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1 Introduction

Propensity score matching estimators are widely used in empirical economics for the evaluation
and estimation of average effects of binary treatments; see, e.g., Rosenbaum and Rubin (1983,
1985), Heckman, Ichimura, and Todd (1998), and Dehejia and Wahba (1999), among others.
By adjusting only for the propensity score (i.e., the conditional probability of assignment to a
treatment given a vector of covariates), propensity score matching estimators have the great
advantage of reducing the dimensionality of matching to a single dimension. Because of this
desirable feature, they may be preferred to direct matching estimators with a matching process
based on the full (large) set of covariates in many settings.

Abadie and Imbens (2016) derived the asymptotic properties of propensity score matching
estimators, in particular root-N consistency and their normal limit distribution with zero asymp-
totic bias. Despite these desirable asymptotic features, Abadie and Imbens (2008) showed that
the conventional iid bootstrap does not consistently estimate the distribution of pair or one-to-
many matching estimators (on the propensity score). The source of this inconsistency is related
to the incapability of the iid bootstrap of correctly reproducing the distribution of the number
of times each unit is used as a match.

To overcome this problem, recently Otsu and Rai (2015) introduced and proved the con-
sistency of a wild bootstrap procedure for matching estimators in the spirit of Wu (1986), Liu
(1988) and Mammen (1993). However, their approach does not apply to matching estimators
with estimated propensity score. The main contribution of this paper is to extend the defini-
tion of the wild bootstrap algorithm also in this latter setting, which is typically the standard
case in applied work. In line with Otsu and Rai (2015), the definition of our wild bootstrap
procedure relies on the martingale representation for matching estimators suggested in Abadie
and Imbens (2012). Unlike the conventional iid bootstrap, the wild bootstrap does not construct
bootstrap samples by randomly resampling from the observations with uniform weights. Instead,
it fixes the covariates and constructs the bootstrap approximation by perturbing the martingale
representation for matching estimators.

We investigate the finite sample behavior of the proposed wild bootstrap algorithm in sim-
ulation settings previously considered in the supplementary materials in Abadie and Imbens
(2016). Inference based on our bootstrap algorithm seems to outperform inference based on the
limit distributions derived in Abadie and Imbens (2016), in particular when the sample size is
relatively small. The empirical coverage implied by the wild bootstrap tends to be closer to
the nominal coverage rate than that based on the asymptotic approximation. Similar empirical
findings are also confirmed in Bodory, Camponovo, Huber and Lechner (2016).
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Finally, we provide an empirical illustration using survey data from rural (FYR) Macedo-
nia that were previously analyzed in Huber, Kotevska, Martinovska-Stojcheska, and Solovyeva
(2016) to evaluate the effects of an information brochure about public rural development pro-
grams. The sample size is N = 256. Even though the p-values implied by the wild bootstrap
and the limit distribution differ somewhat, both approaches suggest that the information inter-
vention reinforced the sentiment that such programs increase the administrative burden of the
targeted households. However, it is interesting to highlight that in line with the Monte Carlo re-
sults, confidence intervals constructed using the limit distribution tend to be shorter than those
constructed using the wild bootstrap approach. This result may indicate an undercoverage of
asymptotic confidence intervals when the sample size is relatively small.

The remainder of the paper is organized as follows. In Section 2, we present the model and
notation. In Section 3, we introduce the wild bootstrap algorithm. In Section 4, we study the
finite sample properties of our approach in Monte Carlo simulations. In Section 5, we present
the real data application. Section 6 concludes.

