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Abstract. We study nonlinear automorphisms of Levi degenerate hypersur-
faces of finite multitype. By results of Kolar, Meylan, and Zaitsev in 2014,
the Lie algebra of infinitesimal CR automorphisms may contain a graded com-
ponent consisting of nonlinear vector fields of arbitrarily high degree, which
has no analog in the classical Levi nondegenerate case, or in the case of finite

type hypersurfaces in C2. We analyze this phenomenon for hypersurfaces of
finite Catlin multitype with holomorphically nondegenerate models in com-
plex dimension three. The results provide a complete classification of such

manifolds. As a consequence, we show on which hypersurfaces 2-jets are not

sufficient to determine an automorphism. The results also confirm a conjecture
about the origin of nonlinear automorphisms of Levi degenerate hypersurfaces,
formulated by the first author for an AIM workshop in 2010.

1. Introduction

One of the central problems in CR geometry is the classification of real hy-
persurfaces in Cn, up to biholomorphic equivalence. A complete solution of this
problem should also lead to a complete understanding of automorphism groups of
such manifolds.

When the hypersurface is Levi nondegenerate, the problem is well understood
thanks to the classical work of Chern and Moser [11]. In particular, the infinitesimal
CR automorphisms of such manifolds form a graded Lie algebra with at most five
components. Moreover, by results of Kruzhilin and Loboda ([29]), if a strongly
pseudoconvex hypersurface is not equivalent to the sphere, there are at most three
graded components, and all infinitesimal automorphisms are linear in appropriate
coordinates. For the sphere itself, the coefficients are at most quadratic, which
implies 2-jet determination in general.

Similar results were obtained for hypersurfaces of finite type in C2. In particular,
the same 2-jet determination result holds (see [16], [24]).

In a recent paper [23], the same problem is considered for Levi degenerate hy-
persurfaces in Cn with weighted homogeneous polynomial models, which replace
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the model hyperquadric from the nondegenerate case. The results describe possible
structures of infinitesimal CR automorphism algebras for hypersurfaces of finite
Catlin multitype with holomorphically nondegenerate models. Compared to the
Levi nondegenerate case, there are in general six possible components. The new
phenomenon is the existence of nonlinear infinitesimal CR automorphisms in the
complex tangential variables, which are of arbitrarily high degree in general.

Our aim in this paper is to analyze this phenomenon and provide a complete
description of hypersurfaces of finite Catlin multitype with holomorphically nonde-
generate models in C3 which admit such automorphisms.

Let us recall that the Catlin multitype is an important CR invariant which
Catlin introduced to prove subelliptic estimates on pseudoconvex domains ([9],
[10]). The definition of multitype was extended to the general case (not necessarily
pseudoconvex) in [25]. It provides a natural setting for an extension of the Chern-
Moser theory to degenerate manifolds ([23]).

We consider a weighted homogeneous model of finite Catlin multitype that is
holomorphically nondegenerate. Let

(1.1) MP := {Imw = P (z, z̄)}, (z, w) ∈ C
2 × C,

where P is a real-valued weighted homogeneous polynomial with respect to the
multitype weights μ1, μ2 (see Section 2 for the needed definitions).

As proved in [23], the Lie algebra of infinitesimal CR automorphisms g =
aut(MP , 0) of MP admits the weighted decomposition given by

(1.2) g = g−1 ⊕
2⊕

j=1

g−μj
⊕ g0 ⊕ gc ⊕ gn ⊕ g1.

Here gc contains vector fields commuting with W and gn contains vector fields not
commuting with W , both of weight μ ∈ (0, 1) (see [23] for more details). Notice
that g−1 contains W = ∂w and g0 contains the weighted Euler field, hence they are
always nontrivial. A complete description of g1 is also contained in [23].

Remark 1.1. By the results of [23], the elements of gn and g1 are determined by
ordinary 2-jets, hence higher order infinitesimal automorphisms may occur only
when gc is nontrivial.

