THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Asymptotics of Some Convolutional Recurrences

Citation for published version:
Bender, EA, Daalhuis, ABO, Gao, Z, Richmond, LB \& Wormald, N 2010, 'Asymptotics of Some
Convolutional Recurrences' The Electronic Journal of Combinatorics, vol. 17, no. 1, R1, pp. -.

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

The Electronic Journal of Combinatorics

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Asymptotics of Some Convolutional Recurrences

Edward A. Bender *
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112
ebender@ucsd.edu

Adri B. Olde Daalhuis

Maxwell Institute and School of Mathematics
The University of Edinburgh
Edinburgh, EH9 3JZ, UK
A.OldeDaalhuis@ed.ac.uk

Zhicheng Gao ${ }^{\dagger}$
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S5B6
zgao@math.carleton.ca

L. Bruce Richmond* and Nicholas Wormald ${ }^{\ddagger}$
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario N2L3G1
lbrichmond@uwaterloo.ca, nwormald@uwaterloo.ca

Submitted: Apr 7, 2009; Accepted: Dec 14, 2009; Published: Jan 5, 2010

Abstract

We study the asymptotic behavior of the terms in sequences satisfying recurrences of the form $a_{n}=a_{n-1}+\sum_{k=d}^{n-d} f(n, k) a_{k} a_{n-k}$ where, very roughly speaking, $f(n, k)$ behaves like a product of reciprocals of binomial coefficients. Some examples of such sequences from map enumerations, Airy constants, and Painlevé I equations are discussed in detail.

1 Main results

There are many examples in the literature of sequences defined recursively using a convolution. It often seems difficult to determine the asymptotic behavior of such sequences. In this note we study the asymptotics of a general class of such sequences. We prove

[^0]subexponential growth by using an iterative method that may be useful for other recurrences. By subexponential growth we mean that, for every constant $D>1, a_{n}=o\left(D^{n}\right)$ as $n \rightarrow \infty$. Thus our motivation for this note is both the method and the applications we give.

Let $d>0$ be a fixed integer and let $f(n, k) \geqslant 0$ be a function that behaves like a product of some powers of reciprocals of binomial coefficients, in a general sense to be specified in Theorem 1. We deal with the sequence a_{n} for $n \geqslant d$ where $a_{d}, a_{d+1}, \cdots, a_{2 d-1} \geqslant$ 0 are arbitrary and, when $n \geqslant 2 d$,

$$
\begin{equation*}
a_{n}=a_{n-1}+\sum_{k=d}^{n-d} f(n, k) a_{k} a_{n-k} \tag{1}
\end{equation*}
$$

Without loss of generality,

$$
\text { we assume that } f(n, k)=f(n, n-k)
$$

since we can replace $f(n, k)$ and $f(n, n-k)$ in (1) with $\frac{1}{2}(f(n, k)+f(n, n-k))$.
Theorem 1 proves subexponential growth. Theorem 2 provide more accurate estimates under additional assumptions. In Section 2, we apply the corollary to some examples.

Theorem 1 (Subexponential growth) Let a_{n} be defined by recursion (1) with $a_{d}>0$. Suppose there is a function $R(x)$ defined on $(0,1 / 2$], an $\alpha>0$ and an r such that
(a) $0<R(x)<r<1$,
(b) $\lim _{x \rightarrow 0+} R(x)=0$,
(c) $0 \leqslant f(n, k)=O\left(n^{-\alpha} R^{k-d}(k / n)\right)$ uniformly for $d \leqslant k \leqslant n / 2$.

Then a_{n} grows subexponentially; in fact,

$$
\begin{equation*}
a_{n}=\left(1+O\left(n^{-\alpha}\right)\right) a_{n-1} \tag{2}
\end{equation*}
$$