2 Model and Notation

We consider a similar setting and notation as introduced in Abadie and Imbens (2006, 2016).
For each of units i = 1, . . . , N (with N denoting the sample size), let Yi(1) and Yi(0) denote the
two potential outcomes when receiving a (binary) treatment or not, respectively. The variable
Wi ∈ {0, 1} indicates the treatment status. For each unit i, we observe the outcome Yi under
treatment Wi only,

Yi =

{
Yi(0), if Wi = 0,

Yi(1), if Wi = 1,

and a vector of pretreatment covariates denoted by Xi. The parameters of interest are the
population average treatment effect (ATE), denoted by τ and defined as

τ = E[Yi(1)− Yi(0)],

and the population average treatment effect on the treated (ATET), denoted by τt and defined
as

τt = E[Yi(1)− Yi(0)|Wi = 1].

We consider propensity score matching estimators for τ and τt, where the propensity score is
defined as p(Xi) = P (Wi = 1|Xi). Following Rosenbaum and Rubin (1983), we consider a
generalized linear specification for the propensity score, p(Xi) = F (X ′

iθ), where F is a known
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function (usually specified as Logit or Probit), while θ is an unknown parameter. Let θ̂N be the
maximum likelihood estimator of θ defined as

θ̂N = argmax
θ

N∑
i=1

Wi lnF (X ′
iθ) + (1−Wi) ln(1− F (X ′

iθ)). (1)

Furthermore, let M be the number of matches per unit (e.g. M = 1 for pair matching), and let
JM(i, θ̂N) be the set of matches for unit i, defined as

JM(i, θ̂N) =

{
j = 1, . . . , N : Wj = 1−Wi,

( ∑
k:Wk=1−Wi

I{|F (X′
i θ̂N )−F (X′

k θ̂N )|≤|F (X′
i θ̂N )−F (X′

j θ̂N )|}

)
≤ M

}
,

where I{·} denotes the indicator function. Then, the propensity score matching estimators for τ
and τt are defined as

τ̂N =
1

N

N∑
i=1

(2Wi − 1)

⎛
⎝Yi − 1

M

∑
j∈JM (i,θ̂N )

Yj

⎞
⎠ , (2)

τ̂t,N =
1

N1

N∑
i=1

Wi

⎛
⎝Yi − 1

M

∑
j∈JM (i,θ̂N )

Yj

⎞
⎠ , (3)

respectively, where N1 =
∑N

i=1 Wi is the number of treated units in the sample.
Under some regularity conditions, Abadie and Imbens (2016) showed root-N consistency and

asymptotic normality of the proposed matching estimators. Furthermore, they also proposed
estimators of the asymptotic variances. Therefore, these results allow constructing confidence
intervals or testing hypotheses on the parameters of interest based on asymptotic approxima-
tions. As an alternative for conducting inference, the next section introduces a wild bootstrap
algorithm. As highlighted in the Monte Carlo analysis, the wild bootstrap approach seems to
outperform approximations based on the limit distribution, in particular when the sample size
is relatively small.

3 Wild Bootstrap Algorithm

For the setting introduced in Section 2, the conventional iid bootstrap constructs random sam-
ples (Z∗

1 , . . . , Z
∗
N) by resampling from the observations (Z1, . . . , ZN) with uniform weights 1/N ,

where Zi = (Yi,Wi, X
′
i). Unfortunately and as demonstrated in Abadie and Imbens (2008), this

approach does not provide a valid method for approximating the distribution of (propensity
score) matching estimators. In particular, the source of this inconsistency is related to the in-
capability of the iid bootstrap of correctly reproducing the distribution of the number of times
each unit is used as a match.
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To overcome this problem, recently Otsu and Rai (2015) introduced and proved the consis-
tency of a wild bootstrap procedure for matching estimators. However, their approach does not
apply to matching estimators with estimated propensity score. In this section, we fill this gap by
extending the definition of the wild bootstrap algorithm for the settings presented in Section 2.
More precisely, in Sections 3.1 and 3.2 we present wild bootstrap methods for ATE and ATET,
respectively. Finally, in Section 3.3 we discuss some theoretical and computational aspects of
our procedures.

