a search is prosecuted over locations j , i and transshipment profiles u ji. The building blocks

13



for the computation of ∆
(
u ji | di, ILi, IL j, t

)
are the availability of appropriate quantities of the

form vix

{
ILix, t, ti(t)

}
and v jx

{
IL jx, t, t j(t)

}
. To obtain the complexity of computing these quantities,

we write Λ̂ix = max
n

Λix(t∗i +nTi, t∗i +(n+1)Ti) for the maximum mean x-demand at location i during

any review period, with M̂ix = µix·Λ̂ix+3
√(
µ2

ix + σ2
ix

)
· Λ̂ix and M̂ = max

i,x
M̂ix. The discussion of the

computation of the quantities vix

{
ILix, t, ti(t)

}
following (4.8) yields the conclusion that their com-

plexity is no worse than O
(
M̂2

)
. Further, from (4.17) we see that O(X) such quantities are needed

to compute ∆
(
u ji | di, ILi, IL j, t

)
for a single pair ( j,u ji). We now write Ŝx = max

i,n
Six(t∗i + nTi) for

the maximal replenishment level for items of type x at any location and time. It is straightforward

that to compute all of the quantities in (4.19) and to implement the minimisation requires no more

than O
(
X
(
NM̂

X∏
x=1

Ŝx

)2
)

computations. In practice constraints on, for example, the size of vehicles

available will mean that the number of feasible u ji (where u ji is feasible if u jix x-items, 1 ≤ x ≤ X,

can be carried in a single transshipment from j to i) is much smaller than that calculation implies.

Should F ji be the number of distinct feasible transshipments u ji from j to i and F̂ = max
j,i

Fji then

no more than O
(
X
(
NM̂F̂

)2
)

computations would be needed to implement (4.19).

4.2 Characterisations of the hybrid heuristic

In a setup as complex as considered here, it is perhaps unsurprising that simple characterisations of

effective heuristics are challenging to develop. This subsection gives a brief account of some sim-

ple and intuitive features of the hybrid heuristic which are reasonably straightforward to establish.

Theorem 1 states that our hybrid rule is monotone in the sending location’s stock levels. Hence,

if the rule mandates a transshipment summarised by the pair ( j∗,u∗j∗i) when the stock levels at j∗

are given by IL j∗ then under identical circumstances but where the stock levels at j∗ are uniformly

above IL j∗ the rule continues to mandate a transshipment from j∗ with the stock transshipped

uniformly no less that u∗j∗i. The proof of Theorem 1 may be found in the paper’s online appendix.

We use � to denote the componentwise weak ordering of two X-vectors.

Theorem 1 (The hybrid heuristic is monotone in the stock levels of the sending location)

(a) The index ∆
(
u ji | di, ILi, IL j, t

)
is nonincreasing componentwise in IL j for all fixed values
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of u ji, di, ILi and t.

(b) If the minimisation in (4.19) is achieved by the pair ( j∗,u∗j∗i) and if IL j∗ � IL′j∗ , then

min
{

min
j,u ji

{
∆

(
u ji | di, ILi, IL′j, t

) }
; ∆ (0 | di, ILi, t)

}
is achieved by some pair ( j∗,u′j∗i) where u∗j∗i � u′j∗i.

It is possible to develop this result further as follows: Suppose now that we enhance the con-

straint set (4.20) by adding a linear constraint of the form
X∑

x=1

wxu jix ≤ Wj. (4.21)

For example, we could take wx = 1 ∀x with Wj then the maximum number of items which can be

carried in a single transshipment from j. Alternatively, wx could be the weight of a single x-item

with Wj then the maximum total weight which can be carried in a single transshipment from j.

Plainly part (a) of Theorem 1 continues to hold. However, we now have a weakened form of part

(b) which states that if IL j∗x increases from a point at which the heuristic mandates ( j∗,u∗j∗i) then

the supply location chosen will remain j∗ while the amount of item x supplied will not decrease.

It is also of interest to ask how decisions made by the hybrid heuristic change as the time

to the next replenishment increases. The situation is complex but suppose we simplify matters

by taking X = 1 and by supposing that all individual demands are for single items. Now con-

sider how the transshipment decision made as a result of a shortage at i might change as the time

to the next replenishment at location j increases from t j(t) to t j(t) + δ. The j-term in an ap-

propriate form of the expression in (4.17) now changes from v j

{
IL j − u ji, t, t j(t)

}
− v j

{
IL j, t, t j(t)