Proof: We first note that the a_{n} are non-decreasing when $n \geqslant 2 d-1$.
Our proof is in three steps. We first prove that $a_{n}=O\left(C^{n}\right)$ for some constant $C>2$. We then prove that C can be chosen very close to 1 . Finally we deduce (2) and subexponential growth.
First Step: Since the bound in (c) is bounded by some constant times the geometric series $n^{-\alpha} r^{k-d}$ with ratio less than $1, \sum_{k=d}^{n-d} f(n, k)=O\left(n^{-\alpha}\right)$. Hence we can choose M so large that $\sum_{k=d}^{n-d} f(n, k)<1 / 4$ when $n>M$. Next choose $C \geqslant 2$ so large $(C=$ $\max \left\{a_{d}, a_{d+1}, \ldots, a_{2 d-1}, a_{M}, 2\right\}$ will do) that $a_{n}<2 C^{n}$ for $n \leqslant M$. By induction, using the recursion (1), we have for $n>M$

$$
a_{n}<2 C^{n-1}+(1 / 4) 4 C^{n} \leqslant C^{n}+C^{n}=2 C^{n}
$$

Second Step: By (b) there is a λ in $(0,1 / 2)$ such that $R(x)<\frac{1}{2 C}$ for $0<x<\lambda$. Fix any $D \leqslant C$ such that $a_{n}=O\left(D^{n}\right)$, which is true for $D=C$ by the First Step.

Split the sum in (1) into $\lambda n \leqslant k \leqslant(1-\lambda) n$ and the rest, calling the first range of k the "center" and the rest the "tail". Noting $r<1$, the center sum is bounded by

$$
\begin{equation*}
2 \sum_{k=\lambda n+1}^{n / 2} f(n, k) a_{k} a_{n-k}=O\left(D^{n} \sum_{k=\lambda n+1}^{n / 2} r^{k-d}\right)=O\left(\left(r^{\lambda} D\right)^{n}\right) . \tag{3}
\end{equation*}
$$

Since a_{j} are increasing, the tail sum is bounded by

$$
\begin{align*}
2 \sum_{k=d}^{\lambda n} f(n, k) a_{k} a_{n-k} & =O\left(n^{-\alpha}\right) a_{n-1} \sum_{k=d}^{\lambda n} R(x)^{k-d} D^{k} \tag{4}\\
& =O\left(n^{-\alpha}\right) a_{n-1} \sum_{k=d}^{\lambda n}(D R(x))^{k-d}=O\left(n^{-\alpha} a_{n-1}\right)
\end{align*}
$$

where the last equality follows from the fact that $D R(x)<1 / 2$. Combining (3) and (4),

$$
\begin{equation*}
a_{n}=\left(1+O\left(n^{-\alpha}\right)\right) a_{n-1}+O\left(\left(r^{\lambda} D\right)^{n}\right) \tag{5}
\end{equation*}
$$

When $r^{\lambda} D>1$, induction on n easily leads to $a_{n}=O\left(\left(r^{\lambda} D^{\prime}\right)^{n}\right)$ for any $D^{\prime}>D$, an exponential growth rate no larger than $r^{\lambda} D^{\prime}$.

Since r^{λ} has a fixed value less than one, we can iterate this process, replacing D by $r^{\lambda} D^{\prime}$ at the start of the Second Step. We finally obtain a growth rate $D>1$ with $r^{\lambda} D<1$. This completes the second step.
Third Step: With the value of D just obtained, the last term in (5) is exponentially small and hence is $O\left(n^{-\alpha} a_{n-1}\right)$. Thus we obtain (2) which immediately implies subexponential growth of a_{n}, since $1+O\left(n^{-\alpha}\right)<D$ for any $D>1$ and sufficiently large n.

To say more than (2), we need additional information about the behavior of the $f(n, k)$. When $f(n, k) / f(n, d)$ is small for each k in the range $d+1 \leqslant k \leqslant n-d-1$, the first and last terms dominate the sum. The following theorem is based on this observation.

Theorem 2 (Asymptotic behavior) Assume (a)-(c) of Theorem 1 hold. Suppose further that there is a $\beta>0$ such that

$$
\begin{equation*}
\frac{f(n, k)}{f(n, d)}=O\left(n^{-\beta} r^{k-d-1}\right) \quad \text { uniformly for } \quad d+1 \leqslant k \leqslant n / 2 \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\log a_{n}=2 a_{d} \sum_{k=2 d+1}^{n} f(k, d)+O\left(\sum_{k=2 d}^{n} f(k, d)\left(k^{-\alpha}+k^{-\beta}\right)\right) . \tag{7}
\end{equation*}
$$

