

Complementing Büchi Automata
with a Subset-tuple Construction

J. Allred & U. Ultes-Nitsche

Internal working paper no 15-01
March 2015

 WORKING PAPER

DEPARTEMENT D’INFORMATIQUE
DEPARTEMENT FÜR INFORMATIK
Bd de Pérolles 90
CH-1700 Fribourg

www.unifr.ch/informatics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43673545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Complementing Büchi Automata
with a Subset-tuple Construction

Joel Allred
Department of Informatics

University of Fribourg, Switzerland
E-Mail: joel.allred@unifr.ch

Ulrich Ultes-Nitsche
Department of Informatics

University of Fribourg, Switzerland
E-Mail: uun@unifr.ch

Abstract—Complementation of Büchi automata is well known
for being difficult. In the worst case, a state-space growth of
(0.76n)n is unavoidable. Recent studies suggest that “simpler”
algorithms perform better than more involved ones on practical
cases. In this paper, we present a simple “direct” algorithm
for complementing Büchi automata. It involves a structured
subset construction (using tuples of subsets of states) that
produces a deterministic automaton. This construction leads to a
complementation procedure that resembles the straightforward
complementation algorithm for deterministic Büchi automata, the
latter algorithm actually being a special case of our construction.

I. INTRODUCTION

Checking ω-language containment is important in linear-time
temporal verification. For ω-languages B and P , testing B ⊆
P is done algorithmically by testing B ∩ P = ∅, where P is
the complement of P . If P is regular and represented by a
Büchi-automaton, a Büchi-automaton representing P can be
constructed effectively. In the worst case, the automaton for
P has (0.76n)n many states [1], where n is the number of
states of the automaton for P .

Complementation of Büchi automata is difficult because in
general, Büchi automata cannot be made deterministic. Com-
plementation of a deterministic Büchi automaton A is, how-
ever, quite simple: construct a copy of A, remove all accepting
states in the copy, make the remaining states in the copy
accepting states, make all states in A non-accepting, and
finally allow nondeterministically moving from A to corre-
sponding states in its copy. So the complement automaton to
a deterministic Büchi automaton consists of two deterministic
automata (let’s call them an upper and a lower automaton, if
we assume that one is drawn below the other) with transitions
from upper to the lower automaton but no transitions back
from the lower to the upper one. We adapt this construction
to nondeterministic automata by constructing a determinis-
tic version of a given automaton that then Büchi-accepts a
different ω-language but can still be used in a construction
similar to the one for deterministic Büchi-automata to produce
a complement automaton. It results again in an automaton
consisting basically of two deterministic automata that are then
combined by allowing to move nondeterministically from the

upper to the lower one but not vice versa.

The run analysis that we developed independently as some
similarities with the analysis by Fogarty, Kupferman, Vardi,
and Wilke [2] who elegantly translate the slice-based approach
in [3] to a rank-based approach. Instead of unifiying interim
constructions, we directly construct a complement automaton
using the sole analysis of the runs of the original automaton, in
a similar way deterministic Büchi automata are complemented.

When developing our construction, the key notion will be
that of a greedy accepting run that we use in this paper. In
short, a greedy run is a run that always aims at reaching
an accepting state as quickly as possible. Our construction
will consider only greedy runs. By doing so, visits of sets of
accepting states in runs of the constructed automaton allow
faithfully to identify whether or not they can also occur in a
(greedy) run of the given automaton. To consider only greedy
runs in a deterministic version of a given Büchi-automaton,
we basically conduct a subset construction to which we add
sufficient structure to identify greedy runs: the states in the
construction are tuples of sets of states of the given automaton,
sets of non-accepting states and sets of accepting states are
never mixed (to avoid losing too much information [4]).

From the so constructed deterministic automaton, by identify-
ing a particular property of state sets occurring in the state-
set tuples (they are either continued or discontinued), we can
construct a nondeterministic one accepting the complement
ω-language of the given Büchi automaton in a similar way as
for deterministic Büchi automata. The usual complementation
procedure for deterministic Büchi automata (Section 3 in [5])
will be a special case of our construction.

II. PRELIMINARIES

Let Σ be an alphabet (set of finite cardinality). The set of all
ω-words (infinitely long words) over Σ is designated by Σω .
Subsets of Σω are called ω-languages over Σ.

Büchi automaton A = (Q,Σ, δ, qin, F) consists of finite set Q
of states, input alphabet Σ, transition function δ : Q×Σ→ 2Q,
initial state qin ∈ Q, and set F ⊆ Q of accepting states.

δ is extended in the usual way to finite words (instead of only
single symbols) and sets of state (instead of only single states).

Let x = x(0)x(1)x(2) · · · ∈ Σω . A run r of A on x is a
sequence r(0)r(1)r(2) · · · of states such that r(0) = qin and
r(i + 1) ∈ δ(r(i), x(i)), for all i ≥ 0. Runs on finite words
are defined similarly.