}
to v j

{
IL j − u ji, t, t j(t) + δ

}
− v j

{
IL j, t, t j(t) + δ

}
. For small δ, this change in the value of the in-

dex ∆
(
u ji | di, ILi, IL j, t

)
can be shown to be positive if and only if IL j is less than some quantity

ψ j

(
t j(t), u ji

)
whose dependence on t j(t) may be quite complex but which is increasing in u ji. The

interpretation of this is that location j becomes less attractive as a potential supplier as its replen-

ishment recedes if its inventory is sufficiently small. In this case the risk of future shortage costs

at j exceeds the benefit of reduced holding costs. In general, increasing the review periods Ti,
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1 ≤ i ≤ N, while keeping other aspects of the system unchanged, will put greater pressure on

the availability of stock, which will in turn mean that effective approaches to making stock avail-

able when required will confer greater value. One simple observation is that, for constant demand

rates, increasing the Ti, 1 ≤ i ≤ N, by multiplying them by a common factor while keeping other

system features unchanged, is equivalent to leaving the Ti unchanged while increasing demand

rates and holding cost rates by the same common factor. Either way, the results of the next sub-

section indicate that replenishment levels should be increased to reflect such changes. Increasing

review periods while leaving all else about the system unchanged is somewhat akin to reducing

replenishment levels to below economic optima.

4.3 On the setting of replenishment levels

In the discussion above, replenishment levels are assumed given. In this subsection, we first give a

brief account of the economically optimal setting of replenishment levels when locations operate

independently and there is no pooling of inventory between them. The reason we begin a discus-

sion of replenishment levels under a ‘no pooling’ assumption is (a) because analytical progress is

possible, and (b) to establish upper bounds on the search space for optimal replenishment levels

for policies operating transshipments. Further, from our global assumption in Section 3, we have

a free choice of replenishment level at the start of each review period. From these considerations

we conclude that for the optimal setting of replenishment levels under no pooling it is sufficient to

myopically consider how best to replenish a single location to minimise expected inventory costs

incurred over a single review period. At the end of the subsection, we then describe how we deploy

this analysis to establish an approach to the setting of replenishment levels in the context of the

numerical study of our hybrid transshipment heuristic in Section 5.

We can without loss of generality consider the optimal replenishment under no pooling of a

single item x at a single location i and drop the identifier ix from the notation. In particular,

we consider the choice of replenishment level S to minimise expected inventory costs v{S , 0,T }.

We write S∗ for the optimal S−value, satisfying v{S∗, 0,T } = min
S∈�+

{
v{S , 0,T }

}
. We use Dτ for

the number of items demanded during [0, τ], Fτ for its distribution function, defined by Fτ(n) =
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P(Dτ < n), n ∈ �+, and F−1
τ for its inverse distribution function, namely F−1

τ (β) = max
{
n; Fτ(n) <

β
}
, β ∈ [0, 1]. A proof of the following result may be found in the paper’s online appendix.

Proposition 1

(a) The optimal replenishment level S∗ in the absence of transshipments is given by

S ∗ = max

S ∈ �+;

T∫
0

(h + b) · Fτ(S ) dτ − L + L · FT (S ) − bT < 0

 . (4.22)

(b) S∗ is bounded above as follows:

S ∗ ≤ F−1
T

(
1 −

hT
hT + bT + L

)
. (4.23)

(c) If L > hT > 0 then S ∗ is bounded below as follows:

S ∗ ≥ F−1
T

(
1 −

hT
L

)
. (4.24)

We shall refer to the upper and lower bounds on S∗ given in the above result as S and S

respectively. We readily conclude that for cases of the lost sales model for which hT � L, S will

be reasonably tight since then we have

S = F−1
T

(
1 −

hT
hT + bT + L

)
= F−1

T

(
1 −

hT
hT + L

)
' F−1

T

(
1 −

hT
L

)
= S . (4.25)

We now develop approximations to the upper bound S based on the normal distribution.

We can use the central limit theorem to develop a normal approximation to the distribution of

the total demand DT under the condition that the expectation E(DT ) is moderately large. Recall

that we use µd and σ2
d respectively for the mean and variance of the number of units demanded by

a single individual. It then follows that E(DT ) = µdΛ(0,T ) and Var(DT ) =
(
µ2

d + σ2
d

)
Λ(0,T ) =(

µ2
d+σ2

d
µd

)
E(DT ) and we conclude from (4.23) that S is well approximated by

S ≈ E(DT ) + Φ−1
(
1 −

hT
hT + bT + L

) √(
µ2

d + σ2
d

µd

)
E(DT ). (4.26)

We now restore the item/location identifier ix. Features which will be present in the numerical

examples in Section 5 are a repeating demand pattern on a weekly cycle for all items at all locations
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and a review period equal to an integer number of weeks. These assumptions simplify things

considerably. Replenishment levels Six, 1 ≤ i ≤ N, 1 ≤ x ≤ X, now need to be tailored to individual

locations i and item-types x but not to the times at which the replenishments are made. From the

above analysis a natural approach to the determination of replenishment levels would be to conduct

an appropriate search using the above upper bounds for no pooling as a starting point. We would

certainly expect that optimal replenishment levels under inventory pooling via transshipments to

be somewhat lower than for no transshipments. Our numerical studies confirm this. Further, it

is not unreasonable to assume common characteristics for inventory costs and for the nature of

individual demands across locations. We can then suppose that replenishment levels take the form

Six = E(DixT ) + αx

√
E(DixT ), 1 ≤ i ≤ N, 1 ≤ x ≤ X (4.27)

and conduct a search over common αx, 1 ≤ x ≤ X, to achieve costs which are close to minimising.