Proof: We assume $n>2 d$. Remove the $k=d$ and $k=n-d$ terms from the sum in (1). We first deal with the remaining sum. Theorem 1 gives $a_{k}=O\left(D^{k}\right)$ for all $D>1$, so we can assume $D<1 / r$. Using (6)

$$
\begin{aligned}
\sum_{k=d+1}^{n-d-1} f(n, k) a_{k} a_{n-k} & =O\left(f(n, d) n^{-\beta} a_{n-1}\right) \sum_{k=d+1}^{n / 2} r^{k-d-1} D^{k} \\
& =O\left(f(n, d) n^{-\beta} a_{n-1}\right) .
\end{aligned}
$$

Combining this with (1), we obtain

$$
\begin{aligned}
a_{n} & =a_{n-1}+2 a_{d} f(n, d) a_{n-d}+f(n, d) O\left(n^{-\beta}\right) a_{n-1} \\
& =a_{n-1}\left(1+2 a_{d} f(n, d)+\left\{O\left(n^{-\alpha}\right)+O\left(n^{-\beta}\right)\right\} f(n, d)\right),
\end{aligned}
$$

Taking logarithms and noting for expansion purposes that $f(n, d)=O\left(n^{-\alpha}\right)$, we obtain

$$
\log a_{n}-\log a_{n-1}=2 a_{d} f(n, d)+O\left(\left(n^{-\alpha}+n^{-\beta}\right) f(n, d)\right) .
$$

Sum over n starting with $n=2 d+1$. The theorem follows immediately when we note that the constant terms can be incorporated into the $O()$ in (7) since the sum therein is bounded below by a nonzero constant.

Corollary 1 Assume the conditions of Theorem 2 hold and $f(n, d)=\Theta\left(n^{-\alpha}\right)$.

- If $\alpha<1$, then $a_{n}=\exp \left(\Theta\left(n^{1-\alpha}\right)\right)$.
- If $\alpha>1$, then $a_{n}=K+O\left(n^{1-\alpha}\right)$ for some constant K.
- If $f(n, d)-A / n$ are the terms of a convergent series, then $a_{n} \sim C n^{2 A a_{d}}$ for some positive constant C.

Proof: Since $\alpha>0$ and $\beta>0$, (7) gives $\log a_{n}=\Theta\left(\sum_{k=2 d+1}^{n} k^{-\alpha}\right)$. The case $\alpha<1$ follows immediately; for $\alpha>1$, we see that a_{n} is bounded and nondecreasing and therefore has a limit K. For $m>n,(2)$ gives $\log \left(a_{m} / a_{n}\right)=O\left(n^{1-\alpha}\right)$ uniformly in m. Letting $m \rightarrow \infty$, we obtain the claim regarding $\alpha>1$.

For $\alpha=1$, the first sum in (7) is $A \log n+B+o(1)$ for some constant B, and the last sum in (7) converges.

2 Examples

We apply Theorem 2 and Corollary 1 to some recursions which arise from combinatorial applications. In our examples, $f(n, k)$ behaves like a product of the reciprocal of binomial coefficients, which satisfies the conditions of Theorems 1 and 2. A more general case of interest is when $f(n, k)$ takes the form of the product of functions like

$$
g(n, k)=\frac{[a]_{k}[a]_{n-k}}{[a]_{n}}
$$

for some constant $a>0$, where $[x]_{k}=x(x+1) \cdots(x+k-1)=\frac{\Gamma(x+k)}{\Gamma(k)}$, the rising factorial. We note that when $a=1, g(n, k)=\binom{n}{k}^{-1}$.

We begin with some useful bounds. When $a>0$ and $1 \leqslant k \leqslant n / 2$,

$$
\begin{align*}
g(n, k) & =\prod_{j=0}^{k-1} \frac{a+j}{a+n-k+j}<\left(\frac{a+k}{a+n}\right)^{k} \tag{8}\\
& \leqslant(k / n)^{k}\left(\frac{1+a / k}{1+a / n}\right)^{k}=O\left((k / n)^{k}\right)=O\left(n^{-1}(3 k / 2 n)^{k-1}\right)
\end{align*}
$$

since $k(2 / 3)^{k-1}$ is bounded. So g satisfies the condition on f in Theorem 1(c), with $\alpha=1$. Similarly, when $a>0$ and $d \leqslant k \leqslant n / 2$,

$$
\begin{equation*}
\frac{g(n, k)}{g(n, d)}=\prod_{j=0}^{k-d-1} \frac{a+d+j}{a+n-k+d+j}=O\left(n^{-1}(3 k / 2 n)^{k-d-1}\right) \tag{9}
\end{equation*}
$$