Let ω(r) be the set of all states that recur infinitely often in
r. Run r is accepting if and only if ω(r)∩F 6= ∅. Automaton
A Büchi-accepts x if and only if there exists an accepting run
of A on x [6], [7]. The set of all ω-words accepted by A is
the ω-language that A accepts.

If, for all q ∈ Q and a ∈ Σ, δ(q, a) is a singleton set or
the empty set, then A is called deterministic. Otherwise it is
called nondeterministic. For ω-languages, the language classes
accepted by deterministic and nondeterministic automata dif-
fer: There exist ω-languages that can only be represented by
nondeterministic finite automata [6], [7].

We call a (finite) run r = r(0)r(1)r(2) · · · r(n) on some finite
word greedy if it always tries to reach, on its way to r(n),
accepting states as quickly as possible. To define greediness
formally, let α : Q→ {0, 1} be a function that assigns 1 to a
state if and only if it is accepting. α can be extended in the
usual way to a function α : Q∗ → {0, 1}∗ on sequences of
states by its stepwise application.

We interpret words over {0, 1} as binary numbers with
the most significant bit to the left. We define that r =
r(0)r(1)r(2) · · · r(n) on finite word w is greedy if and only if
there does not exist a finite run r′ = r(0)r′(1)r′(2) · · · r′(n−
1)r(n) on w (note that r and r′ coincide in their first and last
state) such that α(r) < α(r′).

The definition of greediness can be extended to infinite runs
r by defining that infinite run r is greedy if and only if all of
its finite prefixes are greedy. It is to be noted that the notion
of greediness similar to lexicographically maximal runs, as
presented in [2].

III. THE SUBSET-TUPLE CONSTRUCTION

A. Definitions

Let A = (Q,Σ, δ, qin, F) be a Büchi automaton. We
construct an interim deterministic Büchi-automaton
A′ = (Q′,Σ, δ′, ({qin}), ∅) from which we will later
derive the complement automaton of A. The state set of A′
contains non-empty disjoint sets of A-states:1

1By “A-states” we refer to the states of automaton A.

Q′ =

|Q|⋃
m=1

{
(S1, . . . , Sm) ∈ (2Q \ {∅})m |

(∀1 ≤ j < k ≤ m : Sj ∩ Sk = ∅)
}
.

A′ does not have accepting states as A′’s acceptance condition
will not influence the construction of the complement automa-
ton. We will use some other observation about runs of A′ to
define the acceptance condition when finally constructing the
complement automaton.

We define transition function δ′ : Q′ ×Σ→ Q′ subsequently.
Let p′ ∈ Q′ and let m = |p′|. Let p′(j) be the jth component
of p′ (note that p′(j) is a set of A-states). For a ∈ Σ, we
define the a-successor of the jth component of p′ to be

σ(p′, j, a) = δ(p′(j), a) \
m⋃

k=j+1

δ(p′(k), a).

σ(p′, j, a) contains all A-states that are a-successors of A-
states in p′(j) and not already contained in σ(p′, k, a), for
k > j. From this definition, we get immediately that sets
σ(p′, j, a) and σ(p′, k, a) are disjoint.

The definition of σ(p′, j, a) guarantees that if an A-state could
occur in multiple components of a tuple, we will keep it only
in the rightmost component. Note that even though δ(p′(j), a)
may not be empty, σ(p′, j, a) still can be empty. We partition
each set σ(p′, j, a) into non-accepting A-states and accepting
A-states:

σn(p′, j, a) = σ(p′, j, a) ∩ (Q \ F),

σa(p′, j, a) = σ(p′, j, a) ∩ F.

As we just partitioned the sets σ(p′, j, a), the resulting sets
are still pairwise disjoint.

We put σa(p′, j, a) to the right of σn(p′, j, a) and remove all
empty sets. We define the transition function of A′:

δ′(p′, a) = q′,

where q′ is obtained by removing all empty sets in(
σn(p′, 1, a), σa(p′, 1, a), . . . , σn(p′,m, a), σa(p′,m, a)

)
but otherwise keeping the order of the non-empty components.

Lemma 1. For all reachable states p′ ∈ Q′ in A′ and all
1 ≤ j < k ≤ |p′|, p′(j) and p′(k) are nonempty and disjoint.

B. Example

We take the automaton in Figure 1 as an example.

Automaton A in Figure 1 Büchi-accepts all ω-words over
{a, b} that contain finitely many occurrences of symbol a.

qin q1 q2

a, b

a, b

b

a

a, b

Fig. 1. Büchi automaton A accepting {a, b}∗ · {b}ω .

From A, we construct A′ stepwise. The initial state of A′ is
the 1-tuple that contains A-state set {qin} (see Figure 2).