3.1 Wild Bootstrap for ATE

The definition of the wild bootstrap approach relies on the martingale representation for match-
ing estimators suggested in Abadie and Imbens (2012, 2016). In particular, note that as shown
in Abadie and Imbens (2016), we can decompose the matching estimator as

√
N(τ̂N − τ) =

R1N +R2N + op(1), where

R1N =
1√
N

N∑
i=1

(μ(1, F (X ′
i θ̂N))− μ(0, F (X ′

i θ̂N))− τ),

R2N =
1√
N

N∑
i=1

(2Wi − 1)

(
1 +

KM(i)

M

)(
Yi − μ(Wi, F (X ′

i θ̂N))
)
,

μ(w, p) = E[Y |W = w, p(X) = p], and KM(i) is the number of times that observations i is used
as a match

KM(i) =
N∑
j=1

I{i∈JM (j,θ̂N )}.

In line with the wild bootstrap procedure proposed in Otsu and Rai (2015), we can use this
representation to reproduce the sampling distribution of

√
N(τ̂N −τ). However, the definition of

wild bootstrap procedures for matching estimators in the setting presented in Section 2 requires
some care. Indeed, in this case the wild bootstrap algorithm needs also to capture the variability
implied by the estimation of the propensity score.

To overcome this problem, we propose following approach. We generate random bootstrap
treatments (W ∗

1 , . . . ,W
∗
N) according to

W ∗
i =

{
0, with prob. 1− F (X ′

i θ̂N),

1, with prob. F (X ′
i θ̂N).

(4)

Let θ̂∗N be the bootstrap maximum likelihood estimator of θ defined as the solution of (1) by
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replacing (W1, . . . ,WN) with the bootstrap treatments (W ∗
1 , . . . ,W

∗
N). Then, we compute

J ∗
M(i, θ̂∗N) =

⎧⎨
⎩j = 1, . . . , n : W ∗

j = 1−W ∗
i ,

⎛
⎝ ∑

k:W ∗
k=1−W ∗

i

I{|F (X′
i θ̂

∗
N )−F (X′

k θ̂
∗
N )|≤|F (X′

i θ̂
∗
N )−F (X′

j θ̂
∗
N )|}

⎞
⎠ ≤ M

⎫⎬
⎭ ,

K∗
M(i) =

N∑
j=1

I{i∈J ∗
M (j,θ̂∗N )}.

J ∗
M(i, θ̂∗N) is the set of matches for unit i among the units with a different value of treatment,

while K∗
M(i) denotes the number of times unit i is used as a match given that M matches per

unit are used, based on the bootstrap treatments. By adopting this approach we are able to
reproduce the variability implied in the estimation of the parameter θ for the computation of
the estimated propensity score. Furthermore, let μ̂(0, p) and μ̂(1, p) be some kernel estimators
of μ(0, p) and μ(1, p), respectively, and let ε̂∗i = Yi − μ̂(Wi, F (X ′

i θ̂
∗
N)). We introduce the error

terms ε̂∗i,0 and ε̂∗i,1 defined as

ε̂∗i,0 =

{
ε̂∗i , if Wi = 0,

ε̂∗J1(i,θ̂N )
, if Wi = 1,

(5)

and

ε̂∗i,1 =

{
ε̂∗J1(i,θ̂N )

, if Wi = 0,

ε̂∗i , if Wi = 1.
(6)

In Equations (5) and (6), we construct bootstrap error terms for different treatments by matching
on the fitted residuals (ε̂∗1, . . . , ε̂

∗
N). Finally, we approximate the term R1N + R2N with the

bootstrap decomposition R∗
1N +R∗

2N , where

R∗
1N =

1√
N

N∑
i=1

(μ̂(1, F (X ′
i θ̂

∗
N))− μ̂(0, F (X ′

i θ̂
∗
N))− τ̂N)ui, (7)

R∗
2N =

1√
N

N∑
i=1

(2W ∗
i − 1)

(
1 +

K∗
M(i)

M

)
ε̂∗i,W ∗

i
ui, (8)

(u1, . . . , un) are iid random variables with

E[ui|Z] = 0, E[u2
i |Z] = 1, E[u4

i |Z] < ∞, (9)

and Z = (Z1, . . . , Zn). Next, we formally introduce the wild bootstrap algorithm.

