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Abstract. Methods for deciding quantifier-free non-linear arithmetical
conjectures over R are crucial in the formal verification of many real-
world systems and in formalised mathematics. While non-linear (rational
function) arithmetic over R is decidable, it is fundamentally infeasible:
any general decision method for this problem is worst-case exponential
in the dimension (number of variables) of the formula being analysed.
This is unfortunate, as many practical applications of real algebraic deci-
sion methods require reasoning about high-dimensional conjectures. De-
spite their inherent infeasibility, a number of different decision methods
have been developed, most of which have “sweet spots” – e.g., types of
problems for which they perform much better than they do in general.
Such “sweet spots” can in many cases be heuristically combined to solve
problems that are out of reach of the individual decision methods when
used in isolation. RAHD (“Real Algebra in High Dimensions”) is a theo-
rem prover that works to combine a collection of real algebraic decision
methods in ways that exploit their respective “sweet-spots.” We discuss
high-level mathematical and design aspects of RAHD and illustrate its
use on a number of examples.

1 Introduction

RAHD (“Real Algebra in High Dimensions”) is a tool for proving high-dimensional
(many variable) quantifier-free non-linear theorems in the language of ordered
fields over real closed fields (RCF)1. While the elementary theory of the real
numbers in this language2 is decidable, it is fundamentally infeasible: any gen-
eral decision method must take time exponential in the dimension of the formula
? The authors would like to thank Bruno Dutertre, Sam Owre, John Rushby, N.

Shankar, Hassen Säıdi, and Ashish Tiwari of SRI International for their ever helpful
support and guidance for this project, including a visiting fellowship for the first au-
thor under which this work was originated. This fellowship was supported by NASA
Cooperative Agreement NNX08AC59A and by NSF SGER Grant No. CNS-0823086.

1 A real closed field is a structure elementarily equivalent to the real number line
with respect to a language of quantified boolean combinations of real polynomial
equations and inequalities. This language is often referred to as the language of
ordered rings.

2 Classical work on RCF decision problems usually takes place over the language
of ordered rings, not the language of ordered fields, as partial functions such as



being analysed. This is unfortunate, as many important applications of decision
methods over RCF require reasoning about high-dimensional conjectures. To
combat this difficulty, we focus not on the general decision problem, but instead
upon deciding certain classes of sentences that arise in practice. We exploit the
fact that most RCF decision methods have “sweet spots,” e.g. types of problems
for which they perform much better than they do in general, and such “sweet
spots” can be heuristically combined to solve problems that are out of reach of
the individual decision methods when used in isolation.

For the examples in this article, we focus especially upon the combination of
a “sweet-spot” in the cylindrical algebraic decomposition procedure (for topolog-
ically open constraints), Gröbner basis calculations, Sturm chains, simple Pos-
itivstellensatz witnesses, and dimensional reduction techniques stemming from
sound approximations to computations induced by real radical ideals.

1.1 Background

Since Tarski [17] established that the full elementary theory of RCF admits quan-
tifier elimination (QE) by giving a QE procedure of non-elementary complexity,
perhaps the most important practical3 break-through for theorem proving over
RCF has been the cylindrical algebraic decomposition (CAD) algorithm devised
by Collins in the 1970s [3]. Collins’ community of students have been prolific
in their theoretical and practical improvements to CAD over the last twenty-
five years, culminating in Brown’s actively supported QEPCAD-B [1] system.
In addition to QEPCAD-B, versions of CAD have also been implemented in
Mathematica, REDLOG/Reduce, and Maple, and a perusal of the literature
shows CAD implementations finding vigorous use in many sciences, both of ap-
plied and theoretical character. In addition to CAD, a number of other RCF
QE procedures have been developed and implemented in working tools since
the 1980s, including Weispfenning’s method of virtual term substitution [21] (as
implemented in Reduce/Redlog), and the Harrison-McLaughlin proof producing
version of the Cohen-Hörmander method (in the HOL Light proof assistant)
[15]. The version of Weispfenning’s method available in Reduce/Redlog (imple-
mented and enhanced by Dolzmann and Sturm [7]) performs especially well on
many difficult high-dimensional problems (see Section 3).

While work on improved RCF QE methods is of lasting importance, for many
practical applications, full elementary QE is overkill. For these domains (such as

real division complicate the model theory. RAHD supports the language of ordered
fields by pre-processing away division in literals in terms of equivalent multiplicative
constraints.

3 This is not to say that Collins’s break-through was only of a practical nature: The
geometrical insight contained within the CAD procedure has led to huge advances in
the topological and model-theoretic understanding of ordered structures admitting
quantifier elimination (e.g. o-minimality theory and tame topology). In these cases,
the properties of RCF exploited by the CAD procedure have been generalized into
the notion of “cellularly decomposable structures” and now bear rich mathematical
fruits. [20]



program analysis [19], hardware verification [11], hybrid systems [18], and even
ongoing large-scale projects in formalised mathematics [10]), simply deciding the
satisfiability of boolean combinations of polynomial equations and inequalities
over the real numbers is often sufficient. This problem is equivalent to QE for the
purely ∃ (dually purely ∀) sentential fragment of the elementary theory of RCF,
in which all formulas considered are sentences consisting only of a single block of
non-alternating quantifiers. As will be discussed in Section 1.2, this fragment of
the elementary theory of RCF admits an exponential speed-up over general RCF
QE, though this fact has unfortunately not led to algorithms for this fragment
that are in practice superior to the known general QE ones.