({qin})

Fig. 2. Initial fragment of A′.

With respect to A’s transition relation, we get

σ(({qin}), 1, a) = δ({qin}, a) = {qin, q1},

σ(({qin}), 1, b) = δ({qin}, b) = {qin, q1}.

Because {qin, q1} contains non-accepting A-state qin as well
as accepting A-state q1, {qin, q1} is partitioned into two sets:

σn(({qin}), 1, a) = σn(({qin}), 1, b) = {qin},

σa(({qin}), 1, a) = σa(({qin}), 1, b) = {q1},

and we get ({qin}, {q1}) as the successor of ({qin}) when A′
reads a or b (see Figure 3).

({qin}) ({qin}, {q1})
a, b

Fig. 3. Initial fragment of A′.

In the next step, we calculate for symbol a:

σ(({qin}, {q1}), 2, a) = δ({q1}, a) = {q2}

and

σ(({qin}, {q1}), 1, a) = δ({qin}, a) \ δ({q1}, a)

= {qin, q1} \ {q2} = {qin, q1}.

As in the previous step, {qin, q1} is partitioned into the two
sets {qin} and {q1}, and we get ({qin}, {q1}, {q2}) as the
a-successor of ({qin}, {q1}).

Similarly, for symbol b, we calculate

σ(({qin}, {q1}), 2, b) = δ({q1}, b) = {q1}

and

σ(({qin}, {q1}), 1, b) = δ({qin}, b) \ δ({q1}, b)
= {qin, q1} \ {q1} = {qin}.

({qin}) ({qin}, {q1}) ({qin}, {q1}, {q2})
a, b

b

a

Fig. 4. Initial fragment of A′.

No sets need to be partitioned and we get ({qin}, {q1}) as the
b-successor of ({qin}, {q1}). (see Figure 4).

Now we calculate for symbol a:

σ(({qin}, {q1}, {q2}), 3, a) = δ({q2}, a) = {q2},
σ(({qin}, {q1}, {q2}), 2, a) = δ({q1}, a) \ δ({q2}, a)

= {q2} \ {q2} = ∅,

and

σ(({qin}, {q1}, {q2}), 1, a)

= δ({qin}, a) \ (δ({q1}, a) ∪ δ({q2}, a))

= {qin, q1} \ {q2} = {qin, q1}.

As previously, {qin, q1} is partitioned into the two sets
{qin} and {q1}, the empty set is removed, and we get
({qin}, {q1}, {q2}) as the a-successor of ({qin}, {q1}, {q2}).

Similarly, for symbol b, we calculate

σ(({qin}, {q1}, {q2}), 3, b) = δ({q2}, b) = {q2},
σ(({qin}, {q1}, {q2}), 2, b) = δ({q1}, b) \ δ({q2}, b)

= {q1} \ {q2} = {q1}.

and

σ(({qin}, {q1}, {q2}), 1, b)
= δ({qin}, b) \ (δ({q1}, b) ∪ δ({q2}, b))
= {qin, q1} \ {q1, q2} = {qin}.

No sets need to be partitioned and we get ({qin}, {q1}, {q2})
as the b-successor of ({qin}, {q1}, {q2}), completing the con-
struction (see Figure 5).

({qin}) ({qin}, {q1}) ({qin}, {q1}, {q2})
a, b

b

a

a, b

Fig. 5. Interim automaton A′ to Büchi automaton A of Figure 1.

C. Additional Notation

As pointed out in the previous section, it is important to
identify for transitions in A′ which component in a successor

state results from which component in the predecessor state.
In addition, it will be important to identify which component
will eventually have no successor component any more (the
component disappears eventually, it is discontinued).

Let a be a symbol in Σ. Let p′ and q′ be two A′-states such
that δ′(p′, a) = q′. Let 1 ≤ j ≤ |p′| and 1 ≤ k ≤ |q′|.

If q′(k) ⊆ σ(p′, j, a), then we write

p′(j)
a7→ q′(k),

indicating that p′’s a-successor q′ contains component k
because p′ contains component j. We extend this definition
to finite words w = a0a1 . . . al ∈ Σ∗ in the usual way:

q′0(j0)
w7→ q′l+1(jl+1)

if and only if there exist states q′1, q
′
2, . . . , q

′
l and indices

j1, j2, . . . , jl such that for all i, 0 ≤ i ≤ l, we have
q′i(ji)

ai7→ q′i+1(ji+1).

If we take the example from Figure 5, we have, for instance,

({qin}, {q1}, {q2})(1)
a7→ ({qin}, {q1}, {q2})(2),

because when reading a in state ({qin}, {q1}, {q2}), the
successor state that is also ({qin}, {q1}, {q2}) contains {q1}
because {q1} ⊆ σ(({qin}, {q1}, {q2}), 1, a). If we change
however the symbol, then

({qin}, {q1}, {q2})(2)
b7→ ({qin}, {q1}, {q2})(2),

because when reading b in state ({qin}, {q1}, {q2}), the suc-
cessor state that is also ({qin}, {q1}, {q2}) contains {q1}
because {q1} ⊆ σ(({qin}, {q1}, {q2}), 2, b).