In this paper, we study all hypersurfaces whose model has nontrivial gc. Our
results confirm a conjecture about the origin of nonlinear automorphisms of Levi
degenerate hypersurfaces formulated by the first author (see the 2010 AIM list
of problems at http://www.aimath.org/WWN/crmappings/crmappings.pdf): MP

has a nonlinear symmetry if and only if there is a holomorphic mapping f of Mp

into a hyperquadric in CK and a symmetry of the hyperquadric, which is f -related
to the automorphism of MP .

Note that mappings of CR manifolds into hyperquadrics have been studied inten-
sively in recent years (see e.g. [1], [14]). Here we ask in addition about compatibility
with a symmetry of the hyperquadric. Let us remark that analyzing gn requires
completely different techniques and is the subject of a forthcoming paper [28].

In order to formulate our first result, let us recall that two vector fields X1 and
X2 are f -related (or compatible by f) if f∗(X1) = X2.
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Theorem 1.2. Let MP be a holomorphically nondegenerate hypersurface given by
(1.1). Assume that dim gc > 0 and let Y ∈ gc be a nonzero vector field. Then there
exist an integer K ≥ 3 and a holomorphic polynomial mapping f : C3 −→ C

K

which maps MP into a hyperquadric H ⊆ CK , such that Y is f-related with an
infinitesimal CR automorphism of H.

The proof is based on an explicit complete description of models with nontrivial
gc, for which we need the following definition.

Definition 1.3. Let Y be a weighted homogeneous vector field. A pair of finite
sequences of holomorphic weighted homogeneous polynomials {U1, . . . , Un} and
{V 1, . . . , V n} is called a symmetric pair of Y -chains if

(1.3) Y (Un) = 0, Y (U j) = cjU
j+1, j = 1, . . . , n− 1,

(1.4) Y (V n) = 0, Y (V j) = djV
j+1, j = 1, . . . , n− 1,

where cj , dj are nonzero complex constants which satisfy

(1.5) cj = −d̄n−j .

If the two sequences are identical, we say that {U1, . . . , Un} is a symmetric Y -chain.

Example 1.4. Let

Y = iz2
l ∂

∂z1
.

Then the pair {U1, U2} = {z1, zl2} is a symmetric Y -chain, since Y (U2) = 0 and
Y (U1) = iU2. Then for the hypersurface given by

Imw = ReU1U2 = Re z1z2
l,

we have Y ∈ gc.

The following result shows that in general the elements of gc arise in an analogous
way.

Theorem 1.5. Let MP be a holomorphically nondegenerate model given by (1.1)
admitting a nontrivial Y ∈ gc. Then P can be decomposed in the following way:

(1.6) P =
M∑
j=1

Tj ,

where each Tj is given by

(1.7) Tj = Re (

Nj∑
k=1

Uk
j V

Nj−k+1
j ),

where {U1
j , . . . , U

Nj

j } and {V 1
j , . . . , V

Nj

j } are a symmetric pair of Y -chains.

Conversely, if Y and P satisfy (1.3) – (1.7), then Y ∈ gc.

Remark 1.6. It is immediate to see that Y is uniquely and explicitly determined
by P . More precisely, since MP is holomorphically nondegenerate, at least one of
the Tj has length Nj ≥ 2. For such a Tj we have

Y =
cNj−1U

Nj−1
j

Δ

(
−∂U

Nj

j

∂z2
∂z1 +

∂U
Nj

j

∂z1
∂z2

)
,
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where Δ is the Jacobian of {UNj−1

j , U
Nj

j }. Hence for a given hypersurface the
results also provide a simple constructive tool to determine gc. Moreover, this also
shows that the real dimension of gc is at most one.