That said, the fundamental observation driving our current research is the
following: While all RCF decision methods are constrained by the known com-
plexity lower-bounds, most decision methods have types of problems for which
they perform much better than their worst-case time complexity analysis would
suggest. We refer to these more feasible fragments of a decision method’s in-
put domain as “sweet spots” of the decision method under investigation. We
work in RAHD to orchestrate the heuristic combination of a number of decision
methods for different RCF fragments by attempting to automatically massage
difficult problem instances into equisatisfiable sequences of simpler problems that
fit within known “sweet spots” of the decision methods RAHD provides. We will
describe RAHD in more detail in Section 2.1.

1.2 Existential Decisions over Real Closed Fields

Let us make the fundamental decision problem in which we are interested precise.

Question 1 (Fundamental Decision Problem) Let t1(x), . . . , tk(x) ∈ R(x)
where R(x) = {p

q | p, q ∈ R[x1, . . . , xn], q 6= 0}. Let ϕ be a quantifier-free boolean
combination of atoms of the form (ti � 0) with � ∈ {<,≤,=,≥, >} (1 ≤ i ≤ k).
Is ϕ satisfiable over Rn? That is, does

〈R,+,−, ∗, <, 0, 1〉 |= ∃x1 . . . xn(ϕ)?

Though this decision problem has long been known to have a positive so-
lution, available general purpose decision methods, such as the aforementioned
CAD [3] or the Cohen-Hörmander procedure [2], have a very high worst-case time
complexity. For instance, when given an n-dimensional existential RCF conjec-
ture such as ∃xϕ(x), the computing time for the CAD algorithm is dominated
by a function doubly exponential in n. For the full theory of RCF (e.g., with
arbitrary quantification), such doubly-exponential lower-bounds are known to
be tight for quantifier elimination: Due to Davenport-Heinz [4], there are known
families of n-dimensional RCF formulas of length O(n) whose only quantifier-free
equivalences must contain polynomials of degree 22Ω(n)

and of length 22Ω(n)
.

For the question of decidability over the purely existential fragment, a number
of more efficient algorithms have been proposed, including those of Grigor’ev-
Vorobjov [9] and Renegar [16]. Both of these decision methods deliver a theoreti-
cal exponential speed-up over CAD for the existential fragment of RCF, requiring



time dominated by a function only singly exponential in the underlying dimen-
sion. Despite their apparent complexity-theoretic advantages, neither procedure
appears to have been implemented. Analysis by Hong [12] suggests that even
though the procedures of Grigor’ev-Vorobjov and Renegar are theoretically ad-
vantageous over CAD (e.g., for sufficiently large inputs), for practically sized
examples, CAD remains superior. This is due to infeasibly large constant factors
lurking behind the asymptotic analyses of these singly exponential procedures.

2 The RAHD System

In this section, we begin by touching upon the mathematics of some of RAHD’s
different proof techniques. Then, we turn to the question of how these techniques
can be fruitfully combined to solve problems beyond their reaches when they are
used in isolation. This leads us to a discussion of design and control aspects of
RAHD’s automatic heuristic proof procedure, the so-called “waterfall.”

2.1 RCF decision-theoretic “sweet spots”

We begin by describing some decision-theoretic “sweet spots” that are combined
and exploited in RAHD.

Full and Fragmentary Open CAD (CAD-MD) In 1993, McCallum showed
how CAD could be heavily modified and made much more efficient if the semi-
algebraic set defined by the formula being analysed was known to be an open
set in the Euclidean topology on Rn [14]. This can be guaranteed if the formula
under analysis consists only of strict inequality relations. The basic idea is that
in these cases, rational sample points can be selected from the cells in the CAD,
avoiding the need for costly irrational algebraic number computations that are
in general required during normal CAD operation.

This more feasible fragment of CAD is used heavily in RAHD, and as will
be discussed in Section 2.3, RAHD’s design is centered around breaking difficult
problems into simpler ones that are in a precise sense closer to being able to make
use of this “sweet spot.” When RAHD encounters a problem that it can see falls
into this fragment, Brown’s QEPCAD-B is used in a special mode4 designed for
making decisions about the emptiness of open sets.

Gröbner bases Though one usually associates Gröbner basis calculations with
decisions over algebraically closed fields, much use can be made out of them for
existential RCF decisions. The reason is two-fold: First, if it can be shown that
a collection of equational constraints in a formula being analysed is unsatisfiable
over Cn, then this collection is of course unsatisfiable over Rn. Even if one is
4 To use this mode, one replaces all existential quantifiers in the constraint in question

with special “exists infinitely many” quantifiers which are equivalent over open sets
and cause many irrational algebraic number calculations to be avoided.



not so lucky, all term reductions induced by the equational constraints when
interpreted over Cn are still valid over Rn, and so one can make use of Gröbner
basis calculations to simplify polynomials in the midst of RCF decisions. In
practice, these reductions are often a tremendous boon, leading to simplified
terms that are then more amenable to subsequently invoked decision methods.
As will be seen in Section 2.2, RAHD also exploits Gröbner basis calculations for
a number of other techniques centered around reducing a problem’s dimension,
and these techniques can derive new equations which then further enhance the
reduction power of the Gröbner bases for the problem. RAHD uses a caching
mechanism for sharing already computed Gröbner bases and term reductions
among these different system components. RAHD has its own implementation
of algorithms for computing with ideals that tend to work well for non-linear
problems in six or less variables. When a non-linear problem is handed to RAHD
in greater than six variables, RAHD will attempt to use the CoCoA computer
algebra system for its ideal computations if it is available.

Simple Positivstellensatz certificates Recent work exploiting Stengle’s Weak
Positivstellensatz, an RCF analogue of Hilbert’s Nullstellensatz for algebraically
closed fields, has led to a number of computational advances for the fundamental
decision problem, and a simplified form of this result is currently used in RAHD.

