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An unsplit implementation of Higher-Order PMLs for the seismic wave
equation

David Connolly1, Antonis Giannopoulos1 and Mike Forde1

ABSTRACT

An unsplit recursive integration implementation of
higher order PMLs for FDTD seismic modelling is pre-
sented. Firstly a new correction method PML imple-
mentation is outlined which allows the PML condition
to be added directly to existing codes in a straightfor-
ward manner. Higher order PML equations are subse-
quently developed and implemented through a logical
extension of the correction method. The resulting com-
pact formula is capable of generating a PML condition
of arbitrary order. The performance of a second order
PML is tested against a similar first order implemen-
tation. It is found to have increased absorption per-
formance for evanescent waves and waves at imaginary
angles.

INTRODUCTION

Finite difference time domain (FDTD) modelling tech-
niques are commonly used to simulate seismic wave propa-
gation for the purposes of seismic exploration. Absorbing
boundary conditions (ABC’s) are typically used to prevent
reflections from truncated domain edges contaminating re-
sults. The ABC performance dictates how far it should
be placed from the modelling areas of concern. Therefore
a highly effective ABC can significantly reduce the size of
the computational domain and thus computational effort.

One wave equations [Higdon], optimal boundary con-
ditions [Peng and Toksoz] and damping zone [cerjan] ap-
proaches have been attempted. Although these techniques
generally perform well for waves arriving perpendicular to
the boundary, their performance is reduced for waves im-
pinging at low angles of incidence. This is undesirable for
seismic wave modelling because the complex wave pat-
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terns are composed of large variations in incident angle.
Berenger introduced a ’Perfectly matched layer’ (PML)

technique to absorb electromagnetic waves based upon a
series of finite layers, each with identical material prop-
erties, that gradually damp outgoing waves. This grad-
ual damping is implemented through a stretching of the
spatial coordinates inside the PML region. It offers high
performance and is capable of absorbing waves indepen-
dent of arrival angle. [chew and weedon] quickly extended
the PML to include a stretching of both real and imag-
inary spatial co-ordinates thus offering the potential for
additional absorption.

Using a similar implementation to electromagnetics, [chew
and lui] adapted the PML condition to offer absorption for
seismic waves. Despite this, spurious reflections were en-
countered for evanescent and low frequency waves. These
shortcomings were addressed through the implementation
of frequency dependant damping applied using the com-
plex frequency shifted PML (C-PML) (x). C-PML tech-
niques have since been developed for elastic(Komatitsch
2007), poroelastic(Martin 2008) and anisotropic media(becache
2003).

Early PML conditions (x) were implemented using an
artificial splitting of velocity and stress fields. This split-
ting procedure made PML implementation in traditional
FDTD codes challenging because two different sets of equa-
tions are required for each PML and non-PML region. In
addition, such implementations are not well-posed (abar-
banel).

To avoid field splitting, convolution terms (Komatitsch
2007), auxillary differential equations (Gedney 1998) and
integral terms (Drossaert) have been proposed. As convo-
lution is generally regarded as computationally inefficient,
recent focus has shifted to auxillary differential equation
(ADE) and integral term implementations.

(Martin 2010) outlines a non-convolutional ADE PML
approach where a fourth-order Runge-Kutta scheme is
used in conjunction with eighth order Holberg space dis-
cretization. This formulation is shown to have increased
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accuracy over the traditional ADE-PML implementation
and to be stable for up to 100,000 timesteps. Additionally
[Martin] investigates the potential to extend this ADE-
PML condition to higher order PML’s but concludes that
no significant performance benefit is capable.

(Zhang 2011) builds on the work of [martin 2010] and
outlines a similar ADE-PML fourth-order Runge-Kutta
scheme that results in a complete set of first order differ-
ential equations. This means that the same FDTD im-
plementation can be used to solve both the ADE C-PML
equations and the interior domain equations.