The above discussion notwithstanding, our envisaged application domain frequently features

city centre locations where rents are high and space is limited. Hence it may not be possible to

replenish at the levels suggested by the analysis of the cost model, as above. In light of this, it will

be important to consider the impact of our heuristic transshipment policies when replenishment

levels are set lower than cost optimal. In Section 5 we shall consider the performance of our

hybrid heuristic for both cases when replenishment levels are set in a cost minimising fashion and

when rather lower levels are assumed because of space constraints.

4.4 A lower bound on achievable costs when all locations replenish simultaneously

The intractability of our decision problem means that it is only possible to compare the cost per-

formance of our heuristic directly with optimal in small problems. For certain cases, we are able

to further strengthen our analyses by developing lower bounds on the expected cost rate achievable

under any policy. Such is the complexity of our setup that we can only achieve simple and effective

bounds for cases in which (i) all locations are replenished simultaneously, (ii) all locations share a

common holding cost rate for each item type, namely hx, 1 ≤ x ≤ X, and (iii) a constraint of the

form in (4.21) delimits transshipments from each location. To illustrate the approach simply we
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shall take X = 1 and drop the item identifier x in what follows. We shall also focus on the lost sales

model. Extensions to X > 1 and/or to backorder costs are straightforward.

We shall obtain a lower bound LB(S,T ) on the costs achievable under any policy in a single

review period of length T and with replenishment levels given by the N-vector S. We obtain

LB(S,T ) by developing lower bounds on the two elements of inventory costs, namely holding

and shortage costs. To obtain a lower bound on holding costs, we imagine the network operating

as a single location with aggregate replenishment level Stot =
N∑

i=1
Si and aggregate demand rate

λtot(t) =
N∑

i=1
λi(t). This method of accounting for stock gives a lower bound on the actual stock

present and the corresponding holding costs at all time points as it defers lost sales to the last

moment. Using the quantities Stot and λtot(t) in (4.7), we obtain a lower bound on holding costs

vtot

{
Stot, 0,T ; hold} =

Stot∑
j=1

j∑
n=1

h ·
(
Atot(n, 0,T ) + T · Btot(n, 0,T )

)
· Pn

j (4.28)

To obtain a lower bound on shortage costs, we first use R f
∗i and Ru

∗i as respectively the smallest

fixed and unit costs associated with transshipments to location i. Further, using (4.21) with X = 1

we have an inequality wu ji ≤ W j delimiting the size of transshipments from j to i and we write W =

max
j

W j

w
for the maximum quantity which can be handled by a single transshipment. Condition now

on the event that location i faces an aggregate shortage z over a single review period. This shortage

will incur costs which are a combination of those due to transshipments and lost sales. It can be

seen that when W < ∞, a lower bound on shortage costs at location i is given by the quantity

ρi(z) = min
0≤u≤z

{⌈ u
W

⌉
R f
∗i + uRu

∗i + (z − u)Li

}
. (4.29)

When W = ∞ the appropriate expression is ρi(z) = min
{
R f
∗i + zRu

∗i, zLi

}
. Combining the above

elements yields Proposition 2 in which DiT is the total demand at i in a single review period.

Proposition 2 A lower bound on the network costs incurred over a review period of length T and

with replenishment levels S is given by

LB(S,T ) = vtot

{
Stot, 0,T ; hold

}
+

N∑
i=1

∞∑
j=Si+1

P(DiT = j)ρi( j − Si). (4.30)
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5 Experimentation

To test the performance of the new hybrid policy an extensive simulation study has been carried

out. We first explore how different heuristic approaches perform compared to optimal for small

problems. Given the complexity of the decision problem, this analysis is restricted to a single item

in a network with three locations. Alongside the new hybrid policy (H) we test the performance

of no pooling (NP) in which no transshipments occur and complete pooling (CP) in which trans-

shipments to meet shortages are designed on a minimum immediate cost basis. We also study a

standard reactive policy (R) which was adapted from Archibald et al. (2010). All policies were ap-

plied under the same conditions using common random numbers. For the optimal policy, the cost

rate was determined via dynamic programming. Table 2 summarises the optimality gaps obtained

for the above policies and highlights how policy H closes the gap to optimal considerably.

In addition to the evaluation of the hybrid policy H via comparisons to optimal we use Monte

Carlo simulation to study its performance in larger networks with 10 and 50 locations and two

distinct item types. In Tables 3-7 the cost rate performances of the policies mentioned above

are compared in these larger networks along with that of an artificial policy (Hpar) which runs the

decision rule H for each item type separately before aggregating costs. Comparing H to Hpar shows

the improvement achieved by modeling item types together and allowing coordinated proactive

transshipments of multiple item types at each decision epoch. In Table 8 the cost rates incurred by

NP, CP, R and H are compared with the lower bound established in subsection 4.4 for problems with

10 locations which are replenished simultaneously. Subsequent studies aim to assess the benefits

offered by our demand modeling generality (Table 9) and to characterise competing transshipment

heuristics in terms of the size, frequency and timing of transshipments (Figure 1).