For the remainder of this paper, we always assume that A′
is complete. This can be achieved, for instance, by making A
complete before constructing A′. It guarantees that for each
ω-word x, a unique (A′ is deterministic) run of A′ on x does
always exist.

Let x = x(0)x(1)x(2) . . . ∈ Σω . Let r′ = r′(0)r′(1)r′(2) . . .
be the run of A′ on x.

Let i ≥ 0 and let 1 ≤ j ≤ |r′(i)|. We write

r′(i)(j)⊥

to indicate that either there does not exist a k such that
r′(i)(j)

x(i)7→ r′(i+ 1)(k), or for each k such that r′(i)(j)
x(i)7→

r′(i+ 1)(k) we have r′(i+ 1)(k)⊥. The notation r′(i)(j)⊥ is
used to indicate that in the run r′ of A′ on x, component j of
state r′(i) will disappear. Either it disappears immediately (it
does not have an x(i)-successor) or it disappears eventually
(all its x(i)-successors will disappear). We will say that the
component is discontinued in A′’s run on x.

Conversely, we write
r′(i)(j)>

if and only if r′(i)(j)⊥ does not hold (we then say that r′(i)(j)
is continued in A′’s run on x). In addition, we write

r′(i)(j)>F

if and only if r′(i)(j)> and q′(i)(j) ⊆ F , and

r′(i)>F

if and only if there exists j such that r′(i)(j)>F .

If r′(i)(j)>, then r′(i)(j) has an x(i)-successor r′(i+ 1)(k)
such that r′(i + 1)(k)>, because otherwise r′(i)(j)⊥ would
hold. Therefore, and because of the pairwise disjointness of
components in A′-states (Lemma 1), the number of continued
components cannot decrease from one state to the next in A′’s
run on x:

Lemma 2. Let k be the number of different components
r′(i)(j) of state r′(i) such that r′(i)(j)>, and let l be the
number of different components r′(i+ 1)(j) of state r′(i+ 1)
such that r′(i+ 1)(j)>. Then k ≤ l.

As an example, let y = bababa The run r′ of the
automaton in Figure 5 on ω-word y is then:

({qin})({qin}, {q1})({qin}, {q1}, {q2})({qin}, {q1}, {q2}) . . .

In this run, we now label all components of A′-states either
with > or ⊥, depending on whether they are continued or not:

({qin}>)({qin}>, {q1}>)({qin}>, {q1}⊥, {q2}>)

({qin}>, {q1}⊥, {q2}>)({qin}>, {q1}⊥, {q2}>) . . .

As we could see in the construction of the automaton in
Figure 5, ({qin}, {q1}, {q2})(2) does not have a successor (i.e.
the successor set is the empty set) when reading symbol a,
because

σ(({qin}, {q1}, {q2}), 2, a) = δ({q1}, a) \ δ({q2}, a)

= {q2} \ {q2} = ∅.

Therefore ({qin}, {q1}, {q2})(2) is labelled with ⊥ in the run,
as the run is on an ω-word that contains infinitely many times
symbol a, and ({qin}, {q1}, {q2})(2) never persists.

The situation changes entirely, when we consider ω-word z =
aabbbb . . . (two as followed by exclusively bs). Run r′ of A′
on z is again:

({qin})({qin}, {q1})({qin}, {q1}, {q2})({qin}, {q1}, {q2}) . . .

However, labelling all components of A′-states either with >

or ⊥, depending on whether they are continued or not, leads
now to:

({qin}>)({qin}>, {q1}>)({qin}>, {q1}>, {q2}>)

({qin}>, {q1}>, {q2}>)({qin}>, {q1}>, {q2}>) . . .

Now ({qin}, {q1}, {q2})(2) is always labelled with > because
the absence of symbol a in z results in ({qin}, {q1}, {q2})(2)
always having a successor:

σ(({qin}, {q1}, {q2}), 2, b) = δ({q1}, b) \ δ({q2}, b)
= {q1} \ {q2} = {q1}.

Because q1 is an accepting A-state, the run can even be
labelled as:

({qin}>)({qin}>, {q1}>F)({qin}>, {q1}>F , {q2}>)

({qin}>, {q1}>F , {q2}>)({qin}>, {q1}>F , {q2}>) . . .

With our new notation, we will show in the next section that
run r′ of A′ on ω-word x will contain infinitely many states
with component labels >F if and only if the original automaton
A Büchi-accepts x.