An alternative approach is outlined by [Drossaert] through
the use of recursive integration (RIPML). This technique
uses an extended trapezoidal rule to integrate the time
derivates thus negating the requirement to split the fields
or use an ADE formulation. RIPML requires an equal
amount of memory in comparison to split formulations
and slightly less memory than an ADE implementation.

Meanwhile, [correia, antonis] proposed a higher order
PML implementation for Maxwell’s equations. The addi-
tional degrees of freedom proved to offer superior absorp-
tion in comparison to traditional first order PML meth-
ods.

This paper extends the PML implementation described
by [antonis] to the seismic wave equation using a RIPML
approach. It has the potential to utilise a greater num-
ber of degrees of freedom in comparison to the traditional
first order PML condition, thus offering greater absorp-
tion. It’s increased performance is highlighted through
several comparisons with an alternative first order PML
condition.

IMPLEMENTING PML THROUGH A
CORRECTION TECHNIQUE

Using a stretched coordinate system, the two-dimensional
frequency domain elastodynamic velocity-stress equations
take the form:

iωṽx = b

(
1

sx

∂σ̃xx
∂x

+
1

sz

∂σ̃xz
∂z

)
(1)

iωṽz = b

(
1

sx

∂σ̃xz
∂x

+
1

sz

∂σ̃zz
∂z

)
(2)

iωσ̃xx = (λ+ 2µ)
1

sx

∂ṽx
∂x

+ λ
1

sz

∂ṽz
∂z

(3)

iωσ̃zz = (λ+ 2µ)
1

sz

∂ṽz
∂z

+ λ
1

sx

∂ṽx
∂x

(4)

iωσ̃xz = µ

(
1

sx

∂ṽz
∂x

+
1

sz

∂ṽx
∂z

)
(5)

Where velocity components are denoted by v and stress
components by σ. λ and µ are the lames coefficients and
b is buoyancy. Co-ordinate axis are defined by x and z.
sx and sz are the PML stretching functions, where

sui = κui +
dui

αui
+ iω

(6)

and

ψu =
1− su
su

(7)

Rearranging equations 1-5 in terms of ψu gives

iωṽx = b

(
(1 + ψx)

∂σ̃xx
∂x
− (1 + ψz)

∂σ̃xz
∂z

)
(8)

iωṽz = b

(
(1 + ψx)

∂σ̃xz
∂x
− (1 + ψz)

∂σ̃zz
∂z

)
(9)

iωσ̃xx = (λ+ 2µ)(1 + ψx)
∂ṽx
∂x
− λ(1 + ψz)

∂ṽz
∂z

(10)

iωσ̃zz = (λ+ 2µ)(1 + ψz)
∂ṽz
∂z
− λ(1 + ψx)

∂ṽx
∂x

(11)

iωσ̃xz = µ

(
(1 + ψx)

∂ṽz
∂x
− (1 + ψz)

∂ṽx
∂z

)
(12)

Examination reveals that the stretched velocity/stress
equations are analogous to an addition of field dependant
variables J̃ and M̃ to the original unstretched component.

iωṽx = b

(
∂σ̃xx
∂x

+
∂σ̃xz
∂z

)
+ b

(
˜Jxx + ˜Jxz

)
(13)

iωṽz = b̃

(
∂σ̃xz
∂x

+
∂σ̃zz
∂z

)
+ b

(
˜Jxz + ˜Jzz

)
(14)

iωσ̃xx = (λ+ 2µ)
∂ṽx
∂x

+ λ
∂ṽz
∂z

+
(

(λ+ 2µ)M̃xx + λM̃xz

)
(15)

iωσ̃zz = (λ+ 2µ)
∂ṽz
∂z

+ λ
∂ṽx
∂x

+
(

(λ+ 2µ)M̃zz + λM̃zx

)
(16)

iωσ̃xz = µ

(
∂ṽz
∂x

+
∂ṽx
∂z

)
+ µ

(
M̃zx + M̃xz

)
(17)

Where J̃ and M̃ are given by

J̃xu = ψu
∂σ̃xu
∂u

(18)

M̃xu = ψu
∂ṽv
∂u

(19)

with u, v ∈ {x, z} and u 6= v.
Velocity and stress values of the stretched coordinates

in the PML region (i.e. where ψu 6= 0) can therefore be
calculated through an addition of J̃ and M̃ to previously
calculated values. This means that the PML can be imple-
mented in existing scripts without revision of the original
code.