In all of the numerical studies reported in this section we shall take the unit of time to be

one day and shall assume that stock is replenished on a weekly basis (Ti = 7, ∀i). Successive

replenishments at location i occur at ri + 7m, m ∈ �, for some offset ri ∈ [0, 7), 1 ≤ i ≤ N. We

also assume a weekly demand pattern. We write λi for the mean number of customer arrivals at

i per week and ϕik for the long run proportion of customers who arrive during day k ∈ {1, . . . , 7}
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of the week. Hence the customer arrival rate at i during k is λiϕik. These choices are informed by

the motivating application concerning the sale of car parts. Note that the parameters λi and ϕik are

chosen constant here, but our approach accommodates varying these for successive replenishment

cycles to model any trend in demand. In what follows we shall use D-Pat as an abbreviation for

the pattern of weekly demands λλ in the network and P-Pat for the associated phase patterns ϕϕ.

Weekly demand Values Phase pattern Values

D-Pat 1 λ1̄ = 20, λ2̄ = 20, λ3̄ = 20 P-Pat 0 ϕk = 1
7 ∀k (Constant/Stationary)

D-Pat 2 λ1̄ = 25, λ2̄ = 20, λ3̄ = 15 P-Pat 1 ϕ = (0.100, 0.250, 0.250, 0.100, 0.100, 0.100, 0.100)
D-Pat 3 λ1̄ = 30, λ2̄ = 20, λ3̄ = 10 P-Pat 2 ϕ = (0.050, 0.375, 0.375, 0.050, 0.050, 0.050, 0.050)

P-Pat 3 ϕ = (0.150, 0.350, 0.200, 0.075, 0.075, 0.075, 0.075)

Table 1: Overview of demand and phase patterns used

In our numerical studies we assign each location to one of three similarly sized groups. Loca-

tions within group g have a common customer arrival rate λḡ and we assume a common phase pat-

tern ϕk, 1 ≤ k ≤ 7, across all locations. Table 1 contains details of the D-Pat and P-Pat applied. We

further take fixd = 0.8(1−0.8)d−1, d ≥ 1, as our model for type-x demand per customer at i, with an

associated mean of 1.25. With the exception of the simultaneous replenishment setting of Table 8,

the offsets ri determining the times of location replenishments are drawn independently and uni-

formly from the interval [0, 7). Transshipment costs are characterised by the triple (Rfix,Rdist,Ru).

The fixed element of the cost of a transshipment from j to i is given by R f
ji = Rfix + ξ jiRdist, while

the per unit cost is Ru
jix = Ru for all choices of j, i and x. The factor ξ ji is the normalised distance

between locations j and i. Since throughout our experimentation, we found that the lost sales and

backordered sales models produced comparable results, we include results only for the former.

In all experiments reported in this section, excepting only those in Table 5, we assume that

holding and lost sales cost rates do not vary with location and item type. When this is the case

we also take the holding cost rate to be the unit in which all costs are measured. Hence we have

hix = 1 and Lix = L for all choices of i, x. For these cases, we assume from the discussion in

subsection 4.3 leading to (4.27) that replenishment levels take the form Six = 1.25λi + α
√

1.25λi,

where the parameter α is either optimised in the manner described in subsection 4.3 or is set

equal to 1 or 1.5. In order to demonstrate that our results are not dependent on assumptions of
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homogeneity of inventory and transshipment costs across item types, we include in Table 5 a set

of results where this is not the case. For all of the values reported in Tables 3-9 and Figure 1, 50

simulation repetitions were performed with each running for 200 replenishment periods (weeks).

Suboptimality gap for policy (%)

Parameter NP CP R H

L
20 10.09 4.98 4.40 0.14
60 76.72 15.00 13.47 0.54

100 133.63 12.43 12.18 0.79

(Rfix ,Rdist ,Ru)
(10, 40, 0) 64.28 12.46 11.52 0.51
(10, 40, 1) 60.13 11.21 10.16 0.41
(5, 20, 1) 96.04 8.75 8.36 0.55

worst case 126.80 15.84 15.48 1.14

Table 2: Suboptimality gap results for a three location network using α = 1

Table 2 summarises results obtained for different heuristic policies expressed as the deviation

(percentage excess) from the optimal cost rate. These are all three location problems with replen-

ishment levels set by taking α = 1 in a suitable form of (4.27). Experiments were carried out for

all combinations of the demand and phase patterns in Table 1 and three levels of both lost sales

penalties and transshipment costs. This yields 108 problem configurations in all. We present aver-

age figures for the results obtained for different cost levels as well as the worst case. Please note

that the hybrid heuristic H closes the greater part of the suboptimality gap left by other heuristics.