Theorem 1 (Stengle’s Weak Positivstellensatz) Given pi(x), qi(x), si(x) ∈
R[x] = R[x1, . . . , xn], the conjunctive constraint system

ϕ =

 p1(x) = 0 ∧ . . .∧ pk(x) = 0
∧ q1(x) ≥ 0 ∧ . . .∧ ql(x) ≥ 0
∧ s1(x) > 0 ∧ . . .∧ sm(x) > 0



is unsatisfiable over Rn iff

∃P(x) ∈ Ideal(p1, . . . , pk)
∃Q(x) ∈ Cone(q1, . . . , ql)
∃R(x) ∈Mon(s1, . . . , sm)

s.t. P +Q+R2 = −1



where

Ideal(p1, . . . , pk) =

{
k∑

i=1

piqi | qi ∈ R[x]

}
,

Cone(q1, . . . , ql) =

{
r +

v∑
i=1

tiui | r, ti ∈
∑

(R[x])2, ui ∈Mon(q1, . . . , qv) | v ∈ N

}
,

Mon(s1, . . . , sm) =

{
m∏

i=1

(si)j | j ∈ N

}
,

∑
(R[x])2 =

{
v∑

i=1

(pi)2 | pi ∈ R[x] | v ∈ N

}
.

Given such an unsatisfiable ϕ, the equation P+Q+R2 = −1 is called a Pos-
itivstellensatz (Psatz) certificate for ϕ’s unsatisfiability. It is the finding of such
certificates that has seen impressive modern advances: Building upon the work
of Choi, Lam, Powers, Reznick, and Wörmann, Parrilo developed in his 2000
dissertation a feasible method for finding Psatz certificates, by translating the
search for them into a convex optimization (semidefinite programming) problem
that is in principle amenable to polynomial-time interior point methods. The
complexity-theoretic difficulty lies in the fact that each polynomial-time solv-
able optimization problem only searches for a Psatz certificate up to a set mul-
tivariate total degree, and the known bounds on such degrees are at least triply
exponential in ϕ. Still, many difficult problems are routinely solved by Psatz
methods. In our experience, however, it is rare5 to find a ϕ feasibly solvable by
Psatz methods and not by CAD, and so we currently use only a very simplified
restriction of Psatz methods in RAHD that does no convex optimization but is
nevertheless useful for many practical problems.

The family of simple Positivstellensatz witnesses RAHD considers are those
which contain constraints of the following form:

(p = 0) s.t. RC(p) > 0 ∧ p ∈


k∑

j=1

m2 | m =
n∏

j=1

cjx
α(j)
j | cj ∈ Q, α(j), k ∈ N


where p ∈ Q[x] and RC(p) is the degree-zero rational coefficient of p. RAHD also
looks for related Psatz certificates when p is constrainted via a strict inequality.
Such certificates can be found simply by examining the degree parity of the
monomials arising in p after polynomial canonicalization, which is a polynomial-
time process all terms in RAHD undergo before Gröbner basis calculations.
5 For those interested in foundational theorem proving, however, Psatz methods do

have a clear advantage over CAD: The fact that Psatz certificates are simple algebraic
identities guarantees that if found, they can be verified and translated into founda-
tional proof objects easily. Harrison has made use of this fact for his REAL SOS
tactic in HOL Light [11].



Sturm chains for univariate constraints Sturm’s theorem prescribes a
method for counting the number of real roots of a univariate polynomial p in
a half-open interval through the analysis of the number of sign changes (SC)
in the so-called Sturm chain induced by p and the interval in question. De-
spite the fact that Sturm chains have well-known pathological numerical prop-
erties, we have found them to be useful in RAHD on many practical prob-
lems. The family of formulas amenable to Sturm chain analysis in RAHD are
those which contain constraints of the form [(p > 0) ∧ (x > q1) ∧ (x < q2)]
s.t. p( q2−q1

2 ) ≤ 0, #SC(p, (q1, q2)) = 0, and q1 < q2 with p ∈ Q[x].

2.2 Dimensional reduction techniques

As the time complexities of many algebraic decision methods applicable to RCF
formulas are at least exponential in dimension, methods for reducing the dimen-
sion of a formula under analysis (e.g. the elimination of variables) are crucial
to the feasible solubility of high-dimensional problems. This process is a cen-
tral component of RAHD’s automatic waterfall procedure, which spawns lower-
dimensional equisatisfiable subgoals and calls itself recursively upon them when
the dimension of a constraint under analysis has been reduced. Because of this
subgoaling process, dimensional reductions in RAHD are allowed to eliminate a
variable in terms of any finite number of lower-dimensional values, with each
such value inducing a separate subgoal to be checked for satisfiability. For ex-
ample, the transformation

(
x4 − 16 = 0 ∧ P(x, y, z)

)
→ (P(2, y, z) ∨ P(−2, y, z))

is a valid6 dimensional reduction for an RCF predicate P from R3 to R2.

Approximating real radical ideals Over C, the correspondence between
ideals and varieties is elucidated by Hilbert’s Strong Nullstellensatz.

Theorem 2 (Hilbert’s Strong Nullstellensatz)

IC[x](VC(IC[x](p1, . . . , pk))) =
√
IC[x](p1, . . . , pk)

=
{
p ∈ C[x] | ∃i ∈ N s.t. pi ∈ IC[x](p1, . . . , pk)

}
.

6 It is interesting to note that while this reduction is valid over R, it is not valid over

C: Consider the non-trivial quartic roots of unity e±
πi
2 . Thus, this reduction would

not be computed from any Gröbner basis for
p
I(x4 − 16). This motivates the need

for computations over real radical ideals, so that such reductions can be deduced.



