Repression of *flhDC* transcription by a RcsB-RflM complex

Supplementary Information

RfIM mediates target specificity of the RcsCDB phosphorelay system for transcriptional repression of flagellar synthesis in *Salmonella enterica*

Caroline Kühne¹, Hanna M. Singer^{3,4}, Eva Grabisch¹, Luca Codutti⁵, Teresa Carlomagno⁵, Andrea Scrima² and Marc Erhardt^{1,*}

¹Junior Research Group Infection Biology of *Salmonella*, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany

²Junior Research Group Structural Biology of Autophagy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany

³Microbiologie, Département de Médecine, Université de Fribourg, 1700 Fribourg, Switzerland
⁴Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany

⁵Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167 Hannover, Germany

*Correspondence to:

Marc Erhardt; Mailing address: Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; Tel: +49-531-6181-4801; E-mail: marc.erhardt@helmholtz-hzi.de

	Genotype	Source or			
Strain		Reference			
Salmonella enterica serovar Typhimurium LT2 strains					
TH437	WT	J. Roth			
TH3466	F'128 (pro-lac) zzf382::Tn10dTc[del-20] proAB47	Lab collection			
TH9386	$\Delta araBAD921::rflM^+$	J. Karlinsey			
TH12883	$\Delta araBAD996::rcsB^+$	Lab collection			
TH12949	$\Delta araBAD921::rflM^+$ rcsB::MudJ	Lab collection			
TH13069	$\Delta araBAD921::rflM^+ flhC5213::MudJ$	Lab collection			
TH13654	∆araBAD1005::FRT rcsB::MudJ	Lab collection			
EM162	$\Delta araBAD996::rcsB^+$ rflM::MudJ	This study			
EM163	ΔaraBAD1005::FRT rflM::MudJ	This study			
EM169	ΔaraBAD1005::FRT rflM::MudJ ΔrcsDBC::FCF	This study			
EM221	ΔaraBAD1005::FCF flhC5213::MudJ rcsB::T-POP	This study			
EM222	∆araBAD996::rcsB ⁺ flhC5213::MudJ rflM2::T-POP	This study			
EM229	∆araBAD921::rflM ⁺ flhC5213::MudJ rcsB::T-POP	This study			
EM423	pNK2880 ΔaraBAD921::rflM ⁺ flhC5213::MudJ	This study			
EM477	ΔaraBAD1170::rflM(rcsB-HTH) flhC5213::MudJ	This study			
EM490	ΔaraBAD1170::rflM(rcsB-HTH) flhC5213::MudJ rcsB::T-POP	This study			
EM504	ΔaraBAD1005::FRT flhC5213::MudJ rflM2::T-POP	This study			
EM506	ΔaraBAD1171::rcsB(rflM-HTH) flhC5213::MudJ rflM2::T-POP	This study			
EM515	ΔaraBAD1005::FRT flhC5213::MudJ rflM2::T-POP	This study			
	$\Delta rcsDBC$::FCF				
EM517	ΔaraBAD1005::FRT flhC5213::MudJ	Singer et al.			
		2014			
EM521	∆araBAD996::rcsB ⁺ flhC5213::MudJ rflM2::T-POP	This study			
	$\Delta rcsDBC$::FCF				
EM541	∆araBAD1171::rcsB(rflM-HTH) flhC5213::MudJ rflM2::T-POP	This study			
	$\Delta rcsDBC$::FCF				

Tab. S1. List of bacterial strains used in this study.

