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On the dimension of divergence sets of dispersive equations
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Abstract We refine results of Carleson, Sjögren and Sjölin regarding the pointwise

convergence to the initial data of solutions to the Schrödinger equation. We bound the

Hausdorff dimension of the sets on which convergence fails. For example, with initial

data in H1(R3), the sets of divergence have dimension at most one.

1 Introduction

We consider the Schrödinger equation

i∂tu+∆u = 0 (1)

with initial data in Hs(Rn). A classical problem is to identify the exponents s for which

lim
t→0

u(x, t) = u(x, 0), a.e. x ∈ Rn.
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It is natural to consider a refinement of this question regarding the Hausdorff dimension

of the sets on which convergence fails. For previous results in this direction, see Sjögren

and Sjölin [?].

For example, in one spatial dimension, with 1/4 6 s 6 1/2, we will prove that

dimH { x ∈ R : u(x, t) 6→ u(x, 0) as t→ 0 } ≤ 1− 2s,

where dimH denotes the Hausdorff dimension. This refines the result of Carleson [?],

who proved that, for data in H1/4(R), convergence takes place almost everywhere with

respect to Lesbesgue measure. Dahlberg and Kenig [?] proved that divergence can

occur on a set of nonzero Lebesgue measure when s < 1/4, so one may have expected

the existence of sets of divergence with full Hausdorff dimension when s = 1/4. We see

that this is not the case and that the sets of divergence can have Hausdorff dimension

at most 1/2 at the critical exponent.

2 Set-up and statement of results

For initial data u0 belonging to the Schwartz class S(Rn), the solution of (1) can be

written as

u(x, t) =
1

(2π)n

∫
û0(ξ) ei(x·ξ−t|ξ|

m)dξ, (2)

where m = 2. A number of our conclusions will hold for general m > 1, and we shall

also consider the case m = 1, corresponding to the wave equation.

For u0 ∈ Hs(Rn) defined by{
f ∈ L2(Rn) :

∫
Rn
|f̂(ξ)|2(1 + |ξ|2)sdξ <∞

}
,

the integral in (2) does not in general exist in the sense of Lebesgue. In this broader

setting we may define u as the pointwise limit

u(·, t) = lim
N→∞

SNt u0 (3)

whenever the limit exists, where the operator SNt is defined by

SNt f(x) =
1

(2π)n

∫
ψ(N−1|ξ|)f̂(ξ) ei(x·ξ−t|ξ|

m)dξ.

Here, for convenience, we take ψ to be the Gaussian ψ(r) = e−r
2
. By standard argu-

ments, u(·, t) coincides with the traditional L2-limit, almost everywhere with respect to

Lebesgue measure. However, u(·, t) is also well-defined with respect to fractal measures

when s > 0.

We say that a positive Borel measure µ is α-dimensional if

cα(µ) := sup
x∈Rn, r>0

µ
(
B(x, r)

)
rα

<∞, 0 ≤ α ≤ n,
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and denote byMα(Bn) the α-dimensional probability measures which are supported in

the unit ball Bn. Now, u(·, t) is well-defined with respect to µ ∈Mα(Bn) for α > n−2s,

due to the inequality1∥∥ sup
N>1

|SNt f |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn), (4)

which holds for these exponents. We give a simple proof of (4) in Appendix A.

It is necessary to choose a preferred representation of the equivalence class u0, as

different representations can differ on sets of full Hausdorff dimension. A reasonable

choice is u( · , 0), as defined in (3), as it coincides with u0, almost everywhere with

respect to Lebesgue measure. It also coincides, up to a set of Hausdorff dimension at

most n− 2s, with the usual choice given in terms of the Bessel potential. The number

n−2s is a natural threshold for the problem, as the Bessel potential representation can

be singular on sets with dimension smaller than this (see [?]). We elaborate further on

such matters in Appendix A.

As usual in such contexts, our results will follow from appropriate maximal estimates.

We denote by αm,n(s) the infimum of the numbers α for which∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn) (5)

whenever µ ∈ Mα(Bn), f ∈ Hs(Rn) and (tk) ∈ RN. If there is no such α, we say that

αm,n(s) does not exist.

By standard arguments combining (4), (5) and Frostman’s lemma,

dimH

{
x ∈ Rn : u(x, tk) 6→ u(x, 0) as k →∞

}
≤ αm,n(s), (6)

for all u0 ∈ Hs(Rn) and every sequence tk → 0 (see Appendix B).

We will also show in Appendix C how to “strengthen” the L1-estimate (5) to an L2-

estimate.

Our positive results (i.e. upper bounds for the exponents αm,n(s)) are the forthcoming

Proposition 1, Proposition 2 and Corollary 1, and form the content of Section 2. These

are followed in Section 3 by some negative results (lower bounds). For the convenience

of the reader we now summarise these results alongside those which follow from the

literature.

It is straightforward to calculate (see (21)) that αm,n(s) = 0 when s > n/2, and so we

restrict our attention to s 6 n/2.

For m = 2, the work of Dahlberg and Kenig [?] shows that (5) cannot hold for any

α 6 n when s < 1/4, so that α2,n(s) can only exist when s > 1/4. This is in fact the

case for αm,n(s) for any m > 1 (see Section 4). In one dimension we observe that

αm,1(s) = 1− 2s, 1/4 6 s 6 1/2, m > 1,

1 The expression A . B denotes A 6 CB, where the value of the positive constant C may
depend on m, n and s, but never on f or µ, and will vary from line to line.
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refining the work of Carleson [?], as mentioned in the introduction.