Parameter Cost per period using policy Improvement of H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 543.27 482.82 465.12 405.08 389.44 39.50 23.98 19.43 4.01
60 975.55 496.37 485.33 415.63 397.97 145.13 24.72 21.95 4.44

100 1407.83 496.37 492.86 419.73 401.01 251.08 23.78 22.91 4.67

(10, 40, 1)
20 543.27 492.38 474.25 422.86 409.69 32.60 20.18 15.76 3.21
60 975.55 511.53 496.73 434.56 419.96 132.30 21.80 18.28 3.48

100 1407.83 511.53 504.11 439.18 423.72 232.25 20.72 18.97 3.65

(5, 20, 1)
20 543.27 422.81 412.67 384.83 378.69 43.46 11.65 8.97 1.62
60 975.55 422.81 420.41 391.05 384.45 153.75 9.98 9.35 1.72

100 1407.83 422.81 424.68 393.09 386.30 264.44 9.45 9.94 1.76

Table 3: Lost sales results for 10 locations using α = 1 (D-Pat 3, P-Pat 2)

The 10 location experiments whose results are given in Tables 3 and 4 were conducted on 10

randomly generated maps. The experiments were as described above and the relevant model pa-

rameters are given in the tables. We include results for just one phase/demand pattern since we

found that varying P-Pat and D-Pat had little impact on the relative performance of the heuristic
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Parameter Cost per period using policy Improvement of H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 465.90 440.98 437.62 400.84 389.28 19.68 13.28 12.42 2.97
60 529.36 443.72 443.43 409.43 395.90 33.71 12.08 12.01 3.42

100 561.26 443.72 445.40 411.98 398.32 40.91 11.40 11.82 3.43

(10, 40, 1)
20 465.90 444.10 441.62 414.14 405.39 14.93 9.55 8.94 2.16
60 529.36 447.79 447.57 420.75 413.38 28.06 8.33 8.27 1.78

100 561.26 447.79 449.05 423.71 416.51 34.76 7.51 7.81 1.73

(5, 20, 1)
20 465.90 412.11 408.05 384.83 377.72 23.35 9.11 8.03 1.88
60 529.36 412.11 413.25 391.05 383.97 37.87 7.33 7.63 1.85

100 561.26 412.11 415.50 393.09 385.83 45.47 6.81 7.69 1.88

Table 4: Lost sales results for 10 locations using respective optimal values of α (D-Pat 3, P-Pat 2)

policies. The tables give values of the cost per week incurred under different policies and for a

variety of problem contexts also record the percentage cost reduction achieved by H in comparison

to other policies. Table 3 considers contexts in which limited storage space dictates low replenish-

ment levels (α set to 1 in a suitable form of (4.27)) while in Table 4, the value of α has been chosen

to achieve a minimum cost rate for each policy. This optimal value lies in the range [1.3,1.6] for

CP, [1.2,1.6] for R and [0.9,1.1] for H, with larger optimising α obtained when lost sales penal-

ties and/or transshipments costs are high. For policy NP, optimal values of α were obtained from

(4.22). We can infer that the new hybrid policy allows for considerably lower levels of safety

stock compared to other policies, thus keeping holding costs low. This is especially important for

inventory systems where holding costs constitute a major part of the operating costs.

We also observe that the relative performance of the hybrid policy is particularly strong for

higher shortage costs which is also very important for industries where high penalties apply for

unmet customer demand. For high levels of shortage costs, it is notable that for non-simultaneous

replenishments, as is the case here, the myopic policy CP in some cases outperforms policy R.

This is due to the fact that the purely reactive quasi-myopic approach overestimates future shortage

costs at locations where the remaining time until the next replenishment is long and thus produces

inferior decisions. This deficiency is completely removed by the hybrid approach.

Table 5 shows results from a set of experiments in which we have introduced item cost het-

erogeneity and set hi1 = 0.5, hi2 = 1.5, Li1 = L, Li2 = 2L, Ru
ji1 = Ru, Ru

ji2 = 3Ru. Other aspects

of the studies are unchanged from those reported in Tables 3 and 4. The reader will note that the
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Parameter Cost per period using policy Improvement of H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 640.54 483.70 466.90 403.54 387.54 65.28 24.81 20.48 4.13
60 1277.52 491.56 485.47 413.39 395.25 223.22 24.37 22.83 4.59

100 1914.50 491.56 493.35 416.79 397.76 381.32 23.58 24.03 4.79

(10, 40, 1)
20 640.54 509.91 488.02 437.60 425.74 50.45 19.77 14.63 2.78
60 1277.52 520.87 507.38 450.20 437.67 191.89 19.01 15.93 2.86

100 1914.50 520.87 515.07 454.70 441.78 333.36 17.90 16.59 2.92

(5, 20, 1)
20 640.54 432.16 420.64 397.99 393.36 62.84 9.86 6.94 1.18
60 1277.52 432.16 428.79 405.12 400.99 218.59 7.77 6.93 1.03

100 1914.50 432.16 432.74 407.41 403.41 374.58 7.13 7.27 0.99

Table 5: Lost sales results for 10 locations with heterogeneous item types using α = 1 (D-Pat 3, P-Pat 2)

introduction of item cost heterogeneity has not materially effected the nature of the results.