DEVELOPMENT OF A HIGHER ORDER PML

In what follows, a PML formulation is derived for Nth
order stretching. The approach avails of the previously
defined correction PML implementation to allow for an
efficient and straightforward implementation.

For brevity, only the derivation of Jxz is outlined. All
other Juu and Muu can be found analogously.



3

Firstly,

su =

N∏
i=1

sui
(20)

Assuming u = z and (1− sz)/sz = ψz leads to

sz

(
J̃xz +

∂σ̃xz
∂z

)
=
∂σ̃xz
∂z

(21)

(
N∏
i=1

szi

)(
J̃xz +

∂σ̃xz
∂z

)
=
∂σ̃xz
∂z

(22)

To proceed with the derivation, a set of functions Ψxzi

are defined for i ∈ [1, N − 1]

Ψxzi =

(
N∏

m=i+1

szm

)(
J̃xz +

∂σ̃xz
∂z

)
(23)

Using equations x and y to eliminate J̃xz, the following
relationships are established:

Ψxz1 =
1

sz1

∂σ̃xz
∂z

(24)

and

Ψxzi =
1

szi
Ψi−1 (25)

and finally, (
J̃xz +

∂σ̃xz
∂z

)
=

1

szN
ΨxzN−1

(26)

for i ∈ [2, N − 1].
A substitution of sy1 from X into Y gives

κz1Ψxz1 +
dz1

αz1 + iω
Ψxz1 =

∂σ̃xz
∂z

(27)

With the intention of solving for Ψ1, both sides are
multiplied by (αz1 + iω)

(αz1κz1 + dz1)Ψxz1 + iωκz1Ψxz1 = αz1

∂σ̃xz
∂z

+ iω
∂σ̃xz
∂z

(28)
Before recursive integration takes place, X must be mapped

from the frequency domain into the time domain. To
prime X for transformation it is rearranged and similar
terms are grouped together,

Ψxz1 =
1

κz1

∂σ̃xz
∂z

+
1

iω

[αz1

κz1

∂σ̃xz
∂z
− (αz1κz1 + dz1)

κz1
Ψxz1

]
(29)

The relationship 1
iω Ã(w) =

∫ t

0
A(t)δt can then be used

to make the transform trivial

Ψxz1 =
1

κz1

∂σxz
∂z

+

∫ t

0

αz1

κz1

∂σxz
∂z
− (αz1κz1 + dz1)

κz1
Ψxz1 δt

(30)
It is assumed that the higher order PML will be im-

plemented using a traditional velocity-stress FDTD grid
that is staggered in both space and time. Juu components
are therefore evaluated at the same time instance as ve-
locities (i.e. t = n) and Muu components are evaluated at
the same time instance as stresses (i.e. t = n + 1/2). It
is also assumed that all field quantities are zero for t ≤ 0.
The index notation Jb

a, is utilised, where a defines the in-
dex for spatial discretization and b denoted the index for
time discretization. Consequently the application of the
extended trapezoidal rule results in:

Ψn+1/2
xz1 =

1

κz1

∂σ
n+1/2
xz

∂z
+

n−1∑
p=0

[αz1∆t

κz1

∂σ
p+1/2
xz

∂z
− (αz1κz1 + dz1)∆t

κz1
Ψp+1/2

xz1

]
+

∆t

2

αz1

κz1

∂σ
n+1/2
xz

∂z
− ∆t

2

(αz1κz1 + dz1)

κz1
Ψn+1/2

xz1

(31)

rearranging yields

(
1 +

∆t

2

(αz1κz1 + dz1)