EM656	ΔaraBAD1165::rflM(sdiA-HTH) flhC5213::MudJ	This study
EM677	∆araBAD1180::rcsB(sdiA-HTH) flhC5213::MudJ rflM2::T-POP	This study
EM676	ΔaraBAD1181::rflM(sdiA-HTH) flhC5213::MudJ rcsB::T-POP	This study
EM704	ΔaraBAD1005::FRT flhC5213::MudJ rcsB::T-POP	This study
EM705	ΔaraBAD1180::rcsB(sdiA-HTH) flhC5213::MudJ rflM2::T-POP	This study
	$\Delta rcsDBC$::FCF	
EM706	P_{flhDC} 8093 (P_{flhDC} -luxCDBAE-Km-PflhDC ⁺) $\Delta araBAD1005$::FRT	Singer et al.
		2014
EM707	P_{flhDC} 8124 (P_{flhDC} P1+ (-10 of P2,P3,P4,P5,P6 changed to	Singer et al.
	$GTTGGT$)- $luxCDBAE$ -Km- P_{flhDC}^+) $\Delta araBAD1005$::FRT	2014
EM711	P_{flhDC} 8128 (P_{flhDC} P5+ (-10 of P1,P2,P3,P4,P6 changed to	Singer et al.
	$GTTGGT$)- $luxCDBAE$ -Km- P_{flhDC}^+) $\Delta araBAD1005$::FRT	2014
EM808	$\Delta araBAD1005::FRT$	Lab collection
EM1055	P_{flhDC} 8093 (P_{flhDC} -luxCDBAE-Km- P_{flhDC}^+) $\Delta araBAD921$::rfl M^+	This study
EM1056	P_{flhDC} 8124 (P_{flhDC} P1+ (-10 of P2,P3,P4,P5,P6 changed to	This study
	$GTTGGT$)- $luxCDBAE$ -Km- P_{flhDC}^+) $\Delta araBAD921$:: $rflM^+$	
EM1060	P_{flhDC} 8128 (P_{flhDC} P5+ (-10 of P1,P2,P3,P4,P6 changed to	This study
	$GTTGGT$)- $luxCDBAE$ -Km- P_{flhDC}^+) $\Delta araBAD921$:: $rflM^+$	
EM1062	P_{flhDC} 8093 (P_{flhDC} -luxCDBAE-Km- P_{flhDC}^+) $\Delta araBAD996$::rcsB ⁺	This study
EM1063	P_{flhDC} 8124 (P_{flhDC} P1+ (-10 of P2,P3,P4,P5,P6 changed to	This study
	GTTGGT)- $luxCDBAE$ -Km- P_{flhDC}^+) $\Delta araBAD996$:: $rcsB^+$	
EM1067	P_{flhDC} 8128 (P_{flhDC} P5+ (-10 of P1,P2,P3,P4,P6 changed to	This study
	$GTTGGT$)- $luxCDBAE$ -Km- P_{flhDC}^+) $\Delta araBAD996$:: $rcsB^+$	
EM1325	$\Delta rcsB$	This study
EM1432	$\Delta araBAD1005::FRT flhC5213::MudJ \Delta rcsB$	This study
EM1434	$\Delta araBAD1005::FRT flhC5213::MudJ rflM2::T-POP \Delta rcsB$	This study
EM1435	$\Delta araBAD996::rcsB^+ flhC5213::MudJ rflM2::T-POP \Delta rcsB$	This study
EM1740	rflM33::HA-FRT	This study
EM1766	$\Delta araBAD1201::rflM^+$ -HA-FRT	This study
EM2004	RcsB _{D56E}	This study
EM2005	RcsB _{D56N}	This study