In order to evaluate how the benefits of the hybrid policy scale with the size of the network,

experiments were conducted using a network with 50 locations. Here geographical data on 50

branches of a car parts dealer were used. Tables 6 and 7 report a set of results equivalent to those

for 10 locations in Tables 3 and 4. In the determination of replenishment levels the parameter α

was both set to be 1 (Table 6) and optimised (Table 7). The larger number of locations means that

the chance of a suitable sending location when a shortage occurs is enhanced. Hence it is true for

all transshipment policies that safety stock levels, as reflected by the optimal α values computed

for Table 7 were significantly reduced compared to those for the 10 location problems of Table 4.

Optimal α are now in the range [1.0,1.3] for CP, [0.9,1.3] for R and [0.6,1.0] for H. We can see that

with regard to choosing α optimally the benefit of H observed earlier is increased. The importance

of transshipments per se is seen in the dominance of all transshipment policies over NP.

Parameter Cost per period for policy Improvement of H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 2758.67 2205.63 2148.63 1914.70 1867.21 47.74 18.12 15.07 2.54
60 4914.75 2205.92 2160.05 1940.75 1891.54 159.83 16.62 14.20 2.60

100 7070.83 2205.92 2168.15 1954.36 1902.60 271.64 15.94 13.96 2.72

(10, 40, 1)
20 2758.67 2270.44 2203.62 2007.06 1971.19 39.95 15.18 11.79 1.82
60 4914.75 2270.84 2214.50 2040.50 2007.00 144.88 13.15 10.34 1.67

100 7070.83 2270.84 2222.43 2057.92 2023.44 249.45 12.23 9.83 1.70

(5, 20, 1)
20 2758.67 2000.74 1966.62 1891.57 1878.34 46.87 6.52 4.70 0.70
60 4914.75 2000.74 1975.49 1917.52 1906.90 157.73 4.92 3.60 0.56

100 7070.83 2000.74 1980.79 1928.37 1918.16 268.63 4.31 3.26 0.53

Table 6: Lost sales results for a 50 location network using α = 1 (D-Pat 3, P-Pat 2)

It is clear from the results obtained in Tables 2-7 that the hybrid policy improves significantly

upon the competing heuristics. For networks larger than three locations the full potential of apply-
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Parameter Cost per period for policy Improvement of H over (%)

(Rfix ,Rdist ,Ru) L NP CP R Hpar H NP CP R Hpar

(10, 40, 0)
20 2374.59 2144.02 2121.86 1903.20 1838.37 29.17 16.63 15.42 3.53
60 2688.90 2144.07 2129.20 1932.36 1872.02 43.64 14.53 13.74 3.22

100 2842.91 2144.07 2134.19 1947.72 1887.01 50.66 13.62 13.10 3.22

(10, 40, 1)
20 2374.59 2178.19 2164.37 2007.06 1966.21 20.77 10.78 10.08 2.08
60 2688.90 2178.27 2159.85 2040.50 2005.06 34.11 8.64 7.72 1.77

100 2842.91 2178.27 2162.88 2057.92 2023.44 40.50 7.65 6.89 1.70

(5, 20, 1)
20 2374.59 2000.74 1963.43 1864.19 1838.16 29.18 8.85 6.82 1.42
60 2688.90 2000.74 1974.48 1896.01 1875.46 43.37 6.68 5.28 1.10

100 2842.91 2000.74 1981.03 1908.50 1888.22 50.56 5.96 4.92 1.07

Table 7: Lost sales results for a 50 location network using respective optimal values of α (D-Pat 3, P-Pat 2)

ing the hybrid approach remains unknown as an optimal solution cannot be determined for use as a

comparator. Subsection 4.4 introduced a lower bound for the cost per period achievable under any

policy. For this setup an assumption of simultaneous replenishment of all locations is required. The

results presented in Table 8 use the same underlying parameters as before with the exception that

the offset ri of the weekly repeating replenishment pattern is set to zero for all i. To allow a com-

mon lower bound for all policies a fixed value of α is used. This was set at level α = 1.5 to achieve

a reasonably strongly performing set of replenishment levels for all the policies. The evidence of

Table 8 is that the hybrid policy is close to optimal for the cases considered. The deviation from

the lower bound ranges from roughly 1.5 to 3.5% for the hybrid policy. As was the case in Table 2,

Table 8 again makes clear that the hybrid heuristic H closes the major part of the suboptimality

gap left by the competing heuristics in these larger problems. Further, upon close inspection the

reader should observe that the lower bound developed in subsection 4.4 applies to all approaches to

stock rebalancing between (simultaneous) replenishments, not simply those triggered by shortages

of the kind considered here. Hence for the problems in Table 8, heuristic H is competitive with

a wide range of possible approaches including those which take a different approach to proactive

transshipment and/or which allow simultaneous transshipments from more than a single location.