Examples of symmetric chains of arbitrary length are described at the end of
Section 3. Using Remark 1.1, we obtain

Theorem 1.7. Let M be an arbitrary smooth hypersurface of finite Catlin mul-
titype. If its model is holomorphically nondegenerate and not biholomorphically
equivalent to one of the form described in Theorem 1.5, then the automorphisms of
M are determined by their 2-jets.

The paper is organized as follows. Section 2 contains the necessary definitions
used in the rest of the paper. Section 3 deals with the gc component of the algebra
aut(MP , 0). Section 4 completes the proofs of the above theorems.

2. Preliminaries

Let M ⊆ C
3 be a smooth hypersurface, and let p ∈ M be a point of finite type

m ≥ 2 in the sense of Kohn and Bloom-Graham ([5], [6], [22]).
We consider local holomorphic coordinates (z, w) vanishing at p, where z =

(z1, z2) and zj = xj + iyj , j = 1, 2, and w = u + iv. The hyperplane {v = 0} is
assumed to be tangent to M at p, hence M is described near p = 0 as the graph of
a uniquely determined real-valued function

(2.1) v = ϕ(z1, z2, z̄1, z̄2, u), dϕ(0) = 0.

We can assume that (see e.g. [5])

(2.2) ϕ(z1, z2, z̄1, z̄2, u) = Pm(z, z̄) + o(u, |z|m),

where Pm(z, z̄) is a nonzero homogeneous polynomial of degree m without pluri-
harmonic terms.

Recall that the definition of multitype involves rational weights associated to the
variables w, z1, z2. The variables w, u, and v are given weight one, reflecting our
choice of tangential and normal variables. The complex tangential variables (z1, z2)
are treated according to the following definitions (for more details, see [25]).

Definition 2.1. A weight is a pair of nonnegative rational numbers Λ = (λ1, λ2),
where 0 ≤ λj ≤ 1

2 and λ1 ≥ λ2.

Let Λ = (λ1, λ2) be a weight, and let α = (α1, α2), β = (β1, β2) be multiindices.
The weighted degree κ of a monomial

q(z, z̄, u) = cαβlz
αz̄βul, l ∈ N,

is defined as

κ := l +

2∑
i=1

(αi + βi)λi.

A polynomial Q(z, z̄, u) is weighted homogeneous of weighted degree κ if it is a
sum of monomials of weighted degree κ.

For a weight Λ, the weighted length of a multiindex α = (α1, α2) is defined by

|α|Λ := λ1α1 + λ2α2.
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Similarly, if α = (α1, α2) and α̂ = (α̂1, α̂2) are two multiindices, the weighted
length of the pair (α, α̂) is

|(α, α̂)|Λ := λ1(α1 + α̂1) + λ2(α2 + α̂2).

Definition 2.2. A weight Λ will be called distinguished for M if there exist local
holomorphic coordinates (z, w) in which the defining equation of M takes the form

(2.3) v = P (z, z̄) + oΛ(1),

where P (z, z̄) is a nonzero Λ-homogeneous polynomial of weighted degree 1 without
pluriharmonic terms, and oΛ(1) denotes a smooth function whose derivatives of
weighted order less than or equal to one vanish.

The fact that distinguished weights do exist follows from (2.2). For these coor-
dinates (z, w), we have

Λ = (
1

m
,
1

m
).

In the following, we shall consider the standard lexicographic order on the set of
pairs.

We recall the following definition (see [9]).

Definition 2.3. Let ΛM = (μ1, μ2) be the infimum of all possible distinguished
weights Λ with respect to the lexicographic order. The multitype of M at p is
defined to be the pair

(m1,m2),

where

mj =

{
1
μj

if μj �= 0,

∞ if μj = 0.

If none of the mj is infinity, we say that M is of finite multitype at p.
Clearly, since the definition of multitype includes all distinguished weights, the

infimum is a biholomorphic invariant.
Coordinates corresponding to the multitype weight ΛM , in which the local de-

scription of M has the form (2.3), with P being ΛM -homogeneous, are called mul-
titype coordinates.