D. Some Properties of the Construction

Let q′ ∈ Q′. We will write “
⋃
q′ ” to designate

|q′|⋃
i=1

q′(i), i.e.

the set of all A-states that occur in q′. From the definition of
the transition function δ′ we get immediately:

Lemma 3. δ(
⋃
q′, a) =

⋃
δ′(q′, a).

For the remainder of this section, let a ∈ Σ, let w ∈ Σ∗, let
x ∈ Σω , and let r′ be the run of A′ on x.

Lemma 4. δ({qin}, w) =
⋃
δ′(q′in, w).

Proof. We prove the lemma by an induction on the length |w|
of w. If |w| = 0, then A reaches {qin} =

⋃
q′in by reading w.

If |w| > 0, then w = va with v ∈ Σ∗ and a ∈ Σ. Assuming
δ({qin}, v) =

⋃
δ′(q′in, v) we get:

δ({qin}, w) = δ(δ({qin}, v), a) = δ(
⋃
δ′(q′in, v), a)

=
⋃
δ′(δ′(q′in, v), a) =

⋃
δ′(q′in, w),

where the second equality holds by induction, and the third
applies Lemma 3.

Lemma 5. If there are infinitely many j such that r′(j)
contains a continued set of accepting states (written: r′(j)>F),
then A accepts x.

Proof. From Lemma 2 we know that the number of continued
components cannot decrease when moving forward in a run.
Because each state in A′ can have at most m components,
where m is the number of states in A, the number of continued
components must remain constant after some position k in run
r′. Let this number be l where 1 ≤ l ≤ m. So after position
k in r′, each state will contain l continued components,
and therefore each continued component will have exactly

one continued component as its successor when reading the
respective symbol.

So after position k, we can identify l sequences of consecutive
continued components in r′. Because there are infinitely many
continued components in r′ that are sets of accepting A-states,
at least one of these l sequences of consecutive continued com-
ponents must contain infinitely many continued components
that are sets of accepting A-states (because l is finite).

Therefore there must be sequences i1, i2, i3 . . . of run positions
and j1, j2, j3 . . . of component indices such that, for all n ≥ 1
and wn = x(in) . . . x(in+1 − 1):

r′(in)(jn)>F

and
r′(in)(jn)

wn7→ r′(in+1)(jn+1).

Then there exists to each A-state qn+1 ∈ r′(in+1)(jn+1)
an A-state qn ∈ r′(in)(jn) such that qn+1 ∈ δ(qn, wn).
Applying Koenig’s Lemma [8], there exists a sequence
p1, p2, p3, . . . of A-states such that pn+1 ∈ δ(pn, wn) and
p1 ∈ δ

(
qin, x(0) . . . x(i1 − 1)

)
. Therefore there exists a run

r of A on x that contains the states pn. Because all pn are
accepting A-states, r is an accepting run and A accepts x.

Lemma 6. If A accepts x, then there are infinitely many i
such that r′(i) contains a continued set of accepting states
(written: r′(i)>F).

Proof. Let r be a greedy accepting run of A on x and let
r′ be the run of A′ on x. We can then prove (see below)
that there exists a sequence j0, j1, j2 . . . of component indices,
1 ≤ j0, j1, j2 . . . ≤ m, such that for all i ≥ 0:

r(i) ∈ r′(i)(ji)

and
r′(i)(ji)

x(i)7→ r′(i+ 1)(ji+1).

Therefore all r′(i)(ji) are continued. In addition, because r
is accepting, infinitely many r(i) are accepting and so are
infinitely many r′(i)(ji), because they contain r(i) and are
therefore sets of accepting A-states. Then infinitely many
r′(i)(ji) are continued and accepting, proving the lemma.

What we still need to prove to complete the proof of the lemma
is that r(i) ∈ r′(i)(ji) and r′(i)(ji)

x(i)7→ r′(i + 1)(ji+1). We
prove this fact by contradiction: we assume it is not true and
prove that then r cannot be greedy.

Because of Lemma 4, there is always a component r′(i)(ji)
in A′-state r′(i) that contains r(i). If the statement is not true,
then the sequence j0, j1, j2, . . . of component indices such that
r(i) ∈ r′(i)(ji) must contain a position k ≥ 0 such that

r′(k)(jk)
x(k)

67→ r′(k + 1)(jk+1).

Let k be the smallest such position. According to the definition
of A′’s transition function δ′, there must be a j′k > jk such
that

r′(k)(j′k)
x(k)7→ r′(k + 1)(jk+1).

Then there is a sequence j′0, j
′
1, j
′
2, . . . , j

′
k of component posi-

tions such that, for all 1 ≤ n ≤ k − 1 such that

r′(n)(j′n)
x(n)7→ r′(n+ 1)(j′n+1).

j0, j1, j2, . . . , jk and j′0, j
′
1, j
′
2, . . . , j

′
k will coincide in a

few first indices.2 Let l be the first position at which
j0, j1, j2, . . . , jk and j′0, j

′
1, j
′
2, . . . , j

′
k start to differ. Because

j′k > jk, also j′l > jl. So we have

r′(l − 1)(jl−1)
x(l−1)7→ r′(l)(jl),

r′(l − 1)(jl−1)
x(l−1)7→ r′(l)(j′l),

and

j′l > jl.