EM2423	$\Delta araBAD1005$::FRT flhC5213::MudJ $\Delta rflM \operatorname{RcsB}_{D56E}$	This study
EM2424	ΔaraBAD1005::FRT flhC5213::MudJ ΔrflM RcsB _{D56N}	This study
EM2426	$\Delta araBAD921$:: $rflM^+$ $flhC5213$::MudJ $\Delta rflM$ RcsB _{D56E}	This study
EM2427	$\Delta araBAD921$:: $rflM^+$ $flhC5213$::MudJ $\Delta rflM$ RcsB _{D56N}	This study
EM2486	$\Delta araBAD921$::rfl M^+ flhC5213::MudJ $\Delta rcsB$	This study
EM2504	$\Delta araBAD1201$::rflM ⁺ -HA-FRT $\Delta rcsB$	This study
EM4358	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA	This study
EM4365	$\Delta araBAD921::rflM^+\Delta rcsB$	This study
EM4366	$\Delta araBAD996::rcsB^+\Delta rflM33$	This study
EM4369	$\Delta araBAD921::rflM^+\Delta lrhA$	This study
EM4370	$\Delta araBAD921::rflM^+\Delta slyA$	This study
EM4372	$\Delta araBAD921::rflM^+\Delta rtsB$	This study
EM4373	$\Delta araBAD921::rflM^+ \Delta fliZ$	This study
EM4420	$rflM33$::HA-FRT $\Delta clpXP$::FRT	This study
EM4421	$rflM33$::HA-FRT $\Delta clpX$	This study
EM4422	$rflM33$::HA-FRT $\Delta clpA$	This study
EM4451	$rflM33$::HA-FRT $\Delta clpXP$ -lon::FRT	This study
EM4454	$\Delta araBAD1211::rcsB_{D56N}$ flhC5213::MudJ rflM2::T-POP $\Delta rcsB$	This study
EM4470	$\Delta ara BAD921$::rfl $M^+ \Delta prgH$ -hilD-hilA7791	This study
EM4528	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA pSUMO-	This study
	His ₆ -RflM	
EM4529	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA pSUMO-	This study
	His ₆ -RcsB	
EM4530	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA pSUMO-	This study
	His ₆ -RflM-RBS-RcsB	
EM4570	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA	This study
	pSUMO(-)	
EM4586	ΔaraBAD1201::rflM ⁺ -HA-FRT rcsB::T-POP	This study
EM4598	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA	This study
	$\Delta rcsB::tetRA$ pSUMO-His ₆ -RflM	

EM4599	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA	This study
	$\Delta rcsB::tetRA$ pSUMO-His ₆ -RcsB	
EM4600	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA	This study
	∆ <i>rcsB</i> :: <i>tetRA</i> pSUMO-His ₆ -RflM-RBS-RcsB	
EM4601	trp::(SpcR T7-RNAP lacO lacP lacI) flhC5213::MudA	This study
	$\Delta rcsB::tetRA$ pSUMO(-)	
EM4655	$rflM33::HA-FRT \Delta lon$	This study
EM4665	$\Delta araBAD1170::rflM(rcsB-HTH) flhC5213::MudJ \Delta rcsB$	This study
EM4666	∆araBAD1181::rflM(sdiA-HTH) flhC5213::MudJ ∆rcsB	This study
EM4697	ΔaraBAD1213::rflM(ΔHTH) flhC5213::MudJ	This study
EM4711	ΔaraBAD1213::rflM(ΔHTH) flhC5213::MudJ rcsB::T-POP	This study
EM4727	$\Delta araBAD1213::rflM(\Delta HTH) flhC5213::MudJ \Delta rcsB$	This study
Escherichi	a coli K12 strains	
TH5314	BacterioMatch reporter strain, F' PlacOR2-62 Plac-bla-lacZ	Stratagene
EM567	BacterioMatch pBT pTRG	This study
EM571	BacterioMatch pBT-RflM pTRG-RflM	This study
EM572	BacterioMatch pBT-RflM pTRG-RcsB	This study
EM574	BacterioMatch pBT-RcsB pTRG-RcsB	This study
EM575	BacterioMatch pBT-RcsB pTRG-RflM	This study
EM576	BacterioMatch pBT-LGF2 pTRG-Gal11P	This study
EM577	BacterioMatch pBT-RcsB pTRG-Gal11P	This study
EM578	BacterioMatch pBT-RflM pTRG-Gal11P	This study
EM579	BacterioMatch pBT-LGF2 pTRG-RcsB	This study
EM580	BacterioMatch pBT-LGF2 pTRG-RflM	This study
EM765	BL21(λDE3) pSUMO-His ₆ -RcsB	This study
EM1020	BL21(λDE3) pSUMO-His ₆ -RflM-RBS-RcsB	This study
EM3064	BL21(λ DE3) pSUMO-His ₆ -SUMO-RcsB _{D56E}	This study
EM4413	BL21(λDE3) pSUMO-His ₆ -SUMO-RflM(ΔHTH)-RBS-RcsB	This study

Supplemental Fig. S1.

Fig. S1. RflM-mediated repression of motility does depend on the presence of RcsB, but not other *flhDC*-specific regulators.