If M is of finite multitype at p, the infimum in (2.3) is attained, which implies
that multitype coordinates do exist ([9], [25]).

Definition 2.4. Let M be given by (2.3). We define a model hypersurface MP

associated to M at p = 0 by

(2.4) MP = {(z, w) ∈ C
3 | v = P (z, z̄)}.

Next let us recall the following definitions.

Definition 2.5. Let X be a holomorphic vector field of the form

(2.5) X =
2∑

j=1

f j(z, w)∂zj + g(z, w)∂w.

We say that X is rigid if f1, f2, g are all independent of the variable w.
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Note that the rigid vector field W , of homogeneous weight −1, given by

(2.6) W = ∂w

lies in aut(MP , 0). We will denote by E the weighted homogeneous vector field of
weight 0 defined by

(2.7) E =

2∑
j=1

μjzj∂zj + w∂w,

i.e. the weighted Euler field. Note that by definition of μj , E is a nonrigid vector
field lying in aut(MP , 0).

We can divide homogeneous rigid vector fields into three types, and introduce
the following terminology.

Definition 2.6. Let X ∈ aut(MP , 0) be a rigid weighted homogeneous vector field.
X is called

(1) a shift if the weighted degree of X is less than zero;
(2) a rotation if the weighted degree of X is equal to zero;
(3) a generalized rotation if the weighted degree of X is bigger than zero.

Notice that X ∈ aut(MP , 0) is a generalized rotation if and only if it has positive
weighted degree and commutes with W . In other words, generalized rotations are
precisely the elements of gc.

3. Generalized rotations

In this section we study nonlinear infinitesimal CR automorphisms of hypersur-
faces of finite multitype and derive an explicit description of all models which admit
a generalized rotation.

Lemma 3.1. Let Y = f1
∂

∂z1
+f2

∂
∂z2

be a weighted homogeneous holomorphic vector
field of weighted degree > 0. Then the space of weighted homogeneous polynomials
in z of a given weighted degree ν annihilated by X has complex dimension at most
one.

Proof. First we claim that Y cannot be a multiple of the Euler field. Indeed, if
Y = hE with h holomorpic and nonconstant, then Y (P ) = 0 has no homogeneous
solution, since ReY (P ) = RehP �= 0. Hence there exists a point q such that Y (q) is
not a multiple of the Euler field. This point lies on a uniquely determined complex
curve zm1

1 = czm2
2 , and Y is transverse to this curve in a neighborhood of q. By

homogeneity, on this curve P (z1, z2) is determined up to a multiplicative complex
constant. Fixing this constant, by the uniqueness property for solutions of complex
ODEs ([19]), the equation Y (P ) = 0 determines P uniquely in a neighborhood of
q. Since P is a polynomial, if it exists, it is determined uniquely. Hence the space
of solutions of Y (P ) = 0 is at most one dimensional. �

Lemma 3.2. Let Vn, n ∈ N, be the space

(3.1) Vn = {X|Y n(X) = 0},
where X is a holomorphic polynomial of a given constant weighted length and Y is
a weighted homogeneous holomorphic vector field. Then

(3.2) dimVn ≤ n.
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Moreover, when dn = dimVn > 0, one can choose a basis for Vn of the form

(3.3) {Fn
s , s = 1, 2, . . . , dn|Y dn(Fn

dn
) = 0,

Y dn−1(Fn
dn
) �= 0, Y dn−1(Fn

s ) = 0, s = 1, 2, . . . , dn − 1}.
Proof. We prove the lemma by induction. The case n = 1 is a direct application
of the previous lemma. Suppose now that the lemma is true for n and prove it for
n+ 1. We have

(3.4) Vn+1 = {X|Y n+1(X) = 0} = {X|Y n(Y (X)) = 0}.
By induction, we obtain that

(3.5) Y (X) ∈ span[Fn
s , | Y dn(Fn

dn
) = 0, Y dn(Fn

dn
) �= 0, Y dn−1(Fn

s ) = 0,

s = 1, . . . , dn − 1],

which implies that

(3.6) dimVn+1 ≤ n+ 1.