From the definition of A′’s transition function δ′ we get
that r′(l)(jl) contains non-accepting A-states, but r′(l)(j′l)
contains accepting A-states. Let r̃(0)r̃(1) . . . r̃(k + 1) be the
run of A on x(0)x(1) . . . x(k) such that for all 1 ≤ n ≤ k+ 1

r̃(n) ∈ r′(n)(j′n)

and

r̃(k + 1) = r(k + 1).

Then r̃(0)r̃(1) . . . r̃(k + 1) and r(0)r(1) . . . r(k + 1) are runs
of A on x(0)x(1) . . . x(k), and r̃(0)r̃(1) . . . r̃(k + 1) visits
an accepting state earlier than r(0)r(1) . . . r(k + 1) does. So
r(0)r(1) . . . r(k + 1) cannot be greedy, and consequently r
cannot be greedy as r(0)r(1) . . . r(k + 1) is a prefix of r,
contradicting the choice of r and completing the proof of the
lemma.

Putting Lemmas 5 and 6 together, we obtain:

Corollary 1. A accepts x if and only if r′ contains infinitely
many A′-states that contain continued sets of accepting A-
states.

To complete this section, let us briefly look at the size of the
construction: we calculate the number of states in A′. These
states are n-tuples of disjoint sets of A-states, where n ranges
from 1 to m and m is the number of states of A.

2They coincide at least in j′0 = j0 = 1, because r′(0) is the initial state
of A′ that contains a single component (containing the initial state of A).

The number of ways of partitioning a set of n labelled objects
into k non-empty unlabelled subsets can be written as a
Stirling number of the second kind [9] :{

n

k

}
=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.

The number of ways to partition a set of n labelled objects into
non-empty unlabelled subsets of any size is the Bell number
[10]

Bn =

n∑
k=0

{
n

k

}
.

Since we consider here tuples and not just partitions, we must
multiply each term by the number of possible orderings, giving
us the ordered Bell number [11]:

a(n) =

n∑
k=0

k!

{
n

k

}
.

Now, the ordered Bell number represents the number of tuples
of non-empty components one can create using all n elements.
In the construction presented above, all elements may not be
used. We have to sum up the ordered bell numbers for each
subset of Q. The number of tuples (weak-orderings) over m
elements, which we write #tuples(m), is thus the sum of
the ordered Bell numbers a(n) with n ranging from 1 to m,
multiplied by the number of ways of choosing n elements over
m:

#tuples(m) =

m∑
n=1

(
m

n

)
a(n).

The following recurrence relation [12]:

m−1∑
n=0

(
m

n

)
a(m− n) = 2a(m)− 1

leads to a much simpler expression of the size of A′:

#tuples(m) =

m∑
n=1

(
m

n

)
a(n)

=

m∑
n=0

(
m

n

)
a(n)−

(
m

0

)
a(0)︸ ︷︷ ︸

=1

=

m∑
n=0

(
m

m− n

)
a(n)− 1

=

m∑
n=0

(
m

n

)
a(m− n)− 1

=

m−1∑
n=0

(
m

n

)
a(m− n) +

(
m

m

)
a(m−m)− 1︸ ︷︷ ︸

=0

= 2a(m)− 1

The ordered Bell numbers can be approximated by [13]:

a(m) ≈ m!

2(ln 2)m+1

and thus the size of the upper part is asymptotically [14]:

#tuples(m) ≈ a(m) ≈ (0.53m)m.

IV. THE COMPLEMENTATION CONSTRUCTION

A. Additional Indices

With the use of a colouring of the tuple components, we can
now extend the automaton A′ described in Section III, to build
an automaton Ac complement to A. In the process, we create
an upper (non-accepting) automaton Â and a lower (accepting)
automaton Ǎ and put them together into automaton Ac. This
colouring takes the form of an index that can take integer
values in [−1, 2]. The meaning of the colours will be presented
further down.

Whereas a state q′ of A′ is written (S1, S2, . . . , Sm), a state
q of Â, Ǎ or Ac is written as

q =
(
(S1, c1), (S2, c2), . . . , (Sm, cm)

)
,

where Sj ∈ 2Q \ {∅} and cj ∈ [−1, 2], ∀1 ≤ j ≤ m.

B. Upper (Non-accepting) Part

The upper part Â represents the initial part of Ac and contains
no accepting states. The denomination “upper” comes from the
fact that the authors generally picture the accepting part of
the complement under the non-accepting one. The structure is
inspired by the complementation construction for deterministic
Büchi automata, where the non-accepting part is simply a
non-accepting copy of the original automaton representing
everything that can happen in a finite prefix of an ω-word.
Accepting runs of Ac then jump to the lower (accepting) part.