Relative swimming diameters of deletion mutants of *flhDC*-specific regulators ($\Delta rcsB$, $\Delta lrhA$, $\Delta slyA$, $\Delta rtsB$, $\Delta fliZ$, $\Delta prgH$ -hilDA) that harbored *rflM* under control of an arabinose-inducible promoter (P_{araBAD} ::*rflM*⁺) were analyzed under non-inducing (A) and inducing conditions (B). Swimming diameters were measured after incubation on 0.3% motility agar plates and normalized to the P_{araBAD} ::FRT wildtype control (WT). Bars represent mean values of 12 biological replicates and error bars represent the standard errors of the mean.

Supplemental Fig. S2.

Fig. S2. Comparison of RflM homologs by multiple sequence alignment.

Basic Local Alignment Search Tool (BLAST) was used to search for RfIM homologous sequences. The amino acid consensus sequence is shown at the bottom. Identical amino acids are shown with black shading marked with an exclamation mark (all match), whereas conserved amino acids are shown with grey shading marked with an asterisk (\geq 50% conserved). Bar heights below the consensus sequence indicate the degree of conservation.

Supplemental Fig. S3.

Transcript levels of target genes belonging to the flagellar regulon (*flhD*, *aer* and *hilD*) and the RcsCDB regulon (*wzzB*, *dps*, *csgD*) were determined by qRT-PCR analysis. Analyzed strains include wildtype (Ctr.; EM808), *rflM* overexpressed from the P_{araBAD} promoter (*rflM* \uparrow) in presence (TH9386) or absence of *rcsB* ($\Delta rcsB$; EM4365) and *rcsB* overexpressed from the P_{araBAD} promoter (*rcsB* \uparrow) in presence (TH12883) or absence of *rflM* ($\Delta rflM$; EM4366). Transcript levels were normalized against the reference genes *rpoB*, *gyrB* and *gmk*, and reported as relative expression compared to the wildtype control. Bars represent mean values of three independent biological replicates and error bars represent the standard errors of the mean.

Supplemental Fig. S4.

Fig. S4. RcsB phosphorylation mutants are functional.

Relative swimming diameters of RcsB phosphorylation mutants $RcsB_{D56E}$ (mimics phosphorylation; EM2004) and $RcsB_{D56N}$ (cannot be phosphorylated; EM2005) compared to the wildtype control ($RcsB_{WT}$; TH437) and a *rcsB* deletion mutant ($\Delta rcsB$; EM1325). Strains were incubated on motility plates containing 0.3% agar, swimming halo diameters were measured and normalized to the wildtype control. Bars represent mean values of eight biological replicates and error bars represent the standard errors of the mean. Exemplary images of the motility phenotypes are shown. Asterisks indicate significant difference to the WT control according to Student's t-test (*** P<0.0001).

Supplemental Fig. S5.

Fig. S5. Overexpression of *rcsB* bypasses the requirement of RcsB phosphorylation for repression of *flhDC* operon expression.

Expression of a transcriptional *flhC-lac* fusion was analyzed upon P_{araBAD} -dependent *rcsB* overexpression (↑) and compared to a control strain (-). The *rcsB*_{D56N} mutation prevented RcsB phosphorylation. Strain backgrounds were either deleted for *rcsB* ($\Delta rcsB$) or for the RcsCDB phosphorelay cascade ($\Delta rcsDBC$) preventing phosphoryl group transfer to RcsB. Strains analyzed were EM1434 (1), EM1435 (2), EM4454 (3), EM4453 (4), EM515 (5) and EM521 (6). Bars represent mean values of six independent biological replicates and error bars represent the standard errors of the mean. Asterisks indicate significant difference to the corresponding control according to Student's t-test (*** P<0.0001).

Supplemental Fig. S6.

Fig. S6. RcsB and RfIM do not regulate each other, but cooperatively repress *flhDC* expression.

A. Expression analysis of a transcriptional *rflM-lac* fusion under physiological *rcsB* expression level (+; EM163), P_{araBAD} -induced *rcsB* overexpression (↑; EM162) or in a RcsCDB deletion strain (Δ ; EM169). All strains constitutively expressed *flhDC* from an ATc–inducible promoter (P_{tetA} ::*flhD*⁺*C*⁺) to ensure FlhD₄C₂-dependent *rflM* expression.