Algorithm 1. Wild Bootstrap Algorithm for ATE.

(ATE-1) Generate the bootstrap treatments (W ∗
1 , . . . ,W

∗
N) according to (4).
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(ATE-2) Let θ̂∗N be the bootstrap maximum likelihood estimator of θ defined as the solution of (1)
by replacing (W1, . . . ,WN) with the bootstrap treatments (W ∗

1 , . . . ,W
∗
N). Then, compute

J ∗
M(i, θ̂∗N) and K∗

M(i) =
∑N

j=1 I{i∈J ∗
M (j,θ̂∗N )}.

(ATE-3) Let μ̂(0, p) and μ̂(1, p) be some kernel estimators of μ(0, p) and μ(1, p), respectively, and let
ε̂∗i = Yi − μ̂(Wi, F (X ′

i θ̂
∗
N)). For i = 1, . . . , N , compute the error terms ε̂∗i,0 and ε̂∗i,1 defined

in (5) and (6), respectively.

(ATE-4) Generate a sequence of iid random variables (u1, . . . , un) satisfying (9). Furthermore,
compute R∗

1N +R∗
2N defined in (7) and (8).

(ATE-5) Repeat steps (ATE-1)-(ATE-4) many times. The empirical distribution of R∗
1N + R∗

2N

approximates the sampling distribution of
√
N(τ̂N − τ).

In Step (ATE-1), we generate a sequence of random bootstrap treatments (W ∗
1 , . . . ,W

∗
N)

based on the estimated propensity score. Using this sequence, in Step (ATE-2) we compute θ̂∗N ,
J ∗

M(i, θ̂∗N), and K∗
M(i). In Step (ATE-3) we introduce the error terms ε̂∗i,0 and ε̂∗i,1 for the different

treatment states. Finally, in Step (ATE-4) we compute the wild bootstrap statistics R∗
1N +R∗

2N .
The empirical distribution of R∗

1N + R∗
2N obtained by repeating Steps (ATE-1)-(ATE-4) many

times approximates the sampling distribution of
√
N(τ̂N − τ).

3.2 Wild Bootstrap for ATET

In this section, we extend the definition of the wild bootstrap for the ATET. To this end,
note that as shown in Abadie and Imbens (2016), we can write the matching estimator as√
N(τ̂t,N − τt) = S1N + S2N + op(1), where

S1N =

√
N

N1

N∑
i=1

Wi(μ(1, F (X ′
i θ̂N))− μ(0, F (X ′

i θ̂N))− τt),

S2N =

√
N

N1

N∑
i=1

(
Wi − (1−Wi)

KM(i)

M

)(
Yi − μ(Wi, F (X ′

i θ̂N))
)
.

In line with the wild bootstrap procedure proposed in Otsu and Rai (2015), we can use
this representation to reproduce the sampling distribution of

√
N(τ̂t,N − τt). However, also in

this case the definition of the wild bootstrap algorithm has to capture the variability implied
by the estimation of the propensity score. To this end, consider the bootstrap treatments
(W ∗

1 , . . . ,W
∗
N) generated according to (4), and let θ̂∗N be the bootstrap maximum likelihood

estimator of θ defined as the solution of (1) by replacing (W1, . . . ,WN) with the bootstrap
treatments (W ∗