That is, given pi, q ∈ C[x] the decision problem for universal Horn formulas
over C can be reduced to an ideal membership check for radical ideals as follows:

〈C,+,−, ∗, 0, 1〉 |=

(
k∧

i=1

pi = 0

)
=⇒ q = 0

⇐⇒

q ∈
√
IC[x](p1, . . . , pk)

which can then be effectively solved using Buchberger’s algorithm. Modulo ideal
membership checking, the important step here is the construction, from a set of
generators for an ideal I over C[x], to a set of generators for the radical ideal
containing I. This is a classically studied problem in algebraic geometry and
most modern computer algebra systems provide efficient algorithms for complex
ideal radicalization [13].

Over R, however, things are not so simple. The algebraic structure analogous
to a radical ideal for real algebraic varieties, the so-called real radical ideal,
has to take into account the order structure of R by incorporating polynomial
summands that are sums of squares. That is, letting I = IR[x](p1, . . . , pk),

IR[x](VR(I)) = R
√

I =
{
p ∈ R[x] | p2i + s ∈ I | s ∈

∑
(R[x])2, i ∈ N

}
.

Known methods for transforming an ideal into its real radical are computa-
tionally infeasible for non-trivial problems, so we seek a method in RAHD that
approximates real radicalization to obtain some practically useful membership
decisions in an efficient way. The following is an example inference rule that
captures some of this desired behavior:

(p1 = 0), . . . , (pk = 0) ∈ C ∃m ∈ N s.t. (x2m − q) ∈ I(p1, . . . , pk) 2m
√
q ∈ Q

C |= (x = 2m
√
q ∨ x = − 2m

√
q)

where C is a conjunctive RCF constraint. Note that the q above need not be
guessed, as if the antecedent holds, one can obtain q by reducing x2m modulo
GB(p1, . . . , pk). This reduction process can be done incrementally for heuristi-
cally selected terms in a formula, with m ranging from 1 to some degree bound
computed as a function of the generators of GB(p1, . . . , pk). Indeed, many im-
portant dimensional reductions in RAHD are accomplished in this way.

Reverse Rabinoswitch encodings Over R, the following equivalences hold:

pq = 0 ⇐⇒ (p = 0 ∨ q = 0) (1)
k∑

i=1

p2
i = 0 ⇐⇒

k∧
i=1

pi = 0. (2)



Equivalence (1) can be used to reduce a constraint ϕ to an equisatisfiable
disjunction ϕ1 ∨ ϕ2 s.t. (i) dim(ϕi) < dim(ϕ) in the special case that pq is a
monomial, or (ii) each ϕi has additional polynomial vanishing assumptions (and
hence Gröbner bases with enhanced reduction power) in the general case. Equiv-
alence (2) can be used to reduce a constraint ϕ to an equisatisfiable constraint
ϕ′ which contains new, simpler equations which enrich the equational structure
of ϕ and increase the reduction power of the Gröbner bases it induces. It is
interesting to note that the integral domain property (1) is valid over C, while
(2) is valid only over R. As in the restricted version of the Psatz used by RAHD,
instances of (2) are recognized only for sums of squares of monomials.

Gröbner bases induced solving for variables and interval techniques
RAHD contains a number of additional techniques that use Gröbner bases and
term orderings to solve for variables by orienting equations, constructing elim-
ination ideals, and dividing equations through by polynomials that RAHD can
prove, via spawned subgoals, to be non-vanishing under constraint hypotheses.
RAHD also has a number of simple interval arithmetic reasoning mechanisms
that work together with Gröbner basis reductions. This is because interval-based
inconsistencies in formulas are often easier to recognize when the polynomials
appearing in formula inequalities have been canonicalized through Gröbner basis
reductions.

2.3 Proof strategy

Preprocessing of goals into goal-sets RAHD sessions begin with the in-
stallation of a goal. In RAHD, a goal can be any quantifier-free formula in the
language of ordered fields. All variables in RAHD goals are implicitly existen-
tially quantified. We consider that a goal G in n variables has been “proved” if it
has been shown to be unsatisfiable over Rn. Equivalently, the semialgebraic set
defined by G (e.g., the set S = {x ∈ Rn | 〈R,+,−, ∗, <, 0, 1〉 |= G(x)}) is empty.
Mathematically, the theorem proved is the universal dual of the existential goal
being analysed. If in the process of trying to prove unsatisfiability of a goal RAHD
instead finds it to be satisfiable, then this is reported as a counter-example to
the conjecture installed as the current goal.

Once a goal is installed, its satisfiability cannot be decided until it has been
pre-processed into a goal-set, GS. A goal-set for a goal is an equivalent formula
in disjunctive normal form (DNF). We consider the DNF formula as set of cases,
each case being one of the conjunctions of literals. This pre-processing a goal
into a goal-set also involves some normalisation transformations. For example, all
occurrences of division are eliminated, each non-strict inequality is transformed
into an equivalent disjunction consisting of an equation and a strict inequality,
and each disequality is transformed into an equivalent disjunction of two strict
inequalities. The result is that every literal in a goal-set is either an equality or
a strict inequality, and every arithmetic expression is a polynomial. The next
paragraph explains why we do this pre-processing.