This is in accordance with (6) with $\beta=1$.
Example 1 (Map enumeration constants) There are numbers t_{n} appearing in the asymptotic enumeration of maps in an orientable surface of genus n, whose value does not concern us here. Define u_{n} by

$$
t_{n}=8 \frac{[1 / 5]_{n}[4 / 5]_{n-1}}{\Gamma\left(\frac{5 n-1}{2}\right)}\left(\frac{25}{96}\right)^{n} u_{n}
$$

Then $u_{1}=1 / 10$ and u_{n} satisfies the following recursion [3]

$$
\begin{equation*}
u_{n}=u_{n-1}+\sum_{k=1}^{n-1} f(n, k) u_{k} u_{n-k} \quad \text { for } \quad n \geqslant 2 \tag{10}
\end{equation*}
$$

where

$$
f(n, k)=\frac{[1 / 5]_{k}[1 / 5]_{n-k}}{[1 / 5]_{n}} \frac{[4 / 5]_{k-1}[4 / 5]_{n-k-1}}{[4 / 5]_{n-1}}
$$

From the observations above, the conditions of Theorem 2 are satisfied with $d=1$, $R(\lambda)=(3 \lambda / 2)^{2}$ and $\alpha=\beta=2$. Hence, $u_{n} \sim K$ for some constant K. Unlike the proof in [3], this does not depend on the value of u_{1}.

Example 2 (Airy constants) The Airy constants Ω_{n} are determined by $\Omega_{1}=1 / 2$ and the recurrence [7]

$$
\Omega_{n}=(3 n-4) n \Omega_{n-1}+\sum_{k=1}^{n-1}\binom{n}{k} \Omega_{k} \Omega_{n-k} \quad \text { for } \quad n \geqslant 2
$$

Let $\Omega_{n}=n![2 / 3]_{n-1} 3^{n} a_{n}$. Then a_{n} satisfies (1) with $d=1$ and

$$
f(n, k)=\frac{[2 / 3]_{k-1}[2 / 3]_{n-k-1}}{[2 / 3]_{n-1}} .
$$

Theorem 2 applies with $d=1, R(\lambda)=3 \lambda / 2$ and $\alpha=\beta=1$. Since

$$
f(n, 1)=\frac{1}{n-4 / 3}=\frac{1}{n}+\frac{4 / 3}{n(n-4 / 3)}
$$

and $a_{1}=1 / 6$, we have $a_{n} \sim C n^{1 / 3}$ for some constant C.
We note that it is possible to apply the result of Olde Daalhuis [13] to obtain a full asymptotic expansion for Ω_{n}. Let

$$
A_{n}=\frac{\Omega_{n}}{3^{n} n!}
$$

Then the recursion for Ω_{n} becomes

$$
A_{n}=(n-4 / 3) A_{n-1}+\sum_{k=1}^{n-1} A_{k} A_{n-k}, n \geqslant 2
$$

It follows that the formal series

$$
F(z)=\sum_{n \geqslant 1} \frac{A_{n}}{z^{n}}
$$

satisfies the Riccati equation

$$
F^{\prime}(z)+\left(1+\frac{1}{3 z}\right) F(z)-F^{2}(z)-\frac{1}{6 z}=0 .
$$

It then follows from the result of Olde Daalhuis [13] that

$$
A_{n} \sim \frac{1}{2 \pi} \sum_{k=0}^{\infty} b_{k} \Gamma(n-k), \text { as } n \rightarrow \infty
$$

where $b_{0}=1$ and b_{k} can be computed using the recursion

$$
b_{k}=\frac{-2}{k} \sum_{j=2}^{k+1} b_{k+1-j} A_{j}, \quad k \geqslant 1 .
$$

In particular, we have

$$
\Omega_{n} \sim \frac{1}{2 \pi} \Gamma(n) 3^{n} n!=\frac{1}{2 \pi n}(n!)^{2} 3^{n}, \quad \text { as } n \rightarrow \infty
$$

It is well known that solutions to the Riccati equation have infinitely many singularities, hence $F(z)$ (via its Borel transform [2]) cannot satisfy a linear ODE with polynomial coefficients. This implies that the sequence A_{n} (and hence Ω_{n}) is not holonomic.