1 , . . . ,W
∗
N). Furthermore, let K∗

M(i) =
∑N

j=1 I{i∈J ∗
M (j,θ̂∗N )}, and compute the error
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terms ε̂∗i,0 and ε̂∗i,1 defined in (5) and (6), respectively. Then, we approximate the term S1N +S2N

with the bootstrap decomposition S∗
1N + S∗

2N , where

S∗
1N =

√
N

N∗
1

N∑
i=1

W ∗
i (μ(1, F (X ′

i θ̂
∗
N))− μ(0, F (X ′

i θ̂
∗
N))− τt)ui, (10)

S∗
2N =

√
N

N∗
1

N∑
i=1

(
W ∗

i − (1−W ∗
i )

K∗
M(i)

M

)
ε̂∗i,W ∗

i
ui. (11)

N∗
1 =

∑N
i=1 W

∗
i , and (u1, . . . , un) are iid random variables satisfying (9). Next, we formally

introduce the wild bootstrap algorithm.

Algorithm 2. Wild Bootstrap Algorithm for ATET.

(ATET-1) Generate the bootstrap treatments (W ∗
1 , . . . ,W

∗
N) according to (4).

(ATET-2) Let θ̂∗N be the bootstrap maximum likelihood estimator of θ defined as the solution of (1)
by replacing (W1, . . . ,WN) with the bootstrap treatments (W ∗

1 , . . . ,W
∗
N). Then, compute

J ∗
M(i, θ̂∗N) and K∗

M(i) =
∑N

j=1 I{i∈J ∗
M (j,θ̂∗N )}.

(ATET-3) Let μ̂(0, p) and μ̂(1, p) be some kernel estimators of μ(0, p) and μ(1, p), respectively, and let
ε̂∗i = Yi − μ̂(Wi, F (X ′

i θ̂
∗
N)). For i = 1, . . . , N , compute the error terms ε̂∗i,0 and ε̂∗i,1 defined

in (5) and (6), respectively.

(ATET-4) Generate a sequence of iid random variables (u1, . . . , un) satisfying (9). Furthermore,
compute S∗

1N + S∗
2N defined in (10) and (11).

(ATET-5) Repeat steps (ATET-1)-(ATET-4) many times. The empirical distribution of S∗
1N + S∗

2N

approximates the sampling distribution of
√
N(τ̂t,N − τt).

In Step (ATET-1), we generate a sequence of random bootstrap treatments (W ∗
1 , . . . ,W

∗
N)

based on the estimated propensity score. Using this sequence, in Step (ATET-2) we compute
θ̂∗N , J ∗

M(i, θ̂∗N), and K∗
M(i). In Step (ATET-3) we introduce the error terms ε̂∗i,0 and ε̂∗i,1 for the

different treatment states. Finally, in Step (ATET-4) we compute the wild bootstrap statistics
S∗
1N + S∗

2N . The empirical distribution of S∗
1N + S∗

2N obtained by repeating Steps (ATET-1)-
(ATET-4) many times approximates the sampling distribution of

√
N(τ̂t,N − τt).

3.3 Theoretical and Computational Aspects

We conclude this section by discussing some theoretical and computational aspects of our pro-
cedures. First, suppose that the true propensity score p(Xi) = P (Wi = 1|Xi) is known and
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does not depend on some unknown parameters. Then, in the definition of our wild bootstrap
approach it is not necessary to generate bootstrap treatments (W ∗

1 , . . . ,W
∗
N) and re-estimate the

parameter θ. More precisely, in Algorithms 1 and 2, for i = 1, . . . , N we can simply replace W ∗
i

and F (X ′
i θ̂

∗
N) with Wi and p(Xi), respectively. Note that in this case our approach is asymp-

totically equivalent to the wild bootstrap procedure proposed in Otsu and Rai (2015). On the
other hand, when the propensity score is unknown and has to be estimated, the wild bootstrap
algorithm has to be properly modify. Indeed, as shown in Abadie and Imbens (2016), match-
ing estimators based on known or estimated propensity score have different limit distributions.
Therefore, the wild bootstrap algorithm has to be adapted in order to capture the variability
implied by the estimation of the propensity score.