In the upper automaton Â = (Q̂,Σ, δ̂, q̂in, F̂) we simply
append colour −1 to all components of each Â-state. States
(written (S1, S2, . . . , Sm)) of the interim automaton A′ are
thus rewritten

(
(S1,−1), (S2,−1), . . . (Sm,−1)

)
in Â. The

transition function should be rewritten accordingly as follows.
Let a ∈ Σ, p′ := (S1, . . . , Sm) ∈ Q′, q′ := (S′1, . . . , S

′
m′) ∈

Q′. If
δ′(p, a) = q

where δ′ is as in Section III, then for

p̂ :=
(
(S1,−1), . . . , (Sm,−1)

)
∈ Q̂ and

q̂ :=
(
(S′1,−1), . . . , (S′m′ ,−1)

)
∈ Q̂,

δ̂ is defined by:
δ̂(p̂, a) := q̂.

As for the other elements:

• q̂in :=
(
({qin},−1)

)
• F := ∅

Only Â-states will have components with colour −1.

C. Lower (Accepting) Part

The lower automaton Ǎ := (Q̌,Σ, δ̌, q̌in, F̌) can be defined
in a similar fashion, but with values 0, 1, 2 for the colouring
indices and a non-empty accepting set F̌ . The set of accepting
states Fc is then defined according to the colouring of the
components of the states.

In a nutshell, for a an ω-word x ∈ Σω we want the run rc of
Ac on x to be accepting if and only if each greedy run r of
the original automaton A on x either:

• eventually stops visiting states of F , or
• is discontinued (i.e. is finite or becomes non-greedy).

Translated to Ǎ (where any finite behaviour has already been
taken care of in Â, these constraints become:

• the run does not visit states of F , or
• it is discontinued (i.e. is finite or becomes non-greedy).

We now give some insight into the meaning of the colours.
Let i′ be the point where run rc jumps to the lower part, i.e.
i ≥ i′ ⇔ rc(i) ∈ Ǎ. The colours of the components of the
states of Ǎ hold some information on what happens in the
greedy runs of A, “after” i′ .

• Colour c = 0:
If a tuple component (Sj , cj) is 0-coloured in rc(i), i.e.
(Sj , 0) ∈ rc(i), for an i ≥ i′, then for each state q in Sj ,
the greedy run r of A s.t. r(i) = q has not yet visited an
accepting A-state “since” i′. An Ǎ-state containing only
0-coloured components can be set accepting, because all
greedy runs of A that may have visited an accepting A-
state between i and i′ have disappeared.

• Colour c = 2:
If a tuple component (Sj , cj) is 2-coloured in rc(i), i.e.
(Sj , 2) ∈ rc(i), for an i ≥ i′, then for each state q
in Sj , the greedy run r of A s.t. r(i) = q has visited
an accepting A-state since i′. Ac-states containing 2-
coloured components are kept non-accepting, because
that greedy run r has visited accepting A-states and has
not yet disappeared. If it never disappears, then rc only
visits non-accepting states and it is correct to reject rc in
Ac.

• Colour c = 1:
If a tuple component (Sj , cj) is 1-coloured in rc(i), i.e.
(Sj , 1) ∈ rc(i), for an i ≥ i′, then for each state q in
Sj , the greedy run r of A s.t. r(i) = q has visited an
accepting A-state since i′, but there also exist 2-coloured
components that have not yet disappeared. We say that

1-coloured components are on hold, meaning that for the
moment, we wait until the 2-coloured components have
disappeared. When this happens, 1-coloured components
become 2-coloured in the following state. Ac-states that
contain only 0-coloured or 1-coloured components are set
accepting, because all greedy runs of A that have visited
an accepting A-state between i and i′ have disappeared.
If this happens infinitely often, then no greedy run of
A can visit infinitely many accepting A-states, and it is
correct to accept rc in Ac.

We define Ǎ formally.

First, let us write the set of possible states:

Q̌ :=

|Q|⋃
m=1

{(
(S1, c1), . . . , (Sm, cm)

)
∈ (2Q \ {∅} × [0, 2])m|

∀ 1 ≤ j < k ≤ m,Sj ∩ Sk = ∅
}
.

The transition function δ̌ is defined as follows:

δ̌ : Q̌× Σ→ Q̌

As earlier, we extend the transition function δ′ of Section III
to define δ̌. Let p̌ :=

(
(S1, c1), . . . , (Sm, cm)

)
∈ Q̌ be a state

of Ǎ.
Let p′ := (S1, . . . , Sm) be the corresponding state of A′
obtained by removing the cj’s. Let a ∈ Σ and let q′ =
(S′1, . . . , S

′
m′) be the unique state of A′ s.t. δ′(p′, a) = q′.