After performing a linear combination of the solutions X of (3.5), we may satisfy
(3.3). �

Theorem 3.3. Let MP be given by (1.1) admitting a generalized rotation Y. Then
P can be decomposed in the following way:

(3.7) P =
M∑
j=1

Tj ,

where each Tj is given by

(3.8) Tj = Re (

Nj∑
k=1

Uk
j V

Nj−k+1
j ),

where {U1
j , . . . , U

Nj

j } and {V 1
j , . . . , V

Nj

j } are a symmetric pair of Y -chains.

Proof. Let

(3.9) P =
l∑

k=1

Pk

be the bihomogeneous expansion of P , where P1 �= 0, Pl �= 0. Each Pj is weighted
homogeneous with respect to z of weighted degree cj where c1 < c2 < · · · < cl.

We may write

(3.10) P1 =

r∑
j=1

Sc1
j S ĉ1

j ,

with r minimal. Note that c1+ ĉ1 = 1. We claim that r = 1. Since Y is a generalized
rotation, we must have

(3.11) Y (
r∑

j=1

Sc1
j S ĉ1

j ) =
r∑

j=1

Sc1
j Y (S ĉ1

j ) = 0.

Since r is minimal, this implies that

(3.12) Y (S ĉ1
j ) = 0
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for all j. Using Lemma 3.2, we conclude that

(3.13) S ĉ1
j ∈ [S ĉ1

1 ]

for all j. We may then write P1 as

(3.14) P1 = Qc1
1 Qĉ1

1 .

Hence, r = 1 and the claim is proved. We write now

(3.15) Pk =

rk∑
j=1

Sck
j S ĉk

j ,

with rk minimal.
We claim that Pk can be rewritten as

(3.16) Pk = Qck
k Qĉk

k + P̃k

so that there is a dk ≤ k such that

(3.17) Y dk(Qĉk
k ) = 0, Y dk−1(Qĉk

k ) �= 0, Y dk−1(P̃k) = 0.

We prove the claim by induction. The case k = 1 has just been proved.
Suppose by induction that (3.16) holds for k. Since Y is a generalized rotation,

we have

(3.18) Y (Qck
k )Qĉk

k + Y (P̃k) +

rk+1∑
j=1

S
ck+1

k+1 Y (S
ĉk+1

k+1 ) = 0.

Applying Y
dk

to (3.18), we get

(3.19)

rk+1∑
j=1

S
ck+1

j Y dk+1(S
ĉk+1

j ) = 0.

Since rk+1 is minimal,

(3.20) Y dk+1(S
ĉk+1

j ) = 0

for all j. Using Lemma 3.2, we obtain that rk+1 ≤ dk + 1 ≤ k + 1. Using (3.3), we
may then rewrite Pk+1 in the form given by (3.16). The claim is then proved.

Let N1 ≤ l be minimal such that

Y (Qck
k ) �= 0, k = 1, . . . , N1 − 1, Y (Q

cN1

N1
) = 0.

We consider the following set E1 given by

(3.21) E1 = {Qck
k Qĉk

k , k = 1, . . . , N1}.
Note that this set is not empty since Y (Qcl

l ) = 0.
We claim that the following hold for every element of E1.

(1) dk = k, k = 1, . . . , N1,
(2) Y (Qk

ck) = akQ
ck+1

k+1 ,

(3) Y (Q
ĉk+1

k+1 ) = bk+1Qk
ĉk +Rk, where Y k−1(Rk) = 0.
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We show that dk = k using induction as above. Indeed, suppose that this is true
for k < N1 − 1 and show that it is also true for k + 1. Using the fact that Y is a
generalized rotation, we have as in (3.18),

(3.22) Y (Qck
k )Qĉk

k + Y (P̃k) + (Q
ck+1

k+1 )Y (Q
ĉk+1

k+1 ) + Y (P̃k+1) = 0.