Example 3 The following recursion, with $\ell>0$ and $\ell \neq 1 / 2$, appeared in [6]. The Airy constants are the special case $\ell=1$. The case $\ell=2$ corresponds to the recursion studied in [9, 10], which arises in the study of the Wiener index of Catalan trees. We have $C_{1}=\frac{\Gamma(\ell-1 / 2)}{\sqrt{\pi}}$ and, for $n \geqslant 2$,

$$
\begin{equation*}
C_{n}=n \frac{\Gamma(n \ell+(n / 2)-1)}{\Gamma((n-1) \ell+(n / 2)-1)} C_{n-1}+\frac{1}{4} \sum_{k=1}^{n-1}\binom{n}{k} C_{k} C_{n-k} \tag{11}
\end{equation*}
$$

Define a_{n} by $C_{n}=n!g(n) a_{n}$ where $g(1)=1$ and

$$
g(m)=\prod_{k=2}^{m} \frac{\Gamma(k \ell+(k / 2)-1)}{\Gamma((k-1) \ell+(k / 2)-1)} .
$$

Then (11) becomes

$$
a_{n}=a_{n-1}+\sum_{k=1}^{n-1} \frac{g(k) g(n-k)}{4 g(n)} a_{k} a_{n-k},
$$

so $f(n, k)=g(k) g(n-k) / 4 g(n)$.
With a fixed and $x \rightarrow \infty$ and using 6.1.47 on p. 257 of [1] (or using Stirling's formula), we have

$$
\begin{align*}
\frac{\Gamma(x+a)}{\Gamma(x)} & =x^{a}\left(1+\frac{a(a-1)}{2 x}+O\left(1 / x^{2}\right)\right) \\
& =x^{a}\left(1+\frac{a-1}{2 x}\right)^{a}\left(1+O\left(1 / x^{2}\right)\right) \tag{12}\\
& =\left(x+\frac{a-1}{2}\right)^{a}\left(1+O\left(1 / x^{2}\right)\right) \tag{13}
\end{align*}
$$

When $m>1,(13)$ gives us

$$
\begin{aligned}
g(m) & =\prod_{k=2}^{m}\left(\frac{(2 \ell+1) k-\ell-3}{2}\right)^{\ell}\left(1+O\left(1 / k^{2}\right)\right) \\
& =\Theta(1)\left((\ell+1 / 2)^{m} \prod_{k=2}^{m}\left(k-\frac{\ell+3}{2 \ell+1}\right)\right)^{\ell} \\
& =\Theta(1)\left((\ell+1 / 2)^{m}[a]_{m-1}\right)^{\ell}, \quad \text { where } a=\frac{3 \ell-1}{2 \ell+1} .
\end{aligned}
$$

Hence

$$
f(n, k)=\Theta(1)\left|\frac{[a]_{k-1}[a]_{n-k-1}}{[a]_{n-1}}\right|^{\ell}
$$

where the absolute values have been introduced to allow for $a<0$. A slight adjustment of the argument leading to (8) and (9) leads to

$$
f(n, k)=O\left(n^{-\ell}(3 k / 2 n)^{\ell(k-1)}\right) \quad \text { and } \quad \frac{f(n, k)}{f(n, 1)}=O\left(n^{-\ell}(3 k / 2 n)^{\ell(k-d-1)}\right)
$$

for $1 \leqslant k \leqslant n / 2$. Hence Theorem 2 applies with $\alpha=\beta=\ell$, and a_{n} converges to a constant when $\ell>1$ by Corollary 1.

It is interesting to note that there is a simple relation between the sequence u_{n} in Example 1 and the sequence a_{n} in Example 3 with $\ell=2$. It is not difficult to check that the $f(n, k)$ defined in Example 3 is exactly five times the $f(n, k)$ in Example 1: since $a_{1}=5 u_{1}$, we have $a_{n}=5 u_{n}$ for all $n \geqslant 1$. This simple relation suggests a relationship between the number of maps on an orientable surface of genus g and the g th moment of a particular toll function on a certain type of trees. Using a bijective approach, Chapuy [4] recently found an expression for t_{g} as the g th moment of the labels in a random well-labelled tree.