B. Expression analysis of a transcriptional *rcsB-lac* fusion under physiological expression level of *rflM* (+; TH13654) in comparison to P_{araBAD} -induced *rflM* overexpression (\uparrow ; TH12949).

C. Cooperativity of RcsB and RfIM in repression of *flhDC*. *flhC-lac* levels were monitored under conditions of constant ATc-induced *rcsB* expression (P_{tetA} -*rcsB*) and additional titration of arabinose-induced P_{araBAD} -*rflM* (EM229) at the indicated arabinose concentrations [% Ara].

A-C. Bars represent mean values of three biological replicates. Individual data points are shown and error bars represent the standard errors of the mean. Asterisks indicate significant difference to the control according to Student's t-test (** P<0.005; *** P<0.0001).

Supplemental Fig. S7.

Fig. S7. His₆-SUMO-RcsB and His₆-SUMO-RflM fusions used for protein purification are functional in repression of *flhC-lac* in *Salmonella enterica* strain LT2.

The activity of pSUMO-RfIM, pSUMO-RcsB and pSUMO-RfIM/RcsB fusion constructs in repression of *flhDC* was analyzed *in vivo* using a transcriptional *flhC-lac* fusion upon induction of *rcsB* or *rflM* overexpression with 0.2 mM IPTG. Induction of the pSUMO-RfIM/RcsB construct resulted in co-expression of *rcsB* and *rflM*. The pSUMO empty plasmid (-) served as control. The *Salmonella enterica* reporter strains in the LT2 background constitutively expressed T7 RNA polymerase for expression of the RfIM/RcsB constructs from the T7 promoter of the pSUMO plasmid and harbored a wildtype copy of *rcsB* or a deletion of *rcsB* ($\Delta rcsB$). Expression of *rflM* is FlhD₄C₂-dependent and the strains do not express *rflM* due to the transcriptional *flhC-lac* fusion. Bars represent mean values of three independent biological replicates and error bars represent the standard errors of the mean. Asterisks indicate significant difference to the corresponding control according to Student's t-test (* P<0.05, *** P<0.0001).

Fig. S8. The DNA-binding domain of RfIM is indispensable for repression of *flhDC*.

A. The helix-turn-helix (HTH) DNA-binding domain of RflM was exchanged with the HTH domain SdiA of the LuxR-homolog of Salmonella (ParaBAD::rflM(sdiA-HTH)) deleted or $(P_{araBAD}::rflM(\Delta HTH))$ and the hybrid constructs were analyzed for their ability to repress flhDC. The wildtype *rflM* control and the hybrid constructs were expressed from an arabinose-inducible promoter and the transcript levels of a *flhC-lac* fusion were determined in strains with physiological *rcsB* level (*rcsB*+), ATc-induced *rcsB* overexpression (*rcsB* \uparrow) or *rcsB* deletion ($\Delta rcsB$). Strains analyzed were EM517 (1), EM704 (2), EM1432 (3), TH13069 (4), EM229 (5), EM2486 (6), EM656 (7), EM676 (8), EM4666 (9), EM4697 (10), EM4711 (11) and EM4727 (12).

B. Expression analysis and functionality test of purified RfIM protein deleted for its HTH domain in complex with RcsB (His₆-SUMO-RfIM(Δ HTH)/RcsB). Left: SDS-polyacrylamide gel electrophoresis of purified His₆-SUMO-RfIM(Δ HTH)/RcsB complex. Arrows indicate His₆-SUMO-RfIM(Δ HTH) (26 kDa) and presumably a degradation product of His₆-SUMO-RfIM(Δ HTH), as well as RcsB (24 kDa). Right: Electrophoretic mobility shift assay of the P1_{*flhDC*} promoter fragment (-271 to -71 relative to *flhD* ATG start site) with increasing amounts of purified His₆-SUMO-RfIM(Δ HTH)/RcsB complex as indicated. *gyrA* served as negative control DNA. The arrowhead indicates protein-DNA complexes.