The implementation of our wild bootstrap approach requires the computation of the max-
imum likelihood estimator θ̂∗N in each bootstrap sample. The computational costs of our pro-
cedures can be substantially reduced by adopting the fast resampling approach introduced in
Davidson and MacKinnon (1999) and Andrews (2002). More precisely, instead of solving equa-
tion (1) for each bootstrap sample, we can replace θ̂∗N with the first-step Newton-Raphson
estimator θ̂∗N,1 defined as

θ̂∗N,1 = θ̂N −
(

1

N

N∑
i=1

∂2

∂θ∂θ′
ρ(W ∗

i , Xi, θ̂N)

)−1 (
1

N

N∑
i=1

∂

∂θ
ρ(W ∗

i , Xi, θ̂N)

)
,

where ρ(W ∗
i , Xi, θ) = W ∗

i lnF (X ′
iθ) + (1−W ∗

i ) ln(1− F (X ′
iθ)).

Finally, the implementation of the wild bootstrap algorithms also requires the selection of
kernel estimators μ̂(0, p) and μ̂(1, p) for μ(0, p) and μ(1, p), respectively, with appropriate con-
vergence rates; see, e.g., Abadie and Imbens (2011) and Otsu and Rai (2015). In the Monte
Carlo analysis presented in the next section, we consider the nonparametric estimators suggested
in Adadie and Imbens (2011).

4 Monte Carlo Simulations

In this section, we investigate the finite sample properties of the wild bootstrap procedures by
Monte Carlo simulations. We consider a setting also analyzed in the supplementary material in
Abadie and Imbens (2016). For i = 1, . . . , N , let Xi = (Xi1, Xi2)

′ be a vector of covariates, where
Xi1 and Xi2 are uniformly distributed random variables with support [−0.5, 0.5], and independent
of each other. The two potential outcomes are generated by Yi(0) = 3Xi1 − 3Xi2 + Ui0, and
Yi(1) = 5 + 5Xi1 + Xi2 + Ui1, where Ui0 and Ui1 are independent standard normal random

9



Table 1: Empirical Coverage and Length of Confidence Intervals for the ATE

N = 100 asymptotic theory wild bootstrap

0.929 (1.199) 0.941 (1.254)

N = 200 asymptotic theory wild bootstrap

0.936 (0.867) 0.943 (0.932)

N = 400 asymptotic theory wild bootstrap

0.941 (0.619) 0.944 (0.650)

Note: We report the empirical coverage and the length of confidence intervals (in brackets) based on asymptotic theory (second

column), and the wild bootstrap algorithm (third column). Pair matching is on the estimated propensity score. The sample sizes

are N = 100, 200, 400, and the nominal coverage probability is 0.95.

variables. Moreover, we assume a logistic propensity score

P (Wi = 1|Xi) = F (X ′
iθ) =

exp(θ1Xi1 + θ2Xi2)

1 + exp(θ1Xi1 + θ2Xi2)
,

where θ = (θ1, θ2)
′, with θ1 = 1 and θ2 = 2. We generate 5000 Monte Carlo samples of sizes N =

100, 200, and 400 according to these parameter selections. Using the wild bootstrap approach
defined in Algorithms 1 and 2, we construct 0.95-confidence intervals for ATE and ATET. For
simplicity we use M = 1 matches, and B = 299 bootstrap replications. For comparison, we
also construct confidence intervals based on the limit distributions derived in Theorems 1 and 2
in Abadie and Imbens (2016), with asymptotic variances estimated as outlined in Section 4 in
Abadie and Imbens (2016). Tables 1 and 2 report the empirical findings for ATE and ATET,
respectively.