In higher dimensions, Sjögren and Sjölin [?] proved that for m > 2,

αm,n(s) 6 n+ 1− 2s,
1

2
< s 6

n

2
, (7)

although their set-up was slightly different. We refer the reader to their paper for a

precise statement of their results. We extend (7) so that it holds for all m > 1, and

improve it when n = 2 or 3. For n > 4, we lower their bound in the range s > (n−1)/4.

In particular we will see that

α2,n(s) = n− 2s,
n

4
6 s 6

n

2
.

For m = 1, work of Walther [?] shows that (5) cannot hold when s 6 1/2, so that

α1,n(s) can only exist when s > 1/2. Thus there is no issue for the one-dimensional

wave equation. In two dimensions, we prove that

α1,2(s) =

{
4(1− s), 1/2 < s < 3/4,

2(1− s), 3/4 < s 6 1.

This refines a theorem due to Cowling [?] (see also [?]), who proved the convergence

with respect to Lebesgue measure when s > 1/2. We note a discontinuity when s = 3/4.

In higher dimensions, we prove that

α1,n(s) = n− 2s,
n+ 1

4
< s 6

n

2
.

For explicit bounds on αm,n(s) for small values of s, we refer the reader to Sections 3

and 4. A complete resolution would of course be difficult as it includes the outstanding

problem of Lebesgue measure convergence for the Schrödinger equation.

The general set-up we describe here has a number of further antecedents in Fourier

analysis; in particular the work of Beurling [?], Salem–Zygmund [?], Carbery–Soria [?],

and Montini [?] on the sets of divergence of Fourier series and integrals.

3 Positive results

In this section we obtain upper bounds on the exponents αm,n(s) using three different

approaches.
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3.1 Via the Kolmogorov–Seliverstov–Plessner method

Here we employ the Kolmogorov–Seliverstov–Plessner method, as used by Carleson [?],

and the following lemma due to Sjölin [?].2

Lemma 1 [?] Let m > 1, x, t ∈ R, γ ∈ [1/2, 1) and N ≥ 1. Then∣∣∣∣∣
∫

R

η(N−1ξ) ei(xξ−tξ
m)

|ξ|γ dξ

∣∣∣∣∣ .
1

|x|1−γ
,

where the implicit constant depends on m, γ and the Schwartz function η.

The higher dimensional part of the following proposition follows by iteration of the one

dimensional part, which is only possible when m = 2. This was first noted for Lebesgue

measure by Dahlberg and Kenig [?].

Proposition 1 Let m > 1 if n = 1, or m = 2 if n > 2 and n
4 6 s 6 n

2 . Then for

α > n− 2s, ∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn)

whenever µ ∈Mα(Bn), f ∈ Hs(Rn) and (tk) ∈ RN; i.e. αm,n(s) ≤ n− 2s.

Proof We suppose that n/4 6 s < n/2, as the case s = n/2 follows as a consequence.

Recall the α-energy of µ, denoted by Iα(µ), and defined by

Iα(µ) =

∫ ∫
dµ(x)dµ(y)

|x− y|α .

By an appropriate dyadic decomposition,∫ ∫
dµ(x)dµ(y)

|x− y|n−2s
.
∫ ∞∑

j=0

cα(µ)2−jα2j(n−2s)dµ(y)

. cα(µ), α > n− 2s

for µ ∈Mα(Bn), so it will suffice to prove the somewhat sharper∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
In−2s(µ) ‖f‖Ḣs(R). (8)

Here, as usual, Ḣs(Rn) denotes the homogeneous L2-Sobolev space{
f ∈ L2(Rn) :

∫
Rn
|f̂(ξ)|2|ξ|2sdξ <∞

}
.

2 An n-dimensional version of this lemma for m = 2 may be obtained by scaling Lemma
1.A of [?] as in [?].
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On linearising, (8) follows from the estimate∣∣∣∣∫
Bn
S
N(x)
t(x)

f(x)w(x)dµ(x)

∣∣∣∣2 . In−2s(µ) ‖f‖2
Ḣs
, (9)

uniformly in the measurable functions t : Bn → R, N : Bn → [1,∞) and w : Bn → S1.

By Fubini’s theorem and the Cauchy–Schwarz inequality, the left hand side of (9) is

bounded by∫
|f̂(ξ)|2|ξ|2sdξ

∫ ∣∣∣∣∫ ψ(N(x)−1|ξ|) ei(x·ξ−t(x)|ξ|
m)w(x) dµ(x)

∣∣∣∣2 dξ

|ξ|2s
.

Writing the squared integral as a double integral, and applying Fubini’s theorem again,

in order to prove (8) it will suffice to show that∫∫∫
ψ(N(x)−1|ξ|)ψ(N(y)−1|ξ|) ei((x−y)·ξ−(t(x)−t(y))|ξ|m) dξ

|ξ|2s
w(x)w(y) dµ(x)dµ(y)

. In−2s(µ) (10)

uniformly in the functions t, N and w.

From now on we assume that m = 2, n > 2; the argument for m > 1, n = 1 being

simpler. Fixing x, y ∈ Bn, we choose our orthogonal coordinate axes in frequency space

ξ = (ξ1, . . . , ξn) so that the associated unit vectors e1, . . . , en satisfy

e1 · (x− y) = . . . = en · (x− y).