κz1

)
Ψn+1/2

xz1 =(
1

κz1
+

∆t

2

αz1

κz1

)
∂σ

n+1/2
xz

∂z
+

n−1∑
p=0

[αu1
∆t

κu1

∂σ
p+1/2
xz

∂z
− (αz1κz1 + dz1)∆t

κz1
Ψp+1/2

xz1

]
(32)

Which is then solved for Ψ
n+1/2
xz1

Ψn+1/2
xz1 =

2 + ∆tαz1

2κz1 + ∆t(αz1κz1 + dz1)

∂σ
n+1/2
xz

∂z
+

2κz1
2κz1 + ∆t(αz1κz1 + dz1)

n−1∑
p=0

[αz1∆t

κz1

∂σ
p+1/2
xz

∂z
−

(αz1κz1 + dz1)∆t

κz1
Ψp+1/2

xz1

]
(33)

Thus allowing Ψ
n+1/2
xz1 to be obtained

Ψn+1/2
xz1 =

2 + ∆tαz1

2κz1 + ∆t(αz1κz1 + dz1)

∂σ
n+1/2
xz

∂z
+

2κz1
2κz1 + ∆t(αz1κz1 + dz1)

Φn−1/2
xz1

(34)

The value of the previous time integral is held by the
summation memory variable Φxz1 . This variable is up-
dated after the correction procedure of the FDTD field
variables, but at the same time instance and thus within
the same computational loop. It is defined by:
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Φn+1/2
xz1 = Φn−1/2

xz1 +
αz1∆t

κz1

∂σ
n+1/2
xz

∂z

−∆t(αz1κz1 + dz1)

κz1
Ψn+1/2

xz1

(35)

The undesirable Φ
n+1/2
xz1 term can be eliminated from

the update of Φ
n+1/2
xz1 via x and y, resulting in:

Φn+1/2
xz1 =

2κz1 −∆t(αz1κz1 + dz1)

2κz1 + ∆t(αz1κz1 + dz1)
Φn−1/2

xz1

− 2dz1∆t

(2κz1 + ∆t(αz1κz1 + dz1))κz1

∂σ
n+1/2
xz

∂z

(36)

Upon inspection of X, it is seen than for i ∈ [2, N − 1],
all Ψxzi can be calculate in an analogous manner to Ψxz1

resulting in

Ψn+1/2
xzi =

2 + ∆tαzi

2κzi + ∆t(αziκzi + dzi)
Ψn+1/2

xzi−1
+

2κzi
2κzi + ∆t(αziκzi + dzi)

Φn−1/2
xzi

(37)

correspondingly, the previous time integrals, Φxzi for
i ∈ [2, N ] can be updated:

Φn+1/2
xzi =

2κzi −∆t(αziκzi + dzi)

2κui
+ ∆t(αziκzi + dzi)

Φn−1/2
xzi

− 2σzi∆t

(2κzi + ∆t(αziκzi + dzi))κzi
Ψn+1/2

xzi−1

(38)

Furthermore, through an application of the same princi-
ples as used to develop eqs x and y, x and y themselves can
be compared to Z thus providing an overall formulation
for Jxz

Jn+1/2
xz =

2 + ∆tαzN

2κzN + ∆t(αzNκzN + dzN )
Ψn+1/2

xzN−1
+

2κzN
2κzN + ∆t(αzNκzN + dzN )

Φn−1/2
xzN − ∂σ

n+1/2
xz

∂z

(39)

Because Ψxzi is merely a function of both ∂σxz1/∂z and
Φxz1 , Ψxzi can be eliminated from x. Finally, the creation
of four new variables, RAzi , RBzi , RCzi and RDzi results
in the compact formula:

Jn+1/2
xz =

{( N∏
q=1

RAzq

)
− 1

}
∂σ

n+1/2
xz

∂z
+

N−1∑
i=1

{( N∏
q=i+1

RAzq

)
RBziΦ

n−1/2
xz

}
+ RBzN Φn−1/2

xzN

(40)

where i ∈ [2, N − 1].
Similarly, due to the same relationship between Ψxzi ,

∂σxz1/∂z and Φxz1 , Ψxzi can be eliminated from the sum-
mation memory variable.