3 A convolutional recursion arising from Painlevé I

The following is recursion (44) in [11].

$$
\begin{equation*}
\alpha_{n}=(n-1)^{2} \alpha_{n-1}+\sum_{k=2}^{n-2} \alpha_{k} \alpha_{n-k}, n \geqslant 1, n \geqslant 3 \tag{14}
\end{equation*}
$$

It follows from Proposition 14 of [11] that, for $0<\alpha_{1}<1$ and $\alpha_{2}=\alpha_{1}-\alpha_{1}^{2}$,

$$
\begin{equation*}
\alpha_{n}=c\left(\alpha_{1}\right)((n-1)!)^{2}\left(1-\frac{2 \alpha_{2}(n-3)}{3(n-1)^{2}(n-2)^{2}}+\delta_{n}\right) \tag{15}
\end{equation*}
$$

where $c\left(\alpha_{1}\right)$ depends only on α_{1}, and

$$
\delta_{n}=O\left(1 / n^{4}\right)
$$

We note that α_{n} for $n \geqslant 3$ depends only on α_{2}. The proof of (15) relies on the fact that $0<\alpha_{2}<1 / 4$ for $0<\alpha_{1}<1$. It is conjectured in [11] that the asymptotic expression (15) actually holds for a wider range of values of α_{1}.

For $n \geqslant 1$, let

$$
p_{n}=\frac{\alpha_{n}}{((n-1)!)^{2}} .
$$

Then, as shown in [11], p_{n} satisfies recursion (1) with $d=2$ and

$$
f(n, k)=\left(\frac{(n-k-1)!(k-1)!}{(n-1)!}\right)^{2}
$$

We note here $f(n, 2)=O\left(n^{-4}\right)$. It follows from Theorem 2 that

$$
p_{n}=p\left(1+\epsilon_{n}\right) \text { for any } \alpha_{2}>0
$$

where $p=p\left(\alpha_{2}\right)$ is a positive constant and $\epsilon_{n}=O\left(1 / n^{3}\right)$.

It is also interesting to note that, with $\alpha_{1}=1 / 50, \alpha_{2}=49 / 2500$, the sequence α_{n} is related to the sequence u_{n} in Example 1 by

$$
\alpha_{n}=[1 / 5]_{n}[4 / 5]_{n-1} u_{n}
$$

As mentioned in [11], the formal series $v(t)=\sum_{n \geqslant 1} \alpha_{n} t^{-n}$ satisfies

$$
\begin{equation*}
t^{2} v^{\prime \prime}+t v^{\prime}-\left(t+2 \alpha_{1}\right) v+t v^{2}+\alpha_{1}=0 \tag{16}
\end{equation*}
$$

and hence, with

$$
t=\frac{8 \sqrt{6}}{25} x^{5 / 2}
$$

$y(x)=(x / 6)^{1 / 2}(1-2 v(t))$ satisfies the following Painlevé I :

$$
y^{\prime \prime}=6 y^{2}-x
$$

This connection with Painlevé I is used in [8] to show that the sequence α_{n} is not holonomic (It follows that u_{n} and t_{n} in Example 1 are also not holonomic). The proof uses the fact that solutions to Painlevé I have infinitely many singularities and hence cannot satisfy a linear ODE with polynomial coefficients.

In the following we apply the techniques of [14] to prove that (15) holds for any complex constant α_{1}. It is convenient to introduce the formal series

$$
u_{0}(z)=v\left(z^{2}\right)=\sum_{n=2}^{\infty} b_{n} z^{-n}=\sum_{n=1}^{\infty} \alpha_{n} z^{-2 n}
$$

It follows from (16) that $u=u_{0}(z)$ is a formal solution to the differential equation

$$
\frac{1}{4} u^{\prime \prime}+\frac{1}{4 z} u^{\prime}-\left(1+\frac{2 \alpha_{1}}{z^{2}}\right) u+u^{2}+\frac{\alpha_{1}}{z^{2}}=0 .
$$

The Stokes lines for this differential equation are the positive and the negative real axes. When the negative real axis is crossed the Stokes phenomenon switches on a divergent series

$$
u_{1}(z)=K e^{2 z} z^{-1 / 2} \sum_{n=0}^{\infty} c_{n} z^{-n}
$$

in which the Stokes multiplier K is a constant (depending on the constant α_{1}). To determine the coefficients c_{n} we observe that u_{1} is a solution of the linear differential equation

$$
\frac{1}{4} u_{1}^{\prime \prime}+\frac{1}{4 z} u_{1}^{\prime}-\left(1+\frac{2 \alpha_{1}}{z^{2}}-2 u_{0}\right) u_{1}=0
$$