With respect to these axes we have

|x− y| =
√
n|x1 − y1| = . . . =

√
n|xn − yn|. (11)

Now, as ψ is a Gaussian and |ξ|2s > |ξ1|
2s
n . . . |ξn|

2s
n , the inner integral of (10) is

bounded by

n∏
j=1

∣∣∣∣∣
∫
ψ(N(x)−1ξj)ψ(N(y)−1ξj) e

i
(
(xj−yj)ξj−(t(x)−t(y))ξ2j

)
dξj

|ξj |
2s
n

∣∣∣∣∣ ,
and by Lemma 1, for j = 1, . . . , n,∣∣∣∣∣∣

∫
ψ(N(x)−1ξj)ψ(N(y)−1ξj) e

i
(
(xj−yj)ξj−(t(x)−t(y))ξ2j

)
|ξj |

2s
n

dξj

∣∣∣∣∣∣ .
1

|xj − yj |1−
2s
n

.

Substituting in, we see that the left hand side of (10) is bounded by a constant multi-

ple of ∫ ∫
|w(x)w(y)|

|x1 − y1|1−
2s
n . . . |xn − yn|1−

2s
n

dµ(x)dµ(y) .
∫ ∫

dµ(x)dµ(y)

|x− y|n−2s

= In−2s(µ),

where in the inequality we use (11). ut
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Replacing the multiplier e−it|ξ|
2

by e−it(ξ
2
1−ξ

2
2), we note that the previous argument

works equally well for the two dimensional nonelliptic Schrödinger equation. Given that

in [?] it was proven that divergence can occur on a set of nonzero Lebesgue measure

when s < 1/2, it is noteworthy that at the critical exponent s = 1/2, the sets of

divergence have Hausdorff dimension at most one.

3.2 Via bilinear Fourier extension estimates

Here we obtain upper bounds on αm,n(s) as a consequence of certain bilinear Fourier

extension estimates of Tao [?, Theorem 1.1 and Section 9]. Although the resulting

relation between the parameters α and s will not be sharp, it will allow us to relax

the restriction on s that was present in Section 2.1. To this end, define the extension

operators

T̂j g(ξ) = e−itφj(ξ)ĝ(ξ),

where

φj(ξ) = 22j |2−jξ + ξ0|m −m2j |ξ0|m−2ξ0 · ξ − 22j |ξ0|m.

The support of ĝ will be restricted to [−5, 5]n and so the domain of definition of φj
is similarly restricted. We also only consider ξ0 ∈ {5n 6 |ξ| 6 10n}. After a finite

splitting (depending on m), one can decompose the φj so that they are elliptic (as

defined in [?]) on their restricted domains, with constants which depend on |ξ0| and

m, and which are independent of j ∈ N. Thus, the following estimate holds uniformly

for all ξ0 ∈ {5n 6 |ξ| 6 10n} and j ∈ N, with the implicit constant depending only on

m,n and q.

Theorem 3.1 [?, Section 9] Let m > 1, n > 2 and q >
2(n+3)
n+1 . Then

‖Tj g Tj h‖Lq/2(Rn+1) . ‖g‖L2(Rn)‖h‖L2(Rn),

whenever supp ĝ, supp ĥ ⊂ [−5, 5]n and dist(supp ĝ, supp ĥ ) > 1.

The following argument is similar to one employed by Tao and Vargas [?] (see also [?]

and [?] for refinements).

Proposition 2 Let m > 1, n > 2 and α > n+3
n+1 (n− 2s). Then

∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn)

whenever µ ∈Mα(Bn), f ∈ Hs(Rn) and (tk) ∈ RN; i.e. αm,n(s) ≤ n+3
n+1 (n− 2s).
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Proof It will suffice to prove that for α > n+3
n+1 (n− 2s),∥∥ sup

t∈R
|Stf |

∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn), (12)

whenever µ ∈Mα(Bn) and f̂ ∈ L1(Rn) has compact support. Here St is defined by

Stf(x, t) =
1

(2π)n

∫
f̂(ξ) ei(x·ξ−t|ξ|

m)dξ.

To see this, we note that by the Fundamental Theorem of Calculus,

sup
N>1

|SNt f | 6 |S1tf |+
∫ ∞
1

∣∣∣ d
dN

SNt f
∣∣∣dN.

Now, letting ∨ denote the inverse Fourier transform,∣∣∣ d
dN

SNt f
∣∣∣ =

∣∣∣St( d

dN
ψ(N−1| · |)f̂

)∨∣∣∣ =
∣∣∣St(ψ′(N−1| · |)| · |f̂

N2

)∨∣∣∣,
so that by the triangle inequality and Minkowski’s integral inequality, it will suffice to

prove ∥∥ sup
k>1
|Stk

(
ψ(| · |)f̂

)∨| ∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn),

which follows from (12) as
∥∥(ψ(| · |)f̂

)∨∥∥
Hs(Rn)

6 ‖f‖Hs(Rn), and∫ ∞
1

∥∥∥ sup
k>1

∣∣∣Stk(ψ′(N−1| · |)| · |f̂
N2

)∨∣∣∣ ∥∥∥
L1(dµ)

dN .
√
cα(µ) ‖f‖Hs(Rn).

Now as ψ′(N−1| · |) .
∑
k>0 2−2nkχB(0,2kN), for all ε > 0,

∥∥∥(ψ′(N−1| · |)| · |f̂
N2

)∨∥∥∥
Hs(Rn)

.
∑
k>0

2−2nk

N1+ε

∥∥∥(χB(0,2kN)| · |f̂
N1−ε

)∨∥∥∥
Hs(Rn)

.
1

N1+ε
‖f‖Hs+ε(Rn),

so that if (12) were true,∫ ∞
1

∥∥∥ sup
k>1

∣∣∣Stk(ψ(N−1| · |)| · |f̂
N2

)∨∣∣∣ ∥∥∥
L1(dµ)

dN .
∫ ∞
1

√
cα(µ)

1

N1+ε
‖f‖Hs+ε(Rn)dN

.
√
cα(µ) ‖f‖Hs+ε(Rn),

from which the proposition would follow. Thus, it remains to prove (12).