Φn+1/2
xzi = REziΦ

n−1/2
xzi − RFzi

{( i−1∏
q=1

RAzq

)
∂σ

n+1/2
xz

∂z
+

i−1∑
m=1

( i−1∏
q=m+1

RAzq

)
RBzmΦn−1/2

xzm

}
(41)

Also where i ∈ [2, N − 1]. RAzi , RBzi , RCzi and RDzi

are defined by:

RAzi =
2 + ∆tαzi

2κzi + ∆t(αziκzi + dzi)

RBzi =
2κzi

2κzi + ∆t(αziκzi + dzi)

REzi =
2κzi −∆t(αziκzi + dzi)

2κzi + ∆t(αziκzi + dzi)

RFzi =
2σzi∆t

(2κzi + ∆t(αziκzi + dzi))κzi

First order implementation

Jn+1/2
xz =

{
RAz1 − 1

}
∂σ

n+1/2
xz

∂z
+ RBz1Φn−1/2

xz1 (42)

followed by the update of Φ1

Φn+1/2
xz1 = REz1Φn−1/2

xz1 − RFz1

∂σ
n+1/2
xz

∂z
(43)

Second order implementation

Jn+1/2
xz =

{
RAz1RAz2 − 1

}
∂σ

n+1/2
xz

∂z
+

RAz2RBz1Φn−1/2
xz1 + RBz2Φn−1/2

xz2

(44)

followed by the updates for Φxz2 and Φxz1

Φn+1/2
xz2 = REz2Φn−1/2

xz2 − RFz2

{
RAz1

∂σ
n+1/2
xz

∂z
+ RBz1Φn−1/2

xz1

}

Φn+1/2
xz1 = REz1Φn−1/2

xz1 − RFz1

∂σ
n+1/2
xz

∂z

PML STABILITY

Although it has been shown in X that second order PML’s
can provide enhanced performance over first order PML’s
for electromagnetic wave absorption, it is still unclear as
to whether PML orders greater than second provide any
significant benefit. Therefore this work will primarily fo-
cus upon second order implementation and testing. For
this case, two approaches are utilised to maximise absop-
tion, a combination of the classical and CFS PML stretch-
ing functions, and a combination of two CFS stretching
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functions.
The stretching functions are defined as:

sclassical = κ+
d

iω
(45)

sCFS = κ+
d

α+ iω
(46)

sclassical−CFS =

(
κ+

d

iω

)(
κ+

d

α+ iω

)
(47)

sCFS−CFS =

(
κ+

d

α+ iω

)(
κ+

d

α+ iω

)
(48)

Stretching function parameters have a significant effect
in a PML’s ability attenuate wave energy. Careless pa-
rameter selection can also lead to instability, especially
as PML order increases. To determine stability criterion
the real part of the stretching function must be greater or
equal to 1 or the PML will cause a physical contraction
of space rather than a stretching of space. Similarly, the
imaginary part must be greater than zero or the PML re-
gion will experience a magnification of amplitude rather
than an attenuation. This can be expressed as:

rO2 ≥ 1 (49)

and
IO2 ≥ 0 (50)

CLASSICAL-CFS STABILITY CRITERION

X found that for the absoption of electromagnetic waves,
optimum performance was achieved by combining classi-
cal and CFS stretching functions (equation x). It is pos-
tulated that for some domains, combining the standard
PML’s ability to absorb frequency independant waves with
the CFS-PML’s ability to absorb low frequency evanescent
waves, greater performance is achievable.