To assess the contribution made to the results by our incorporation of non-homogeneous de-

mand, we designed a hybrid heuristic (Ave) on the basis of a false assumption of homogeneous

demand at a suitable weekly rate when in fact phase patterns 1-3 apply. In Table 9, find cost rates

which compare H with Ave over a set of cases similar to those used in Tables 3 and 4, but for
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Parameter Deviation from lower bound (%)

(Rfix ,Rdist ,Ru) L NP CP R H

(10, 40, 0)
20 19.06 12.36 11.84 1.47
60 68.48 13.84 13.20 1.91

100 117.90 13.84 13.31 2.16

(10, 40, 1)
20 17.72 12.01 11.50 2.52
60 66.56 13.85 13.15 3.17

100 115.42 13.85 13.25 3.54

(5, 20, 1)
20 21.24 7.19 6.77 1.94
60 71.58 7.19 6.87 2.49

100 121.91 7.19 6.95 2.76

Table 8: Performance analysis for
10 locations using the derived lower
bound and α = 1.5 (D-Pat 3, P-Pat2)

α = 1 α = 1.5

Parameter Cost Gain Cost Gain

(Rfix ,Rdist ,Ru) L Ave H (%) Ave H (%)

(10, 40, 0)
20 177.7 173.0 2.66 165.6 162.7 1.75
60 188.0 182.5 2.88 168.9 165.2 2.16

100 193.7 188.7 2.57 170.1 166.6 2.06

(10, 40, 1)
20 190.2 185.1 2.69 173.4 170.0 1.96
60 201.6 195.6 3.01 177.5 173.2 2.41

100 207.6 202.1 2.65 179.0 174.9 2.27

(5, 20, 1)
20 162.2 158.7 2.14 159.1 156.5 1.59
60 169.0 166.0 1.77 161.1 158.8 1.45

100 173.7 171.1 1.48 161.9 159.9 1.28

Table 9: Non-homogeneous benefit analysis for 10
locations in a single item network (D-Pat 3, P-Pat 3)

a single item model and with replenishment levels set by taking α = 1 and α = 1.5. From our

entire set of results we note that a cost rate benefit of up to 3% can be achieved by correctly in-

corporating demand seasonality in the model. In an unreported study available from the authors,

they demonstrate the superiority of H over competing heuristics even in the case of pure Poisson

demand which has been a standard assumption in the literature hitherto.
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Figure 1: Timing and size of transshipments for different policies

We finally analyse the nature of the policies for the set of experiments reported in Table 3. The

left hand plot of Figure 1 shows how often transshipments were made under the policies CP, R

and H and the phases remaining until the next replenishment at the receiving location. We can see

that under the hybrid policy, transshipments are much less frequent than for policies CP and R.

Particularly striking is the extent to which H mitigates the spike in the frequency of transshipments

which occurs for CP and R at the end of a review period. This is reflected in our cost benefit

analyses as fixed costs for transshipments increase. We can also see that CP has an increased

transshipment frequency compared to R due to its myopic nature. The right hand plot of Figure 1
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reports the size of transshipments made under each policy. While in the majority of cases CP and R

ship only one item to meet a shortage, policy H makes significantly larger transshipments. This not

only prevents future transshipments due to the reduced chance of stockouts, it also makes efficient

use of the capacity of vehicles and exploits the dominance of fixed over variable costs.

6 Conclusion

The hybrid policy improves significantly upon a reactive policy and other heuristics when a sub-

stantial part of the transshipment cost is fixed. This is particularly relevant for networks which are

spread over a wide geographic area where the cost of transshipping will be predominantly deter-

mined by distance and time travelled rather than the amount transported. The main improvement

lies in the fact that fewer transshipments of larger size are made thus making efficient use of the

resources involved. Not only will reducing the frequency of transshipments reduce costs, it also

reflects a more strategic approach to stock rebalancing and will reduce the extent to which stock

is shuffled repeatedly between locations. It has also emerged that deployment of the hybrid policy

permits major savings in inventory costs through reductions in the levels of safety stock required.

We have provided evidence that our hybrid heuristic not only improves upon previous proposals

but also comes close to optimal. In particular, we have provided evidence that this policy achieves

most of the benefits available from the pooling of inventory without the need to consider rebalanc-

ing across all locations simultaneously, with all of the organisational difficulties that entails.