Using the fact that cα(µ) > 1 when µ ∈ Mα(Bn), by Hölder’s inequality, (12) would

follow from ∥∥ sup
t∈R
|Stf |

∥∥
Lq(dµ)

. cα(µ)
1
q ‖f‖Hs(Rn),

with s > n
2 −

α
q and q arbitrarily close to

2(n+3)
n+1 . By summing a Littlewood–Paley

geometric series it will be enough to prove∥∥ sup
t∈R
|Stf |

∥∥
Lq(dµ)

. cα(µ)
1
qR

n
2−

α
q ‖f‖2,
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whenever supp f̂ ⊂ {5nR 6 |ξ| 6 10nR}, and by scaling, this problem reduces to

∥∥ sup
t∈R
|Stf(R · )|

∥∥
Lq(dµ)

. cα(µ)
1
qR−

α
q ‖f‖2,

whenever supp f̂ ⊂ {5n 6 |ξ| 6 10n}.

In order to take advantage of bilinear estimates we square the inequality;

∥∥ sup
t∈R
|Stf(R · )Stf(R · )|

∥∥
Lq/2(dµ)

. cα(µ)
2
qR−

2α
q ‖f‖22.

After a further finite splitting, for each j ∈ N we break up the support of f̂ into dyadic

cubes τ jk of side 2−j . We write τ jk ∼ τ
j
k′ if τ jk and τ jk′ have adjacent parents, but are not

adjacent. Writing f̂ =
∑
k f̂jk, where f̂jk = f̂χ

τjk
, we have the Whitney decomposition

(see for example [?,?]),

Stf(Rx)Stf(Rx) =
1

(2π)2n

∫ ∫
f̂(ξ)f̂(y) ei(Rx·(ξ+y)−t(|ξ|

m+|y|m))dξdy

=
∑

j,k,k′:τjk∼ τ
j

k′

1

(2π)2n

∫ ∫
f̂jk(ξ)f̂jk′(y) ei(Rx·(ξ+y)−t(|ξ|

m+|y|m))dξdy

=
∑

j,k,k′:τjk∼ τ
j

k′

Stfjk(Rx)Stfjk′(Rx).

Calculating the temporal Fourier transform of Stfjk(R · ), it is easy to see that the sup-

port is contained in an interval of length . 2−j . This is also true of Stfjk(R · )Stfjk′(R · ),
and so by Bernstein’s inequality,

sup
t∈R
|Stfjk(Rx)Stfjk′(Rx)| . 2

−2j
q ‖Stfjk(Rx)Stfjk′(Rx)‖

L
q/2
t (R)

.

Thus, by the triangle inequality and Fubini’s theorem,

∥∥ sup
t∈R
|Stf(R · )|

∥∥2
Lq(dµ)

.
∑

j,k,k′:τjk∼ τ
j

k′

2
−2j
q ‖Stfjk(R · )Stfjk′(R · )‖Lq/2(dµdt).

On the other hand, the spatial Fourier transform of Stfjk(R · )Stfjk′(R · ) is contained

in a ball of radius 10nR−1, so that

‖Stfjk(R · )Stfjk′(R · )‖Lq/2(dµ) =
∥∥(Stfjk(R · )Stfjk′(R · )

)
∗ η∨R

∥∥
Lq/2(dµ)

6 ‖Stfjk(R · )Stfjk′(R · )‖Lq/2(|η∨R|∗µ(x)dx)‖η
∨
R‖

1− 2
q

L1 ,

. ‖Stfjk(R · )Stfjk′(R · )‖Lq/2(|η∨R|∗µ(x)dx),
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where ηR = η(R−1·) and η is a Schwartz function, equal to one on the ball of radius

10n. In the first inequality we use that

|F ∗G(x)| 6
∫
|F (y)| |G(x− y)|2/q|G(x− y)|1−2/qdy

6
(
|F |q/2 ∗ |G|(x)

)2/q
‖G‖1−2/q

L1 ,

and then move the convolution onto the measure by Fubini’s theorem.

Now, letting ξ0 denote the midpoint between the supports of f̂jk and f̂jk′ , by the affine

change of variables x→ R−1(x+ tm|ξ0|m−2ξ0), we have

‖Stfjk(R · )Stfjk′(R · )‖Lq/2(|η∨R|∗µ(x)dxdt) = R−
2n
q ×

‖Stfjk(·+ tm|ξ0|m−2ξ0)Stfjk′(·+ tm|ξ0|m−2ξ0)‖Lq/2(|η∨R|∗µ(R−1(x+tm|ξ0|m−2ξ0))dxdt),

and by the changes of variables ξ → 2−jξ + ξ0, x→ 2jx, and t→ 22jt, this is in turn

equal to

R−
2n
q 2−j

(
2n− 2(n+2)

q

)
‖Tj g Tj h‖Lq/2(w(x,t)dxdt),

where

w(x, t) = |η∨R| ∗ µ(R−12j(x+ 2jtm|ξ0|m−2ξ0)),

ĝ(ξ) = f̂jk(2−jξ + ξ0) and ĥ = f̂jk′(2
−jξ + ξ0),

Note that supp ĝ, supp ĥ ⊂ [−5, 5]n and dist(supp ĝ, supp ĥ) > 1.

Now, η∨ is a Schwartz function, and so satisfies |η∨| .
∑
k>0 2−2nkχB(0,2k). This

enables us to calculate an upper bound for w in terms of cα(µ);

w(x, t) = Rn
∫
|η∨|

(
R
(
R−12j(x+ 2jtm|ξ0|m−2ξ0)− y

))
dµ(y)

. Rn
∑
k>0

2−2nkµ
(
B
(
R−12j(x+ 2jtm|ξ0|m−2ξ0), R−12k

))
. Rn

∑
k>0

2−2nkcα(µ)R−α2kα . Rn−αcα(µ).