The real and imaginary components for this case can
be shown to be:

rO2 = κ2 +
d2α2

α2
2 + ω2

− d1d2
α2
2 + ω2

(51)

IO2 =
d1κ2
ω

+
d2ω

α2
2 + ω2

+
d1d2α2

ω(α2
2 + ω2)

(52)

To fulfill these criterea it can be observed that careful
choices of α2 and κ2 must be made (α2 > d1 and κ2 ≥ 1).
These conditions must be fulfilled at every point within
the PML domain meaning parameters must be graded
carefully. A grading approach similar to that presented
by Komatitsch was found to give high performance.

djN = d0N (
j

L
)aN (53)

κjN = 1 + (κmaxN
− 1)bN (54)

αjN = αmaxN
(1− (

j

L
)cN ) (55)

where j ∈ [x, y, z], N is the PMl order and L is the
thickness of the PML layer. Lastly, d0 =

3vp
2L log

1
R where

vp is the maximum compressional wave speed and R is the
theoretical reflection coefficient.

In contrast to Komatitsch, a non-reversed α2 scaling
has been used resulting in the minimum α2 value being
located at the intersection between PML and modelling
space, and the maximum value being located on the outer
extremity of the PML. Physically this means that α2 is
graded in the same direction to d1, making it trivial to
ensure α2 > d1, thus fulfilling the stability criterion.

CFS-CFS STABILITY CRITERION

The CFS-CFS PML approach has a greater number of de-
grees of freedom in comparison to the RI-CFS-PML be-
cause the additional α1 and κ1 coefficients are utilised.
Therefore for some domains the CFS-CFS PML may also
provide enhanced abroption.

The real and imaginary parts of the stretching function:

rO2 = κ1κ2 +
α2κ1d2
α2
2 + ω2

+
α1κ2d1
α2
1 + ω2

+(
α1α2

(α2
1 + iω2)(α2

2 + iω2)
− ω2

(α2
1 + Iω2)(α2

2 + iω2)

)
d1d2

(56)

IO2 =
κ1ωd2

(α2
2 + iω2)

+
d1ωκ2

(α2
1 + iω2)

−(
α2ω

(α2
1 + ω2)(α2

2 + ω2)
+

α1ω

(α2
1 + ω2)(α2

2 + ω2)

)
d1d2

(57)

Assuming that all PML coefficient values are chosen to
be positive the imaginary part of the stretching function
will always be fulfilled. Despite this, unlike the classical-
CFS case, the stability of the real part of the CFS-CFS
stretching function is frequency dependant. Therefore to
maintain stability, α1 · α2 > ω2, and κ2 ≥ 1.

Unlike the Classical-CFS stretching function, α2 scaling
must be considered relative to α1 scaling to ensure that
the stability critereon is met at every grid point within
the PML region. Once again, if both α1 and α2 are scaled
from a minimum at the threshold between PML and mod-
elling space, to a maximum at the PML extremity then it
is straightforward to ensure the stability condition is met.

Although the CFS-CFS stability criterion is slightly
more challenging to meet, the absoption performance ben-
efits can be significant as will be shown.
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NUMERICAL RESULTS

CORRECTION PML PERFORMANCE

CORRECTION PML VS ORIGINAL
FORMULATION

The correction PML implementation was tested against
the original recursive integration implementation as de-
scribed in (Drossaert). Although both formulations are
similar the correction version allows for a more straightfor-
ward implementation. Numerous numerical experiments
were conducted including those outlined in (Drossaert).
Both formulations were found to perform nearly identi-
cally and due to the high similarity the resulting traces
are omitted. The only discrepancies were in the range
of (1 x 1015) generated due to numerical precision errors
arrising from the different implementations.

CORRECTION PML VS CPML

The correction PML implementation was benchmarked
against the CPML implementation as described in (Mar-
tin x 2). The new formulation was tested using a ho-
mogenous, two dimensional rectangular grid identical to
that also outlined in (Martin). The domain comprised
of 101 x 641 square cells, with 10m spacing between grid
points in both directions. The homogenous material was
characterised by pressure wave velocity cp = 3300 ms−1,
shear wave velocity cs = 1905 ms−1 and density ρ = 2800
kgm−3. The staggered computational scheme was second
order accurate in both space and time with a constant
time step of δt = 0.001s. The grid followed that outlined
by Virieux and was bounded on all sides by a PML region
10 cells thick.