Hence, for the coefficients c_{n} we can take $c_{0}=1$ and for the others we have

$$
n c_{n}=\frac{1}{4}\left(n-\frac{1}{2}\right)^{2} c_{n-1}+2 \sum_{k=4}^{n+1} b_{k} c_{n+1-k}, \quad n \geqslant 1
$$

The first five coefficients are

$$
c_{0}=1, \quad c_{1}=\frac{1}{16}, \quad c_{2}=\frac{9}{512}, \quad c_{3}=\frac{75}{8192}+\frac{2}{3} \alpha_{2}, \quad c_{4}=\frac{3675}{524288}+\frac{13}{24} \alpha_{2} .
$$

In a similar manner it can be shown that when the positive real axis is crossed the Stokes phenomenon switches on a divergent series

$$
u_{2}(z)=i K e^{-2 z} z^{-1 / 2} \sum_{n=0}^{\infty}(-1)^{n} c_{n} z^{-n}
$$

This is all the information that is needed to conclude that

$$
\alpha_{n}=b_{2 n} \sim \frac{K}{\pi} \sum_{k=0}^{\infty}(-1)^{k} c_{k} \frac{\Gamma\left(2 n-k-\frac{1}{2}\right)}{2^{2 n-k-(1 / 2)}}, \quad \text { as } n \rightarrow \infty .
$$

By taking the first 4 terms in this expansion we can verify that (15) holds for any complex constant α_{1}.

For more details see [12], [13] and [14]. (It's best to get the version of the first reference on the website http://www.maths.ed.ac.uk/ adri/public.htm.)

Acknowledgement We would like to thank Philippe Flajolet for bringing our attention to references [5] and [7]

References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series - 55 (1964). Available online at http://www.math.sfu.ca/~cbm/aands/ and other sites.
[2] W. Balser, From divergent series to analytic functions, Springer-Verlag Lecture Notes, No 1582 (1994)
[3] E.A. Bender, Z.C. Gao and L.B. Richmond, The map asymptotics constant t_{g}, Electron. J. Combin. 15 (2008), R51.
[4] G. Chapuy, The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees, preprint, 2009.
[5] J. A. Fill, P. Flajolet, and N. Kapur, Singularity analysis, Hadamard products, and tree recurrences, J. Comput. Appl. Math. 174 (2005), 271-313.
[6] J. A. Fill and N. Kapur, Limiting distributions for additive functionals, Theoret. Comput. Sci. 326 (2004), 69-102.
[7] P. Flajolet and G. Louchard, Analytic variations on the Airy distribution, Algorithmica 31 (2001), 361-377.
[8] S. Garoufalidis, T. T. Lê, and Marcos Mariño , Analyicity of the free energy of a closed 3-manifold, preprint, 2008.
[9] S. Janson, The Wiener index of simply generated random trees, Random Struct. Alg. 22 (2003), 337-358.
[10] S. Janson and P. Chassaing, The center of mass of the ISE and the Wiener index of trees, Elect. Comm. in Probab. 9 (2004), 178-187.
[11] N. Joshi and A.V. Kitaev, On Boutroux's Tritronquée Solutions of the First Painleveé Equation, Studies in Applied Math 107 (2001), 253-291.
[12] Olde Daalhuis, A. B., Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. R. Royal Soc. Lond. A 454, 1-29, (1998).
[13] Olde Daalhuis, A. B., Hyperasymptotics for nonlinear ODEs I: A Ricatti equation, Proc. Royal Soc. Lond. A. 461, 2503-2520, (2005).
[14] Olde Daalhuis, A. B., Hyperasymptotics for nonlinear ODEs II: The first Painlevé equation and a second-order Riccati equation, Proc. Royal Soc. Lond. A. 461, 30053021, (2005).

[^0]: *Research supported by NSERC
 ${ }^{\dagger}$ Research supported by NSERC
 ${ }^{\ddagger}$ Research supported by NSERC and Canada Research Chair Program