Putting things together, we see that

∥∥ sup
t∈R
|Stf(R · )|

∥∥2
Lq(dµ)

. cα(µ)
2
q

∑
j,k,k′:τjk∼ τ

j

k′

R−
2α
q 2−j(2n−

2(n+1)
q )‖Tj g Tj h‖Lq/2(dxdt),

and we are in a position to apply Theorem 3.1. Applying the theorem and rescaling

yields

∥∥ sup
t∈R
|Stf(R · )|

∥∥2
Lq(dµ)

. cα(µ)
2
qR−

2α
q

∑
j,k,k′:τjk∼ τ

j

k′

2−j(n−
2(n+1)
q )‖fjk‖2‖fjk′‖2.
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Now as the sum in k′ is finite and the supports of both f̂jk and f̂jk′ are contained in

7τ jk , by almost orthogonality, ∑
k,k′:τjk∼ τ

j

k′

‖fjk‖2‖fjk′‖2 . ‖f‖22.

Finally, the sum in j converges as q >
2(n+1)
n , so that∥∥ sup

t∈R
|Stf(R · )|

∥∥2
Lq(dµ)

. cα(µ)
2
qR−

2α
q ‖f‖22,

as required. ut

3.3 Via weighted Fourier extension estimates

The exponents αm,n(s) are closely related to certain other exponents arising in geo-

metric measure theory. Let βn(α) denote the supremum of the numbers β for which

‖µ̂(R · )‖L2(Sn−1) . R−β
√
cα(µ)‖µ‖ (13)

holds, for all R ≥ 1 and µ ∈Mα(Bn), where we include measures which have not been

normalised for the moment. The problem of identifying the precise value of βn(α) has

been considered by several authors, beginning with Mattila [?]. Further references will

follow.

Writing h = h1 − h2 + i(h3 − h4), where the components are positive, we have√
cα(hiµ)‖hiµ‖ 6

√
cα(µ)‖µ‖ ‖hi‖L∞(dµ), i = 1, . . . , 4,

so that by the triangle inequality, (13) yields

‖ĥµ(R · )‖L2(Sn−1) . R−β
√
cα(µ)‖µ‖ ‖h‖L∞(dµ).

Thus, by duality, βn(α) is the supremum of the numbers β for which

‖ĝdσ(R · )‖L1(dµ) . R−β
√
cα(µ)‖µ‖ ‖g‖L2(Sn−1) (14)

holds, for all R ≥ 1, g ∈ L2(Sn−1) and µ ∈ Mα(Bn). Here dσ denotes the Lebesgue

measure on the unit sphere Sn−1. By similar arguments to those contained in Ap-

pendix C, one can show that βn(α) is also the supremum of the numbers β for which

‖ĝdσ(R · )‖L2(dµ) . R−β
√
cα(µ) ‖g‖L2(Sn−1)

holds, however (14) will suffice for our purposes.

Weighted Fourier extension estimates of this type played a central role in [?] and [?],

and their use in the context of almost everywhere convergence problems for dispersive

equations goes back to Vega [?].
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In two dimensions, combining results of Mattila [?] and Wolff [?], the sharp decay rates

are known;

β2(α) =


α/2, 0 < α < 1/2,

1/4, 1/2 6 α 6 1,

α/4, 1 < α 6 2.

In higher dimensions, combining the partial results due to Mattila [?], Sjölin [?,?], and

Erdog̃an [?], it is known that

βn(α) >


α
2 , α ∈ (0, n−1

2 ],
n−1

4 , α ∈ [n−1
2 , n2 ],

n+2α−2
8 , α ∈ [n2 ,

n+2
2 ],

α−1
2 , α ∈ [n+2

2 , n].

On the other hand, using the so-called ‘Knapp examples’ one can calculate that

βn(α) 6

{ α
2 , α ∈ (0, n− 2],
n+α−2

4 , α ∈ [n− 2, n].

Worse counterexamples have been constructed when the averages are taken over a piece

of paraboloid rather than the sphere [?], or for signed measures with finite Fourier

energy [?].

Note that the upper and lower bounds coincide when α ∈ (0, n−1
2 ], so that βn(α) = α/2

in that range.

The following is a simple generalisation of a result of Sjölin [?] and Vega [?], and, unlike

the previous propositions, also holds for the wave equation.

Proposition 3 Let m > 1, n > 2 and s > n
2 − βn(α). Then∥∥ sup

k>1
sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn)

whenever µ ∈Mα(Bn), f ∈ Hs(Rn) and (tk) ∈ RN.

Proof Using polar coordinates we may write

|SNt f(x)| =
∣∣∣∣∫

Rn
ψ(N−1|ξ|) f̂(ξ) ei(x·ξ−t|ξ|

m) dξ

∣∣∣∣
=

∣∣∣∣∫ ∞
0

ψ(N−1r) rn−1e−itr
m
∫

Sn−1
f̂(rω) eirx·ωdσ(ω) dr

∣∣∣∣
6
∫ ∞
0

rn−1
∣∣∣∣∫

Sn−1
f̂(rω) eirx·ωdσ(ω)

∣∣∣∣ dr.
Thus, by Fubini’s theorem,

∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

6
∫ ∞
0
rn−1∥∥(f̂(r ·)dσ

)∨
(r · )

∥∥
L1(dµ)

dr. (15)
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Now, by (14) we have∥∥(f̂(r ·)dσ
)∨

(r · )
∥∥
L1(dµ)

.
√
cα(µ) r−β‖f̂(r · )‖L2(Sn−1)

for all β < βn(α), so that (15) is bounded by

.
√
cα(µ)

∫ ∞
0

rn−1−β‖f̂(r · )‖L2(Sn−1)dr.