Recall two important “sweet spots” mentioned previously: First, CAD can
be made much more efficient if the semialgebraic set defined by the formula
being analysed is known to be an open set. This openness can be guaranteed if
the relation symbols in the formula being analysed are only strict inequalities.
Second, terms appearing in formulas that contain equational constraints can
be simplified by injecting those terms into the quotient ring induced by the
ideal generated by the equational constraints. This can be done feasibly using
Gröbner basis calculations. By decomposing non-strict inequalities into their
requisite strict inequality and equational cases, we get closer to being able to
exploit both “sweet spots”: one of the two cases of our formula is now closer to
being topologically open and thus suitable for CAD-MD, while the other case
now has a richer equational structure inducing a potentially larger ideal, which
can be exploited by Gröbner basis calculations resulting in more substantial
term reductions7. Moreover, as members of the goal-set are purely conjunctive,
we can exploit the following property (given c ∈ GS):

{l1, . . . , lk} ⊆ c ∧ {x ∈ Rn | 〈R,+,−, ∗, <, 0, 1〉 |=
∧k

i=1 li(x)} = ∅
{x ∈ Rn | 〈R,+,−, ∗, <, 0, 1〉 |= c(x)} = ∅

.

That is, to prove the unsatisfiability of some case c ∈ GS, it suffices to prove
the unsatisfiability of any subset of c. Considering this fact in conjunction
with the aforementioned “sweet spots,” we see now another way this strict-
inequational/equational splitting can help us use the more feasible open frag-
ment of CAD, even on the equational branch of a split non-strict inequality. We
illustrate this by an example.

Example 1. Let ϕ = ((p1 ≤ 0) ∧ ψ) s.t. (WLOG) ψ consists only of conjoined
strict inequalities and equations. Let ϕ be split into ϕ1 = ((p1 < 0) ∧ ψ) and
ϕ2 = ((p1 = 0) ∧ ψ), which will both be checked for satisfiability. Observe that
the ideal generated by the equations in ϕ2, I(ϕ2), is a (possibly non-strict)
superset of the corresponding ideals of ϕ and ϕ1. Now, fix a term ordering and
reduce all polynomials appearing in the strict inequalities in ϕ2 with respect
to GB(I(ϕ2)) to obtain an equisatisfiable formula ϕ′2. Observe that the strict
inequalities in ϕ′2 have now been potentially enriched with information contained
in the equations of ϕ2. We can now use the above observation on unsatisfiable
subsets of conjoined constraints and examine the satisfiability of only the strict-
inequational fragment of ϕ′2. As this fragment is open, we may now use CAD-
MD to decide its satisfiability, and an answer of “UNSAT” would imply the
unsatisfiability of the equational branch of ϕ, ϕ2.

Case manipulation functions Each of the techniques discussed in Sec. 2.1
and Sec. 2.2 is embodied in one or more case manipulation functions (CMF s). A
7 Observe that super-ideals correspond to sub-varieties, and thus increasing an ideal

takes one closer to the empty variety, which is the geometric object corresponding
to an unsatisfiable formula.



CMF operates on a single case, a conjunction of equalities and strict inequalities.
A CMF first checks the structure of the case to see if it is of a form on which
it can make progress. For example, the CMF for applying Full Open CAD first
checks that all literals are strict inequalities. A CMF can have several outcomes.

– It can determine that the case is satisfiable. In this event, the initial goal is
immediately also known to be satisfiable and RAHD terminates.

– It can determine that the case is unsatisfiable
– It can return the case it was applied to unchanged, if its initial structure

check fails, for example.
– It can make progress and return a simplified case, consisting again of a

conjunction of equalities and strict inequalities, that is equisatisfiable with
the case the CMF is applied to.

– It can return some Boolean formula equisatisfiable with the case the CMF
is applied to. In general this formula might contain disjunctions, non-strict
inequalities and division operations.

Sequencing proof steps The set of cases in a goal-set can be considered
the fringe of a partial proof tree of the initial goal. RAHD makes progress by
applying CMFs to cases in the fringe. Our strategy for applying CMFs is simple
but nevertheless effective.

We arrange our CMFs in a master sequence with the idea that we work on
a case by applying each CMF from the master sequence in turn, so long as the
CMFs return either identical cases or single simplified cases. This application of
CMFs in sequence to a case extends the branch of the proof tree corresponding
to that case. When the application of a CMF finds the case it is applied to
unsatisfiable, the branch of the proof tree is closed or completed. In the event a
general Boolean formula is output by a CMF, we apply the preprocessing step to
generate new normalised cases to work on further. Usually there is more than one
of these cases, so this introduces branching into the proof tree. When working
on these new cases, we start again with the CMF at the beginning of the CMF
sequence.

RAHD terminates either when some CMF finds the case it applied to satis-
fiable, in which case we have a counter-example to the original goal, or all proof
branches are completed, in which case the original goal is proven.

We currently ensure that — at the level of CMFs — RAHD cannot diverge
by requiring that, if a CMF outputs a more general boolean formula and restarts
processing of the master sequence, it must reduce dimension: its output formula
must contain fewer variables than the case it was applied to.

We refer sometimes to this master sequence of CMFs as the RAHD waterfall
by analogy with the organisation of proof strategies in the NQTHM and ACL2
theorem provers.

Ordering of case manipulation functions We describe here some of the
main elements of our ordering of CMFs in the master sequence. The first principle



of this ordering is that the more expensive CMFs should be postponed until
later in the sequence, giving the less expensive CMFs priority in their attempts
at closing and reducing cases. For instance, one should check if the univariate
fragment of a case is unsatisfiable with the Sturm sequence analysis CMF before
one tries any Open CAD CMF upon the case. The next principle is that given
two CMFs of roughly equivalent expense, they should be ordered such that the
result of one has the chance to inform and improve the result of the other, if
possible. For example, the sums of squares based PD CMF, which will record
the fact that a polynomial is positive definite if its canonicalization is a sum
of squares of monomials plus a positive rational constant, should be run before
the aforementioned Sturm sequence inequality CMF, as this has the potential
to make more case inconsistencies explicit for the Sturm sequence CMF. The
last principle we will mention is that a given CMF, A, should be included in the
sequence in more than one place if the CMFs executed subsequent to A’s last
execution have a good chance of making the cases that remain more amenable
to A. In this way, the lightest interval analysis CMF appears in the beginning of
the master sequence, then again after Gröbner basis reductions have taken place
as this may make inequality inconsistencies more explicit, and then again after
reductions have taken place through the real radical ideal approximation CMF
for the same reason.