A 8Hz excitation with the form of a first derivative of
a gaussian was used to excite the velocity components in
both directions at coordinate (79, 427). Recievers one, two
and three were placed at (20,413), (70,227) and (81,27) re-
spectively. Physically receiver one was located closest to
the source and receiver three located furthest away (Fig-
ure 1).

Source

Receiver 1

Receiver 2
Receiver 3

10

10

81

1010 621

Figure 1: Model schematic (rotated 90o)

For both implementations PML parameters were taken
from Martin who showed that using κmax = 7 and αmax =
ωπ facilitated high CFS absorption performance for this
particular domain. Additionally, dmax =

3vp
2L log

1
R where

vp = compressional wave speed, L = number of PML lay-
ers and R is the reflection coefficient (R = 1 x 10−5).

Once again for this example the resulting traces were
similar. Therefore to facilitate a more detailed comparison
of performance a metric is introduced:

Errordb|ni,j = 20 log10

‖E|ni,j − Eref|ni,j‖
‖Erefmax |i,j‖

(58)

Where En
i,j represents the test trace at a point in time n

and at spatial location i, j. Eref represents the reference
solution, and Erefmax

is the maximum amplitude of the
reference trace. When plotted this allows for a better
visual interpretation of the errors at each point in time.

Although the error plots (Figure X) allow for easier
comparison between traces, there are still large similar-
ities between results. At some points the CPML can be
seen to perform marginly better but at other points the
correction PML exhibits slightly higher accuracy. This is
clearly evident at receivers vx1 and vx2. Therefore it can
be concluded that the CPML offers very similar perfor-
mance to the CPML implementation.
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Figure 2: Error plots - CPML vs correction PML

SECOND ORDER PML PERFORMANCE

To illustrate the ability of a higher order PML scheme to
outperform its first order counterpart, a CFS-CFS stretch-
ing function was tested to determine whether combin-
ing these optimised parameters with an additional CFS
stretching function would offer increased performance. The
second set of CFS parameters were as follows:
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dmax2
=
dmax1

30
(59)

κmax2 = 1.5 (60)

αmax2
= 2dmax1

(61)

Figure 2 shows the velocity trace comparisons however
due to the high performance of both schemes, performance
is indistinguishable.
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Figure 3: Experimental error plots

Figure X shows the resulting error plots. Both first
order CFS formulations produce nearly identical results
and it can be seen that the overall error increases as the
receiver distance is increased. Concerning the O2 CFS-
CFS implementation, performance at receivers vx1 and
vz1 is improved slightly but for as distance increases, per-
formance increases rapidly. Receivers vx3 and vz3 show a
marked improvement with on average between 10dB and
20dB less error.

The furthest away receivers are subject to a greater
number of evanescent waves and waves arriving at imag-
inary angles in comparison to the closest receivers. PML
schemes typically have degraded performance under such
conditions but the additional degrees of freedom associ-
ated with the O2 PML allow it to maintain higher lev-
els of performance in comparison to both CFS stretching
functions.

As the close receivers experience only a low percentage
of these waves the first order CFS is capable of high per-
formance absorption. Therefore there is not much scope
for improvement by adding an additional stretching func-
tion.

It should be noted that attempts were also made to
improve absorption performance using the classical-CFS
stretching function. Despite this no significant perfor-
mance benefits were found.

SECOND ORDER PML STABILITY

The importantance of fulfilling the stability critereon for
both the Classical-CFS and CFS-CFS stretching functions
were examined also using the example presented by (Mar-
tin).

CLASSICAL-CFS STABILITY

For this example the classcial parameters were, d1max
=

569.9, κ1max = 1, α1max = 0 and the second order CFS
parameters were chosen as d2max = d1max , κ2max = 20,
α2max

= γd1max
, where γ ∈ {0.02, 0.05, 0.1, 1, 2, 5}.