Applying Y
k−1

to (3.22), we obtain

(3.23) Y (Qck
k )Y

k−1
(Qĉk

k ) + (Q
ck+1

k+1 )Y
k
(Q

ĉk+1

k+1 ) = 0.

Hence, using (3.23), dk+1 = k + 1 by definition of E1, and hence

(3.24) Y (Qck
k ) = akQ

ck+1

k+1 ,

(3.25) Y k(Q
ĉk+1

k+1 ) = bk+1Y
k−1Qĉk

k ,

which implies

(3.26) Y k−1(Y (Q
ĉk+1

k+1 )− bk+1Q
ĉk
k ) = 0,

and hence

(3.27) Y (Q
ĉk+1

k+1 ) = bk+1Q
ĉk
k +Rk,

where Y k−1(Rk) = 0. This achieves the proof of the claim. Using (3.27) and (3.16),
we may then assume without loss of generality that Rk = 0. We define the chains
by putting

(3.28)

{
Uk
1 := Qck

k ,

V k
1 := Q

ĉN1−k+1

k .

It follows from the above properties of E1 that Uk
1 and V k

1 form a chain. In other
words, we may write

(3.29) P = Re (
N1∑
k=1

Uk
1 V

N1−k+1
1 ) + P̂ , k = 1, . . . , N1.

It follows from (3.23) that Y is a generalized rotation for

Imw = Re (

N1∑
k=1

Uk
1 V

N1−k+1
1 ).

It follows from (3.23) that ak = −b̄k+1, which means that the U and V are a pair

of symmetric chains. Hence Y is a generalized rotation also for P̂ . We can repeat
the above argument for P̂ and in a finite number of steps we reach the conclusion
of the theorem. �

Note that symmetric chains and pairs of chains of any length can arise.

Example 3.4. Let

Y = z21∂z1 − z1z2∂z2 .

Given three integers 1 ≤ l ≤ m ≤ n, we first define

U l = zn1 z
n
2 .

9



We can build a symmetric Y -chain by setting U j = cjz
n−l+j
1 zn2 for j = 1, . . . , l− 1

for suitable constants cj . Analogously, setting in addition

V l = zm1 zm2 ,

we can get in the same way a pair of symmetric Y -chains of arbitrary length l.

4. Proofs of the main results

In this section we complete the proofs of the results stated in the Introduction.
The first part of Theorem 1.5 has already been proved in Section 3 (as Theorem
3.3). The second, converse part of the statement is immediate to verify.

In order to prove Theorem 1.7, we combine Theorem 1.5 with Theorem 4.7 and
Theorem 6.2 from [23]. They imply that on a smooth hypersurface of finite Catlin
multitype, 2-jets are always sufficient to determine an element from g1 and gn.

Proof of Theorem 1.2. In the notation of Theorem 3.3, we set

(4.1) K = 2
M∑
j=1

Nj + 1.

We define a hyperquadric in C
K+1 by

(4.2) Im η = Re
M∑
j=1

Nj∑
k=1

ζj,kζ ′j,Nj−k+1,

and consider the mappping C
3 → C

K+1 given by η = w and

(4.3) ζj,k = Uk
j (z1, z2)

and

(4.4) ζ ′j,k = V k
j (z1, z2).

It is immediate to verify that the automorphism Y of MP is f -related to the auto-
morphism of this hyperquadric, defined by

(4.5) Z =
M∑
j=1

Nj∑
k=2

ck−1,j ζj,k∂ζj,k−1
+ dk−1,j ζ

′
j,k∂ζ′

j,k−1
.

Indeed, the condition for f -related vector fields becomes exactly the chain condition
(1.3)-(1.5).
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