Finally, by an application of the Cauchy–Schwarz inequality, this in turn is bounded

by

.
√
cα(µ)

(∫ ∞
0

rn−1−2β

(1 + r2)s

)1/2(∫ ∞
0
‖f̂(r · )‖2L2(Sn−1)(1 + r2)srn−1dr

)1/2

.
√
cα(µ) ‖f‖Hs(Rn),

where the first integral converges by choosing β sufficiently close to βn(α). ut

Combining the previous proposition with the best known lower bounds for βn(α), we

obtain the following corollary.

Corollary 1 Let m > 1, n > 2 and

α >


n+ 1− 2s, s ∈ ( 1

2 ,
n
4 ],

3n
2 + 1− 4s, s ∈ (n4 ,

n+1
4 ],

n− 2s, s ∈ (n+1
4 , n2 ].

Then ∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn)

whenever µ ∈Mα(Bn), f ∈ Hs(Rn) and (tk) ∈ RN; i.e.

αm,n(s) ≤


n+ 1− 2s, s ∈ ( 1

2 ,
n
4 ],

3n
2 + 1− 4s, s ∈ (n4 ,

n+1
4 ],

n− 2s, s ∈ (n+1
4 , n2 ].

In the next section we will see that this is sharp for the wave equation when n = 2.

It is also an improvement on the previous results for the Schrödinger equation when

n > 4 and s ∈ ( 1
2 ,
n−1

4 ).

4 Negative results

In this section we obtain some lower bounds on the exponents αm,n via some examples.
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Example 1

Consider f̂ = χA and dµ(x) = NnχE(x)dx, where

A = B(0, N), E = B(0, N−1),

so that

SNt f(x) =
1

(2π)n

∫
B(0,N)

ψ(N−1|ξ|) ei(x·ξ−t|ξ|
m)dξ.

Taking t = N−m, we see that the phase is close to zero for all x ∈ E, so that∥∥ sup
0<t<1

|SNt f |
∥∥
L1(dµ)

& Nn|A||E| = Nn.

On the other hand, √
cα(µ) ‖f‖Hs . N

α
2 Ns+n

2 ,

which, letting N →∞, yields the necessary condition

αm,n(s) > n− 2s.

Example 2

Consider f̂ = χA and dµ(x) = N
n−1

2 χE(x)dx, where

A = [N,N + n−1N1/2]× [0, n−1N1/2]n−1,

E = [0, (2(m+ 1))−1]× [0, (2N)−1/2]n−1.

By a change of variables, we see that

|SNt f(x)| = 1

(2π)n

∣∣∣∣∫
A−Ne1

ψ
(
N−1|Ne1 + ξ|

)
ei(x·ξ−t|Ne1+ξ|

m)dξ

∣∣∣∣
=

1

(2π)n

∣∣∣∣∫
A−Ne1

ψ
(
|e1 +N−1ξ|

)
ei((x−mN

m−1te1)·ξ−t(|Ne1+ξ|m−mNm−1ξ1))dξ

∣∣∣∣ ,
where e1 = (1, 0, . . . , 0). Now

∇(|Ne1 + ξ|m −mNm−1ξ1)

= m|Ne1 + ξ|m−2(Ne1 + ξ)−mNm−1e1

= mN(|Ne1 + ξ|m−2 −Nm−2)e1 +m|Ne1 + ξ|m−2ξ,

so that, by the mean value theorem, for |ξ| 6 N1/2,

|∇(|Ne1 + ξ|m −mNm−1ξ1)| 6 m(m+ 1)Nm−3/2.

Taking t = m−1N1−mx1 we see that

|t(|Ne1 + ξ|m −mNm−1ξ1)−m−1Nx1| 6 1/2
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when |ξ| 6 N1/2 and |x1| 6 (2(m+ 1))−1. Moreover, when x ∈ E,

|(x−mNm−1te1) · ξ| = |x2ξ2 + . . .+ xnξn| 6 1/2,

so, for each x ∈ E, the phase is effectively constant, so that

∥∥ sup
0<t<1

|SNt f |
∥∥
L1(dµ)

& N
n−1

2 |A||E| = N
n
2 .

On the other hand, by calculating,

√
cα(µ) ‖f‖Hs . N

max{α−1,0}
4 Ns+n

4 .

We see that s > 1/4 is necessary for all values of α. Furthermore, we see that when

s < n/4, it is necessary that

αm,n(s) > n+ 1− 4s.

Example 3

Finally, with m = 1, we consider f̂ = χA and dµ(x) = N
n−1

2 χE(x)dx, where

A =
{
ξ ∈ Rn : |θξ,e1 | < N−1/2 and |ξ| < N

}
,

E =
{
x ∈ Rn : |θx,e1 | < N−1/2 and |x| < 1/10

}
.

Here θξ,e1 denotes the angle between ξ and e1. Taking t = |x| cos θx,e1 ,

|x · ξ − t|ξ|| = |ξ||x|| cos θx,ξ − cos θx,e1 |

6
N

10

∣∣θx,e1 − θx,ξ∣∣ ∣∣θx,e1 + θx,ξ
∣∣

6
N

2
N−1/2N−1/2 =

1

2
,

so that ∥∥ sup
0<t<1

|SNt f |
∥∥
L1(dµ)

& N
n−1

2 |A||E| = N
n+1

2 .