Figure X shows a trace comparison between several
α2max

values and the response calculated using the opti-
mised CFS-CFS parameters from section X. Observation
point vz3 has been chosen because it is located far from
the source and instabilities are thus most evident. It is
seen that as α2max

deviates from the recommended value
of σ1max

, performance is radically reduced and stabilities
occur. This is because as α2max

decreases the correspond-
ing real part of the stretching function becomes more neg-
ative (Figure X).

It should be noted that to maintain stability using (equa-
tion x), α2 must be scaled from a minimum at the pml/domain
interface to a maximum at the extremity of the compu-
tational grid. If not, the stability critereon will only be
partially fulfilled, i.e. it will be fulfilled for locations close
to the pml/domain interface but not for regions close to
the grid edge.
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Figure 4: The effect of α2max
on Classical-CFS PML
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Figure 5: Real component of the Classical-CFS stretch
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CFS-CFS STABILITY

To analyse stability the following parameters were chosen:
d1max

= 569.9, κ1max
= 7, α1max

= ζ, d2max
=

d2max

30 ,

κ2max = 1.5, α2max = ζ. ζ =
√

(γ2πw).

APPENDIX A

HIGHER ORDER PML’S FOR A GENERAL
3D CASE

For a staggered scheme where velocity components are
updated at t = n and stress components are updated at
t = n+ 1/2, the calculation of velocity for the entire grid
is as follows:

vni = vn−1
i + bδt(Jn

ii + Jn
ij + Jn

ik) (A-1)

where δt is the timestep size and i, j, k ∈ [x, y, z]. The
PML velocity correction terms Jii, Jij , Jik are calculated
using

Jn
ij =

{( N∏
q=1

RAjq

)
− 1

}
∂dnij
∂j

+

N−1∑
p=1

{( N∏
q=p+1

RAjq

)
RBjpΦn−1

ij

}
+ RBjN Φn−1

ijN

(A-2)

where N is the order of PML and p ∈ [1, N ]. The pre-
vious time integral Φn

ijp
is obtained through

Φn
ijp = REjpΦn−1

ijp
− RFjp

{(p−1∏
q=1

RAjq

)
∂dnij
∂j

+

p−1∑
m=1

( p−1∏
q=m+1

RAjq

)
RBjmΦn−1

ijm

} (A-3)

Similarly, stresses at t = n+1/2 can then be calculated
using

d
n+1/2
ij = d

n+1/2
ij + δtCijkl(M

n+1/2
ii +M

n+1/2
ij +M

n+1/2
ik )

(A-4)
with the correction terms found using

M
n+1/2
ij =

{( N∏
q=1

RAjq

)
− 1

}
∂v

n+1/2
j

∂j
+

N−1∑
p=1

{( N∏
q=p+1

RAjq

)
RBjpΦ

n−1/2
ij

}
+ RBjN Φ

n−1/2
ijN

(A-5)

and the previous time integral

Φ
n+1/2
ijp

= REjpΦ
n−1/2
ijp

− RFjp

{(p−1∏
q=1

RAjq

)
∂v

n+1/2
j

∂j
+

p−1∑
m=1

( p−1∏
q=m+1

RAjq

)
RBjmΦ

n−1/2
ijm

}
(A-6)

For all Jn
ij and M

n+1/2
ij ,

RAzp =
2 + ∆tαzp

2κzp + ∆t(αzpκzp + dzp)

RBzp =
2κzp

2κzp + ∆t(αzpκzp + dzp)

REzp =
2κzp −∆t(αzpκzp + dzp)

2κzp + ∆t(αzpκzp + dzp)

RFzp =
2dzp∆t

(2κzp + ∆t(αzpκzp + dzp))κzp

Outwith the PML region d = 0, α = 0, κ = 1, result-
ing in RA = 1, RB = 1, RE = 1, RF = 0. This causes
Jii, Jij , Jik to reduce to ∂dnij/∂z and Mii,Mij ,Mik to re-

duce to ∂v
n+1/2
j /∂z. Therefore both stress and veloc-

ity equations automatically revert to the original stress
derivatives.