At a very high level, the master sequence goes as follows: light arith. simp. and
interval analysis → sos/positivstellensatz search → sturm chain analysis → full
Open CAD → ideal triviality checking → term canonicalization → GB based
rewriting → light arith. simp. and interval analysis → sos/positivstellensatz
search → fragmentary Open CAD (as described in Example 1) → real radical
ideal approximation → light arith. simp. and interval analysis → reverse rabi-
noswitch encodings → general CAD.

3 Experimental Results

Table 1 shows RAHD’s performance on twenty-four example problems8 and com-
pares this performance to that of QEPCAD-B and two quantifier elimination pro-
cedures available in Reduce/Redlog: Rlqe, which is an enhanced implementation
by Dolzmann and Sturm of Weispfenning’s virtual term substitution (VTS) [21] ,
and Rlcad, which is an implementation by Seidl, Dolzmann and Sturm of Collins-
Hong’s partial CAD [6]. One interesting feature of this Rlqe procedure is that it
performs VTS as long as it can (e.g., as long as the degree restrictions required
for the method are not violated in a way irreparable by Redlog’s simplification
and degree-reduction mechanisms), and then sends the resulting formula to the
Rlcad procedure if VTS alone was not sufficient. This approach is referred to
as fallback quantifier elimination. Experiments were performed on an Intel Xeon
Quad Core 2.8GHz machine with 4GB physical memory.

8 A copy of these problems may be obtained from http://homepages.inf.ed.ac.uk/

s0793114/calculemus09/.



Table 2 presents a listing of seven of the twenty-four problems considered in
Table 1.

The results of these experiments can be broadly summarized as follows:

– RAHD is able to solve a number of high-dimension, high-degree problems
that QEPCAD-B, Redlog/Rlqe, and Redlog/Rlcad are not.

– Redlog/Rlqe is able to solve a number of high-dimension, high-degree prob-
lems that QEPCAD-B and Redlog/Rlcad are not.

– Redlog/Rlqe is able to solve a number of problems significantly faster than
RAHD, Redlog/Rlcad, and QEPCAD-B.

– For the problems QEPCAD-B is able to solve, using QEPCAD-B directly
tends to be much faster than using RAHD’s waterfall.

4 Future Work

We see many ways RAHD can be improved. First, based upon the fact that
QEPCAD-B outperforms the RAHD waterfall on many low-dimension, low-
degree problems, we should develop heuristics that use structural features of
a problem to evaluate a priori its suitability for a direct handling by QEPCAD-
B, causing RAHD in those cases to bypass both its inequality splitting pre-
processing and all other CMFs in the waterfall.

Second, as the Redlog/Rlqe procedure solves a number of problems much
faster than all of the others, it seems fruitful to investigate heuristics for incor-
porating Redlog/Rlqe into the RAHD waterfall.

Finally, in terms of RAHD’s inequality splitting and translation of resulting
problems into a (DNF) goal-set, the potential exponential blow-up this causes
will become prohibitive for problems with large boolean structure. There are
many more sophisticated techniques we will need to employ if we wish for RAHD
to be applicable to these types of problems. The infeasibility of normal form con-
versions has motivated huge algorithmic advances in the SAT and SMT com-
munities [8], and it would be very interesting to build a new version of RAHD
that uses DPLL-like [5] case-analysis mechanisms instead of an explicit DNF
conversion.

5 Conclusion

In closing, we have shown that a thoughtfully orchestrated heterogeneous combi-
nation of decision methods for fragments of the existential theory of the reals can
be made to solve problems previously beyond the reach of automatic methods.
In particular, we have shown one way that ideal-theoretic computations and
restricted variants of CAD for topologically open predicates can be fruitfully
combined. It is interesting that while this combination involves an exponential
blow-up in its reliance on a DNF normalisation, for many problems the increase
in complexity caused by this blow-up is overshadowed by the decrease in com-
plexity of the CAD computations this process induces.



Table 1. A comparison of RAHD, QEPCAD-B, Redlog/Rlqe and Redlog/Rlcad.