On the other hand,

√
cα(µ) ‖f‖Hs . N

max{α−1,0}
4 Ns+n+1

4 ,

which, when s < n+1
4 , yields the necessary condition

α1,n(s) > n+ 2− 4s.
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5 Concluding remarks

The results as stated in the introduction are obtained by comparing the upper and

lower bounds for αm,n. In particular, the upper bounds for α1,2 are contained in

Corollary 1. In higher dimensions, the precise decay rates for the Fourier transform

averaged over spheres are not known. The possibility remains that a positive resolution

of this question would yield sharp estimates for the wave equation in higher dimensions.

Theorem 5.1 Let n > 3. If it is true that βn(α) = min
{
α
2 ,

n+α−2
4

}
, then

α1,n(s) =

{
n+ 2− 4s, 1/2 < s < 1,

n− 2s, 1 6 s 6 n/2.

As mentioned in Section 3, evidence was provided in [?] to suggest that

βn(α) < min

{
α

2
,
n+ α− 2

4

}
, when

n− 1

2
< α < n, (16)

so perhaps the previous theorem is somewhat optimistic. For the pessimists, (16) would

follow if one could improve the lower bounds on α1,n(s) for s ∈ ( 1
2 ,
n+1

4 ).

Finally, we note that if α2,n(s) existed in the range 1/4 6 s 6 1/2, then by Example 2

of the previous section, it would satisfy

α2,n(s) > n+ 1− 4s, n > 2.

Thus, α2,n(1/4) would have to equal n. This contrasts with the case n = 1 since

α2,1(1/4) = 1/2 (see Proposition 1 and Example 1).

Appendix A: Proof of (4)

Here we consider the maximal operator M defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∣∣∣ ∫
B(x,r)

f(y) dy
∣∣∣.

This is dominated by the Hardy–Littlewood maximal operator. The following lemma is well-
known (see for example [?, pp. 159]). We include a proof, avoiding interpolation of weak
estimates, from which we will also deduce (4).

Lemma 2 Let 0 < s 6 n/2 and α > n− 2s. Then

‖Mf‖L1(dµ) .
√
cα(µ) ‖f‖Hs(Rn)

whenever µ ∈Mα(Bn) and f ∈ Hs(Rn).
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We remark that by the proof of Lemma 3 below, the L1(dµ)-norm in the previous lemma can
be replaced by the L2(dµ)-norm.

We note in passing that Lemma 2 implies that for all f ∈ Hs(Rn),

dimH

{
x ∈ Rn :

1

|B(x, r)|

∫
B(x,r)

f(y) dy diverges as r → 0

}
≤ n− 2s.

This refines (but does not recover) the L2-Lebesgue differentiation theorem.

Proof of Lemma 2 We suppose that 0 < s < n/2, as the case s = n/2 follows as a consequence.
As in the proof of Proposition 1, it will suffice to prove the somewhat sharper

‖Mf‖L1(dµ) .
√
In−2s(µ) ‖f‖Ḣs(Rn).

Defining η to be the Fourier transform of 1
|B(0,1)|χB(0,1), by linearising the operator, it will

suffice to prove ∣∣∣∣∫ ∫ η(r(x)ξ) f̂(ξ) eiξ·xdξ w(x) dµ(x)

∣∣∣∣2 . In−2s(µ) ‖f‖2
Ḣs
,

whenever r : Bn → (0,∞) and w : Bn → S1 are measurable functions. Now, by Fubini’s
theorem and the Cauchy–Schwarz inequality, the left hand side is bounded by∫

|f̂(ξ)|2|ξ|2sdξ
∫ ∣∣∣∣∫ η

(
r(x)ξ

)
eix·ξw(x) dµ(x)

∣∣∣∣2 dξ

|ξ|2s
.

Writing the squared integral as a double integral, and applying Fubini’s theorem again, it will
suffice to show that∫ ∫ ∫

η
(
r(x)ξ

)
η
(
r(y)ξ

)
ei(x−y)·ξ

dξ

|ξ|2s
w(x)w(y) dµ(x)dµ(y) . In−2s(µ).

Thus, it remains to prove that for 0 < s < n/2,∣∣∣∣∫ η
(
r(x)ξ

)
η
(
r(y)ξ

)
ei(x−y)·ξ

dξ

|ξ|2s

∣∣∣∣ .
1

|x− y|n−2s

uniformly for all choices of r(x), r(y) > 0. Now the Fourier transform of | · |−2s is equal to a
constant multiple of | · |2s−n, so, by the change of variables z = x− y, this would follow from
the inequality

sup
r1,r2>0

∣∣∣∣∣ 1

|B(z, r2)|

∫
B(z,r2)

1

|B(x, r1)|

∫
B(x,r1)

dy

|y|n−2s
dx

∣∣∣∣∣ .
1

|z|n−2s
.

This in turn would follow from the inequality

1

|B(x, r)|

∫
B(x,r)

dy

|y|n−2s
.

1

|x|n−2s
(17)

uniformly for x ∈ Rn and r > 0. By scaling this reduces to proving∫
B(x,1)

dy

|y|n−2s
.

1

|x|n−2s
, (18)

which can be shown by direct calculation. ut
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Now (4) follows from the previous proof. Using the fact that |f̂(ξ) e−i|ξ|
mt| = |f̂(ξ)|, the only

other change comes in the last line where instead of proving (18) we are required to show that∫
ψ(x− y)

dy

|y|n−2s
.

1

|x|n−2s
.

However this follows using (17), as∫
ψ(x− y)

dy

|y|n−2s
6
∑
k>0

2−2nk

∫
χB(0,2k)(x− y)

dy

|y|n−2s
.