In addition to considerable cost savings, our approach also enables a much greener business op-

eration as the capacity of transport vehicles is used more efficiently with fewer journeys. Allowing

compound non-homogeneous demand provides further performance gains and greater precision in

the policy’s application. Our approach enables a very general setting allowing multiple item types

where demand is drawn from a general multivariate distribution. Further, a more flexible model-

ing of shortage costs is offered. This increased generality allows the hybrid policy to exploit the

benefits offered by economies of scale in a wide range of practical settings.
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Online Appendix

A Proof of Theorem 1

Proof: For part (a), from the expression in (4.17) it is sufficient to show that v jx{IL jx, t, t j(t)} −

v jx{IL jx−1, t, t j(t)} is nondecreasing in IL jx over the range [1,∞) ∀t. From the algebraic expressions

for the quantities concerned given in subsection 4.1, it is straightforward to infer from the identity

A jx(n, t, s) + s · B jx(n, t, s) =

t+s∫
t

B jx
(
n, t, τ

)
dτ (A.1)

that

v jx{IL jx, t, t j(t)} − v jx
{
IL jx − 1, t, t j(t)

}
=

t+t j(t)∫
t

IL jx∑
n=1

(h jx + b jx) · B jx
(
n, t, τ

)
· Pn

jxIL jx
dτ

− L jx +

IL jx∑
n=1

L jx · B jx
(
n, t, t j(t)

)
· Pn

jxIL jx
− b jx · t j(t).

(A.2)

We now write Djx (t, t+τ) for the x-demand at location j during (t, t+τ) and Fjx (t, t+τ) for its distribution

function, defined by Fjx (t, t+τ)(n) = P
(
Djx (t, t+τ) < n

)
, n ∈ �+. From the definitions of the quantities

concerned, we have, for any τ ∈ (0, t j(t)), that

IL jx∑
n=1

B jx(n, t, τ) · Pn
jxIL jx

=

IL jx∑
n=1

P
(
Number of x-customers at location j

during (t, t + τ) < n
)
· Pn

jxIL jx
= Fjx (t, t+τ)(IL jx).

Substituting into (A.2), we infer that

v jx{IL jx, t, t j(t)} − v jx
{
IL jx − 1, t, t j(t)

}
=

t+t j(t)∫
t

(h jx + b jx) · Fjx(t,t+τ)(IL jx) dτ

− L jx + L jx · Fjx (t, t+τ)(IL jx) − b jx · t j(t),

(A.3)

which is plainly nondecreasing in IL jx ∀t. This concludes the proof of part (a). �
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For part (b), consider the pair
(

j∗,u∗j∗i
)

minimising (4.19). Note that from part (a), the expres-

sion

R f
ji +

X∑
x=1

[
Ru

jix · u jix + Lix ·
(
IL+

ix − dix + u jix

)−
+ vix

{
ĨLix(u jix), t, ti(t)

}
+ v jx

{
IL jx − u jix, t, t j(t)

}
− vix

{
ILix, t, ti(t)

}
− v jx

{
IL jx, t, t j(t)

}]
is nonincreasing in IL jx (all else held fixed) for each x. It must follow, utilising (4.17), that some

pair ( j∗, ·) must achieve (4.19) as IL j increases componentwise. It also follows from the expression

in (4.17) that if u = u jix ≥ 1 and v < u then

Ru
jix · u + Lix ·

(
IL+

ix − dix + u
)−

+ vix

{
ĨLix(u), t, ti(t)

}
+ v jx

{
IL jx − u, t, t j(t)

}
≤ Ru

jix · v + Lix ·
(
IL+

ix − dix + v
)−

+ vix

{
ĨLix(v), t, ti(t)

}
+ v jx

{
IL jx − v, t, t j(t)

}
.

However, from part (a), if this is true for x-stock level IL jx then it must continue to be true for all

x-stock levels above IL jx. Hence, if IL j∗ � IL′j∗ it must then follow that

min
{

min
j,u ji

{
∆

(
u ji | di, ILi, IL′j, t

) }
; ∆ (0 | di, ILi, t)

}
must be achieved by some pair ( j∗,u′j∗i) satisfying u∗j∗i � u′j∗i. This concludes the proof of part

(b). �

B Proof of Proposition 1

Proof: Using the notation of subsection 4.4, we can use the material in Section A up to (A.3) to

infer that

v{S , 0,T } − v{S − 1, 0,T } =

T∫
0

(h + b) · Fτ(S ) dτ − L + L · FT (S ) − b · T, (B.1)

2



which is plainly nondecreasing in S . It thus follows that the optimal replenishment level under no

pooling is given by

S ∗ := arg min
S∈�+

{
v{S , 0,T }

}
= max

{
S ∈ �+; v{S , 0,T } − v{S − 1, 0,T } < 0

}
,

which, together with (B.1) yields part (a). The inequality Fτ(S ) ≥ FT (S ) used in (B.1) implies that

v{S , 0,T } − v{S − 1, 0,T } ≥ (h + b) · T · FT (S ) − L + L · FT (S ) − b · T (B.2)

from which we deduce that

S ∗ ≤ max
{
S ∈ �+; (h + b) · T · FT (S ) − L + L · FT (S ) − b · T < 0

}
= F−1

T

(
1 −

hT
hT + bT + L

)
,

which proves part (b). The proof of part (c) makes similar use of the inequality 1 ≥ Fτ(S ) to infer

that when L > hT > 0,

S ∗ ≥ max
{
S ∈ �+; h · T − L + L · FT (S ) < 0

}
= F−1

T

(
1 −

hT
L

)
.

This concludes the proof of the Proposition. �
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