dim deg div |GS| |PT | #p #m simp simp sos strm rad open gen rahd qb rq rc

arith gb ideal cad cad

P0 5 4 N 1024 1024 42 55 1717 0 23 60 0 128 0 16.36 409* 36.6 -

P1 6 4 N 3072 3072 48 60 5371 3 99 156 0 378 0 74.09 -* - -

P2 5 4 N 768 768 40 61 1419 0 0 96 0 99 0 10.54 -* - -

P3 5 4 N 768 768 40 61 2187 0 0 96 0 99 0 10.87 -* - -

P4 5 4 N 768 768 40 61 1448 0 8 88 0 99 0 9.84 -* - -

P5 14 2 N 4 4 64 176 4 4 0 0 0 0 0 .89 -* 427 -

P6 11 5 N 8 14 24 31 124 20 6 0 6 0 2 28.23 -* <.01 <.01

P7 8 2 N 1 1 8 18 1 0 1 0 0 0 0 <.01 .08 <.01 <.01

P8 7 32 N 64 94 30 34 352 152 0 0 30 34 0 182.98 9.72 <.01 -

P9 7 16 N 128 158 34 38 672 264 0 0 30 66 0 26.9 .29 .01 18.5

P10 7 12 N 32768 32795 66 165 78051 998 344 4 54 155 0 62.4 -* - -

P11 6 2 Y 32 32 28 28 14 16 0 0 0 31 1 2.99 .01 .01 .05

P12 5 3 N 16 16 22 23 86 4 0 0 0 2 4 .85 .02 .01 .07

P13 4 10 N 256 256 34 63 503 0 14 6 0 22 0 4.4 -* <.01 <.01

P14 2 2 N 256 259 32 54 889 57 0 30 7 5 10 2.45 .01 - -

P15 4 3 Y 8 8 14 15 8 0 0 0 0 0 8 1.32 .01 .06 .26

P16 4 2 N 128 132 28 44 662 128 17 0 1 39 9 6.11 .02 <.01 <.01

P17 4 2 N 4 6 14 19 34 3 3 0 0 0 1 .4 .28 .02 .61

P18 4 2 N 16 16 18 30 55 16 7 0 5 1 3 1.03 .01 .28 -

P19 3 6 Y 256 256 30 310 1248 0 0 0 0 256 0 24.69 .02 .01 .39

P20 3 4 N 16 16 18 21 77 18 0 0 1 3 5 1.19 .01 <.01 .23

P21 3 2 N 64 64 26 31 179 0 0 12 0 7 0 .6 .02 .04 .27

P22 2 4 N 2 2 8 10 3 1 0 0 0 1 0 .09 .01 <.01 .01

P23 2 2 Y 8 8 12 12 16 0 0 0 0 0 0 <.01 .01 <.01 <.01

Explanation of columns:

High-level problem features: [dim] dimension, [deg] maximal total multivariate degree
of polynomials, [div] problem contains division operator.

Properties of RAHD’s internal translation of the problem: [|GS|] # of cases in the
generated goal-set, [|PT |] # of leaves in constructed proof tree, [#p] # of polynomials,
[#m] # of monomials.

Number of reduction or refutation steps made by RAHDCMFs: [simp arith] light
weight arithmetical simplifiers and interval analysis, [simp GB] Gröbner bases based
rewriting and canonicalization, [sos] sums of squares / real nullstellensatz / posi-
tivstellensatz witness extraction, [strm] sturm chain sign change analysis, [rad ideal]
dimensional reduction by radical ideal approximations, [open CAD] open CAD or
open fragmentary CAD (using QEPCAD-B and ∃∞), [gen CAD] general CAD (using
QEPCAD-B and ∃).
Timing: (in seconds) [RAHD] RAHD , [QB] QEPCAD-B, [RQ] Redlog/Rlqe (fallback
QE), [RC] Redlog/Rlcad (p-CAD)

A mark of (-) in any of the timing columns means the system listed was unable to solve
the problem in 600 seconds. A mark of (*) in the QB column means that QEPCAD-
B’s default resource settings were raised in order to avoid reaching resource limits. For
problems involving division, the Redlog translation flag RLNZDEN was used both for
Rlqe and Rlcad runs as well as for generating the multiplicative translations of the
problems for QEPCAD-B.



Table 2. Seven of the twenty-four problems considered in Table 1.

P0 a2 + ab− 2ac + a + 21b4 − 84b3c + 126b2c2 − 84bc3 + 21c4 + c2 + d2 − 2de + d
+e2 < 0 ∧ e− 1 ≤ 0 ∧ e ≥ 0 ∧ d− 1 ≤ 0 ∧ d ≥ 0 ∧ c− 1 ≤ 0 ∧ c ≥ 0
∧ b− 1 ≤ 0 ∧ b ≥ 0 ∧ a− 1 ≤ 0 ∧ a ≥ 0

P1 a2b + a2 − 2ac2 + 3b2 − 6bc + c4 + 3c2 + d2 − 2de + d + e2 + f + 1 < 0
∧ (f − 2 = 0 ∨ f − 1 = 0 ∨ f = 0) ∧ e− 1 ≤ 0 ∧ e ≥ 0 ∧ d− 1 ≤ 0
∧ d ≥ 0 ∧ c− 1 ≤ 0 ∧ c ≥ 0 ∧ b− 1 ≤ 0 ∧ b ≥ 0 ∧ a− 1 ≤ 0 ∧ a ≥ 0