1

|x|n−2s
,

and so we are done.

By standard arguments, similar to those in the next section, (4) implies that for all g ∈ L2(Rn),

dimH

{
x ∈ Rn : SN0 (Gs ∗ g)(x) 6→ Gs ∗ g(x) as N →∞

}
≤ n− 2s,

where Gs denotes the Bessel potential of order s defined via the Fourier transform by Ĝs(ξ) =

(1 + |ξ|2)−s/2. The proof of this requires the additional ingredient

‖Gs ∗ g‖L1(dµ) .
√
cα(µ) ‖g‖L2(Rn),

which holds under the hypotheses of Lemma 2.

Appendix B: Proof of (6)

Consider g ∈ S(Rn) such that ‖u0 − g‖Hs(Rn) < ε, and note that

|SNt u0 − SN0u0| 6 |SNt u0 − SNt g|+ |SNt g − SN0g|+ |SN0g − SN0u0|.

We have,

µ{x : lim sup
k→∞

lim sup
N→∞

|SNtku0 − SN0u0| > λ } 6 µ{x : sup
k>1

sup
N>1

|SNtk(u0 − g)| > λ/3 }

+ µ{x : lim
k→∞

lim
N→∞

|SNtkg − S
N
0g| > λ/3 }+ µ{x : sup

N>1
|SN0 (g − u0)| > λ/3 }.

Now, if tk → 0, the second term on the right hand side of the inequality is zero, so by the
maximal inequalities (4) and (5),

µ{x : lim
k→∞

lim
N→∞

|SNtku0 − SN0u0| > λ } . λ−1
√
cα(µ) ‖u0 − g‖Hs(Rn)

. λ−1
√
cα(µ) ε.

Letting ε tend to zero, then λ tend to zero, we see that

µ{x : u(x, tk) 6→ u(x, 0) as k →∞} = 0

whenever µ ∈Mα(Bn) with α > αm,n(s). Thus by Frostman’s lemma (see for example [?]),

Hα{x ∈ Bn : u(x, tk) 6→ u(x, 0) as k →∞} = 0, α > αm,n(s),

where Hα denotes the α-Hausdorff measure. By translation invariance and the countable ad-
ditivity of Hausdorff measure, we obtain (6). ut

Appendix C: L2-estimates

Consider the estimate ∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L1(dµ)

.
√
cα(µ) ‖f‖Hs(Rn) (L1)
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whenever µ ∈Mα(Bn) and f ∈ Hs(Rn), and the estimate∥∥ sup
k>1

sup
N>1

|SNtkf |
∥∥
L2(dµ)

.
√
cα(µ) ‖f‖Hs(Rn) (L2)

whenever µ ∈Mα(Bn) and f ∈ Hs(Rn).

In the following lemma we see that these estimates are essentially equivalent. This is reminis-
cent of the Nikisin–Stein maximal principle which allows one to deduce a weak L2-estimate
for the maximal operator from an L1-estimate via the almost everywhere convergence that the
L1-estimate implies (see [?]).

Lemma 3 (L1) holds for all s > s0 ⇔ (L2) holds for all s > s0.

Proof By Hölder’s inequality, (L1) follows from (L2), so one direction of the equivalence is
clear. For the reverse direction, we suppose that (L1) holds for all s > s0, so that by the
Fourier inversion formula,∥∥ sup

k>1
sup
N>1

|SNtk f̂ |
∥∥
L1(dµ)

.
√
cα(µ)Rs‖f‖L2 , s > s0, (19)

whenever f ∈ L2(BR) and µ ∈Mα(Bn).

Considering µ ∈Mα(Bn) defined by

dµ(x) =
χE(x)dν(x)

ν(E)
,

where ν is any α-dimensional measure supported in the unit ball Bn, this yields∫
sup
k>1

sup
N>1

|SNtk f̂(x)|χE(x)
dν(x)√
ν(E)

.
√
cα(ν)Rs ‖f‖L2 .

Setting E = {x : supk>1 supN>1 |SNtk f̂(x)| > λ}, we deduce the weak type (2,2) estimate

ν
({
x : sup

k>1
sup
N>1

|SNtk f̂(x)| > λ
})

. cα(ν)R2sλ−2‖f‖2
L2 . (20)

On the other hand, it is trivial to observe that∥∥ sup
k>1

sup
N>1

|SNtk f̂ |
∥∥
L∞(dν)

6 ‖f‖L1(Rn) . Rn/2‖f‖L2 (21)

whenever f ∈ L2(BR). Using real interpolation between (20) and (21), we obtain∥∥ sup
k>1

sup
N>1

|SNtk f̂ |
∥∥
Lp(dν)

. cα(ν)1/pRs‖f‖L2 , s >
2

p
s0 +

(
1−

2

p

)n
2
, (22)

whenever f ∈ L2(BR) and µ ∈Mα(Bn), for all p > 2.

Using complex interpolation between (19) and (22), we obtain∥∥ sup
k>1

sup
N>1

|SNtk f̂ |
∥∥
L2(dµ)

.
√
cα(µ)Rs‖f‖L2 , s > s0,

whenever f ∈ L2(BR) and µ ∈ Mα(Bn). Here we have used the fact that cα(µ) > 1. Finally,
we apply the Fourier inversion formula and sum a geometric series to obtain (L2) for all s > s0.

ut
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We thus see that the positive results of Section 3 can be strengthened to L2-estimates. In
Proposition 1 however, we are obliged to restrict attention to the range n/4 < s 6 n/2.
Thus, we do not refine, or even recover, the result of Kenig and Ruiz [?] which gave a strong
L2([−1, 1])-version of Carleson’s estimate directly.