The results in Tables 1 and 2 are qualitatively very similar and highlight the accuracy of the
wild bootstrap approximation, whose empirical coverage is always closer to the nominal coverage
rate than that based on the asymptotic approximation. For instance, in Table 2 for N = 100,
the empirical coverage rate using the wild bootstrap is 0.94. In the same setting, the rate of the
asymptotic approximation is instead 0.921. Even though the accuracy of the approximations
based on the limit distribution increases in the sample size N (as expected), it is in all scenarios
dominated by the wild bootstrap.
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Table 2: Empirical Coverage and Length of Confidence Intervals for the ATET

N = 100 asymptotic theory wild bootstrap

0.921 (1.469) 0.940 (1.513)

N = 200 asymptotic theory wild bootstrap

0.935 (1.081) 0.944 (1.114)

N = 400 asymptotic theory wild bootstrap

0.938 (0.774) 0.946 (0.782)

Note: We report the empirical coverage and the length of confidence intervals (in brackets) based on asymptotic theory (second

column), and the wild bootstrap algorithm (third column). Pair matching is on the estimated propensity score. The sample sizes

are N = 100, 200, 400, and the nominal coverage probability is 0.95.

5 Empirical Application

We apply our method to survey data from rural (FYR) Macedonia (spring 2015) that were
considered by Huber, Kotevska, Martinovska-Stojcheska, and Solovyeva (2016) to investigate
the impact of an information brochure about public rural development programs on the farmers’
opinion on/intention to make use of the programs. The information intervention had initially
been planned as experiment, however, randomization was not properly conducted. Therefore,
Huber, Kotevska, Martinovska-Stojcheska, and Solovyeva (2016) analyze the effectiveness of
the brochure based on OLS and reweighting and control for a range of observed covariates, for
instance farmer’s age, gender, education, household size, farm size, share of income from farming,
farm profitability, and others.

We reconsider their main evaluation sample for propensity score matching and our wild
bootstrap procedure, with the exception that we drop one observation with missing values in the
outcomes, which ultimately entails 256 observations. Table 3 provides the means and standard
deviations by treatment states of the control variables (among them several dummies for missing
covariates) and two outcome variables. The latter consist of the (self-assessed) intention of the
interviewee to make use of public rural development programs in the next 3-5 years and a
judgement on whether such programs increase the administrative burden for households (which
might be a reason for non-application).
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Table 3: Descriptive Statistics Across Treatment States

Variables Treated Non-treated St.diff. Probit (%)
mean std. mean std. (%) m.eff. s.e.

Outcomes
Intention to use programs in next 3-5 years+ 2.49 0.78 2.57 0.76 -7
Programs increase administrative burden for households++ 3.29 0.48 3.10 0.52 27

Covariates
Age 43.90 7.32 45.76 7.48 -18 -0.74 0.55
Male (binary) 0.78 - 0.72 - 9 4.68 6.74
Education: primary (binary) 0.04 - 0.14 - -25 -10.37 28.15
Education: high school (binary) 0.73 - 0.68 - 8 14.76 26.97
Education: college/university (binary) 0.13 - 0.13 - 0 9.35 25.24
Frequency of cooperation* 3.77 1.52 3.58 1.53 9 -2.02 2.30
Household size 4.17 1.00 4.04 1.37 8 1.86 2.69
Household head’s occupation: agriculture (binary) 0.50 - 0.54 - -6 -0.05 7.08
Years in farming 21.78 7.85 22.48 9.45 -6 0.19 0.53
Share of agricultural production sold on a market 86.44 17.68 87.87 15.61 -6 -0.09 0.29
Share of income from farming 50.32 23.44 53.63 22.59 -10 -0.03 0.15
Profitable farm** 3.63 0.51 3.42 0.64 25 14.34 5.26
Subsidy dependence*** 2.02 0.78 2.17 0.84 -13 -2.22 3.96
Capacity: Farmed area (ha) 1.60 1.08 1.71 1.13 -7 -3.33 3.11
Capacity: total livestock (number of heads) 1.07 2.75 1.20 2.80 -3 -0.90 1.10
Education missing (binary) 0.10 - 0.05 - 14 19.14 23.41
Frequency of cooperation missing (binary) 0 - 0.01 - -10 -60.31 4.89
Household head’s occupation missing (binary) 0.01 - 0.02 - -4 -10.53 23.75
Share of agricultural production sold missing (binary) 0.03 - 0 - 16 17.30 17.23
Share of income from farming missing (binary) 0.01 - 0 - 11 28.00 9.95
Subsidy dependence missing (binary) 0.01 - 0 - 8 22.24 8.94