P5 (y6 6= 0 ∨ x6 6= 0) ∧ x2
6 − 2x6x7 + x2

7 + y2
6 − 2y6y7 + y2

7 − 4 > 0 ∧ x2
5 − 2x5x7

+x2
7 + y2

5 − 2y5y7 + y2
7 − 4 = 0 ∧ x2

5 − 2x5x6 + x2
6 + y2

5 − 2y5y6 + y2
6 − 4 = 0

∧ x2
4 − 2x4x7 + x2

7 + y2
4 − 2y4y7 + y2

7 − 4 = 0 ∧ x2
4 − 2x4x6 + x2

6 + y2
4 − 2y4y6

+y2
6 − 4 = 0 ∧ x2

4 − 2x4x5 + x2
5 + y2

4 − 2y4y5 + y2
5 − 4 = 0 ∧ x2

3 − 2x3x7 + x2
7

+y2
3 − 2y3y7 + y2

7 − 4 = 0 ∧ x2
3 − 2x3x6 + x2

6 + y2
3 − 2y3y6 + y2

6 − 4 = 0 ∧ x2
3

−2x3x5 + x2
5 + y2

3 − 2y3y5 + y2
5 − 4 = 0 ∧ x2

3 − 2x3x4 + x2
4 + y2

3 − 2y3y4 + y2
4

−4 = 0 ∧ x2
2 − 2x2x7 + x2

7 + y2
2 − 2y2y7 + y2

7 − 4 = 0 ∧ x2
2 − 2x2x6 + x2

6 + y2
2

−2y2y6 + y2
6 − 4 = 0 ∧ x2

2 − 2x2x5 + x2
5 + y2

2 − 2y2y5 + y2
5 − 4 = 0 ∧ x2

2 − 2x2x4

+x2
4 + y2

2 − 2y2y4 + y2
4 − 4 = 0 ∧ x2

2 − 2x2x3 + x2
3 + y2

2 − 2y2y3 + y2
3 − 4 = 0 ∧

x2
1 − 2x1x7 + x2

7 + y2
1 − 2y1y7 + y2

7 − 4 = 0 ∧ x2
1 − 2x1x6 + x2

6 + y2
1 − 2y1y6 + y2

6

−4 = 0 ∧ x2
1 − 2x1x5 + x2

5 + y2
1 − 2y1y5 + y2

5 − 4 = 0 ∧ x2
1 − 2x1x4 + x2

4 + y2
1

−2y1y4 + y2
4 − 4 = 0 ∧ x2

1 − 2x1x3 + x2
3 + y2

1 − 2y1y3 + y2
3 − 4 = 0 ∧ x2

1 − 2x1x2

+x2
2 + y2

1 − 2y1y2 + y2
2 − 4 = 0 ∧ x2

7 + y2
7 − 4 = 0 ∧ x2

6 + y2
6 − 4 = 0 ∧ x2

5 + y2
5

−4 = 0 ∧ x2
4 + y2

4 − 4 = 0 ∧ x2
3 + y2

3 − 4 = 0 ∧ x2
2 + y2

2 − 4 = 0 ∧ x2
1 + y2

1 − 4
= 0

P6 45dxy − g + 45xy = 0 ∧ g − g1 − g2 − 82 > 0 ∧ w + 1 < 0 ∧ −x + y ≥ 0 ∧ x
−1 ≥ 0 ∧ a = 0 ∧ −a + wz = 0 ∧ x3y2 − z = 0 ∧ −3g2

1g2 + 12g1x3x7 − xy
−11x ≥ 0

P10 (−a + fg + 11f + g2 + 13g + 22 = 0 ∨ a4b2cd3f2 + 2a4b2cd3fg + a4b2cd3g2−
a4b2cdf2 − 2a4b2cdfg − a4b2cdg2 − a4b2d2f2 − 2a4b2d2fg − a4b2d2g2 + a4b2f2+
2a4b2fg + a4b2g2 − 2a3b3c2d2f2 − 4a3b3c2d2fg − 2a3b3c2d2g2 + 2a3b3c2f2+
4a3b3c2fg + 2a3b3c2g2 + 2a3b3d2f2 + 4a3b3d2fg + 2a3b3d2g2 − 2a3b3f2 − 4a3b3fg
−2a3b3g2 + a2b4c3df2 + 2a2b4c3dfg + a2b4c3dg2 − a2b4c2f2 − 2a2b4c2fg − a2b4c2g2

−a2b4cdf2 − 2a2b4cdfg − a2b4cdg2 + a2b4f2 + 2a2b4fg + a2b4g2 − 2a2b2c3df2−
4a2b2c3dfg − 2a2b2c3dg2 + 4a2b2c2d2f2 + 8a2b2c2d2fg + 4a2b2c2d2g2 − 2a2b2c2f2

−4a2b2c2fg − 2a2b2c2g2 − 2a2b2cd3f2 − 4a2b2cd3fg − 2a2b2cd3g2 + 4a2b2cdf2+
8a2b2cdfg + 4a2b2cdg2 − 2a2b2d2f2 − 4a2b2d2fg − 2a2b2d2g2 + a2c3d3f2+
2a2c3d3fg + a2c3d3g2 − a2c2d2f2 − 2a2c2d2fg − a2c2d2g2 − a2cd3f2 − 2a2cd3fg
−a2cd3g2 + a2d2f2 + 2a2d2fg + a2d2g2 − 2abc3d3f2 − 4abc3d3fg − 2abc3d3g2+
2abc3df2 + 4abc3dfg + 2abc3dg2 + 2abcd3f2 + 4abcd3fg + 2abcd3g2 − 2abcdf2−
4abcdfg − 2abcdg2 + b2c3d3f2 + 2b2c3d3fg + b2c3d3g2 − b2c3df2 − 2b2c3dfg−
b2c3dg2 − b2c2d2f2 − 2b2c2d2fg − b2c2d2g2 + b2c2f2 + 2b2c2fg + b2c2g2 < 0) ∧
f2g + 2g5 − g = 0 ∧ f4 − 1 = 0 ∧ e3f3 + g − 2 = 0 ∧ g − 1 ≤ 0 ∧ f − 1 ≤ 0
∧ e− 1 ≤ 0 ∧ d− 1 ≤ 0 ∧ c− 1 ≤ 0 ∧ b− 1 ≤ 0 ∧ a− 1 ≤ 0 ∧ g ≥ 0 ∧

f ≥ 0 ∧ e ≥ 0 ∧ d ≥ 0 ∧ c ≥ 0 ∧ b ≥ 0 ∧ a ≥ 0

P16 c2 + cd− d2 + 1 ≤ 0 ∧ 2a + b− 1 ≥ 0 ∧ a2 + ab− b2 − 1 ≥ 0 ∧ d− 1 ≥ 0 ∧
c ≥ 0 ∧ b ≥ 0 ∧ ad + bc + bd ≤ 0

P19 x 6= 1 ∧ y 6= 1 ∧ z 6= 1 ∧ x2/(x− 1)2 + y2/(y − 1)2 + z2/(z − 1)2 < 1 ∧ xyz = 1
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