Linear index of propensity score model: Xθ̂ 0.39 0.35 0.10 0.45 51
Propensity score: Φ(Xθ̂) 0.64 0.12 0.54 0.16 51

Number of observations, Pseudo-R2 (%) 156 100 11.49

Note: +scale: 1=very low,..., 5= very strong. ++scale: 1=strongly disagree,..., 5=strongly agree. *scale: 1=never, ..., 5=always.

**scale: 1=very unprofitable,..., 5=very profitable. ***scale: 1=not dependent, 2=slightly dependent, 3=very dependent.

St.diff. (standardized difference) is defined as the difference of means normalized by the square root of the sum of estimated variances

of the particular variables in both subsamples. Mean, std., s.e. stand for mean, standard deviation, and standard error, respectively.

Standard deviations for binary variables (not informative) are not reported. M.eff.: Marginal effects evaluated at the mean in the

probit model for treatment selection based on discrete changes for binary variables and derivatives otherwise. θ̂ denotes the estimated

probit coefficients and Φ(Xθ̂) is the c.d.f. of the standard normal distribution evaluated at Xθ̂. Pseudo-R2 is the so-called Efron’s

R2

{
1−

∑n
i=1[Di−Φ(Xiθ̃)]

2

∑n
i=1[Di−n−1

∑n
i=1 Di]

2

}
.
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Table 4 reports the ATET estimates on the outcomes using pair matching on the propensity
score, which is estimated by a probit model. It further displays standard errors based on the
asymptotic variance estimator of Abadie and Imbens (2016), and the wild bootstrap presented in
Algorithm 2 with B = 4999 bootstrap replications. For simplicity, we report bootstrap standard
errors instead of constructing confidence intervals using the bootstrap empirical distribution.
However, in both cases the empirical findings are qualitatively very similar.

We find no statistically significant effect at the 10% level on the intention to make use of
the programs, but a positive impact on the view that such programs increase the administrative
burden of the targeted households. The latter effect is statistically significant at the 10% level
when using the wild bootstrap-based standard errors, and at the 5% when using the analytical
standard errors based on the limit distribution. It is interesting to highlight that in line with
the Monte Carlo results, confidence intervals constructed using the limit distribution tend to be
shorter that those constructed using the wild bootstrap approach. This result may indicate an
undercoverage of asymptotic confidence intervals when the sample size is relatively small.

Table 4: ATET Estimates and Standard Errors

Outcomes ATET Standard errors
asymptotic wild boot

Intention to use programs in next 3-5 years -0.18 0.12 0.17
Programs increase administrative burden for households 0.14 0.05 0.08

Note: ‘asymptotic’ denotes the asymptotic standard errors based on Theorem 2 of Abadie and Imbens (2016). ‘wild boot’ refers to

the standard errors computed using the wild bootstrap approach presented in Algorithm 2.

6 Conclusion

In this paper, we propose a novel wild bootstrap algorithm for approximating the sampling
distribution of propensity score matching estimators. Unlike the conventional iid bootstrap, our
approach does not resample from observations with uniform weights, but fixes the covariates
and constructs the bootstrap approximation by perturbing the martingale representation for
matching estimators. We investigate the finite sample performance of our method in a simulation
study. Inference based on the wild bootstrap seems to outperform inference based on the limit
distribution in particular when the sample size is relatively small. As an empirical illustration,
we provide an application to an information campaign on public rural development policies.
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