We now define the values of the indices c′j′ of the a-successor
of p̌:

∀1 ≤ j′ ≤ m′, let 1 ≤ jpred ≤ m be (unique)

s.t. p̌(jpred)
a7→ q̌(j′),

if ∀1 ≤ j ≤ m : cj 6= 2 then

c′j := 0 if cjpred = 0

∧ S′j′ * F

c′j := 2 otherwise

if ∃1 ≤ j ≤ m : cj = 2 then

c′j := 0 if cjpred = 0

∧ S′j′ * F

c′j := 2 if cjpred = 2
c′j := 1 otherwise

For q̌ :=
(
(S′1, c

′
1) . . . , (S′m′ , c′m′)

)
we define:

δ̌(p̌, a) := q̌.

The initial state can be defined as :

q̌in :=
(
({qin}, 0)

)
.

The set F̌ of accepting states holds all states that do not
contain a 2-coloured component :

F̌ :=
⋃{(

S1, c1), . . . , (Sm, cm)
)
∈ Q̌ | ∀1 ≤ j ≤ m, cj < 2}.

D. The Complement Automaton

Applying the construction below, we can join automata Â and
Ǎ to build a new automaton Ac representing a language which
is complement to the language of the original automaton A.
The set of states Qc is the union of the sets of states of both
automata and the nondeterministic transition function δc is the
union of the functions of the two automata plus some extra
transitions which unidirectionally link the upper automaton to
the lower one. As mentioned earlier, the accepting states are
only located in the lower deterministic part of Ac.

We create the automaton Ac = (Qc,Σ, δc, qc, Fc) complement
to A by joining automata Â and Ǎ in the following way:

• Qc = Q̂ ∪ Q̌
• Let p =

(
(S1, c1), . . . , (Sm, cm)

)
∈ Qc and a ∈ Σ. The

nondeterministic transition function

δc : Qc × Σ→ 2Qc

is defined as follows 3: δc(p, a) :=
δ̂(p, a) ∪ δ̌

((
(S1, 0), . . . , (Sm, 0)

)
, a
)

if p ∈ Â,
δc(p, a) := δ̌(p, a) otherwise

• qc := q̂in
• Fc := F̌

In order to prove the language equivalence between L(A)
and the complement of L(Ac), we first show the left-to-right
direction, i.e. if an ω-word x is accepted by A then it will not
be accepted by Ac, i.e. all runs of Ac on x will be rejected.

Lemma 7. Let x = x(0)x(1)x(2) . . . ∈ L(A). Then: ∀ run
rc of Ac on x, rc is non-accepting.

Proof. Let r′ be the unique run of A′ on x. Let rc be a run
of Ac on x. We show that rc cannot be accepting. Consider
two cases:

1) rc ⊆ Â, i.e. the run remains in the upper part. Then rc
never visits an accepting state and is thus non-accepting.

2) rc ∩ Ǎ 6= ∅, i.e. ∃l : r(l) ∈ Q̌. Since x ∈ L(A) Lemma
6 gives us: ∃i′ ≥ l : r(i′)F>, so ∃j′ : 1 ≤ j′ ≤ |r′(i′)|
s.t. r′(i′)(j′) ∈ F . Thus, the definition of the transition
function δc (stemming from δ̌) ensures that rc(i′)(j′) is
1 or 2-coloured. We consider those two cases:

a) rc(i
′)(j′) is 2-coloured: The transition function δc

gives us that there exists a sequence of components
(Si′ , ci′)(Si′+1, ci′+1) · · · ∈ (2Q × [−1, 2])ω s.t.
• (Si′ , ci′) = rc(i

′)(j′)
• ∀i ≥ i′, (Si, ci) ∈ rc(i)
• ∀i ≥ i′, (Si, ci)

x(i)7→ (Si+1, ci+1)

3Transitions from the upper to the lower part are as if originating from
entirely 0-coloured states.

• ∀i ≥ i′, ci = 2 (the colour cannot decrease).
Since each state in rc(i) for i ≥ i′ contains a 2-
coloured component, none of these states can be
accepting and rc is thus a non-accepting run.

b) rc(i
′)(j′) is 1-coloured: Again we consider the

sequence of components starting at rc(i
′)(j′):

(Si′ , ci′)(Si′+1, ci′+1) · · · ∈ (2Q × [−1, 2])ω s.t.
• (Si′ , ci′) = rc(i

′)(j′)
• ∀i ≥ i′, (Si, ci) ∈ rc(i)
• ∀i ≥ i′, (Si, ci)

x(i)7→ (Si+1, ci+1)

Additionally, the definition of δc ensures that the
colour c cannot decrease, so

∀i ≥ i′, ci ≥ 1.

There are now two possibilities, either the colour
eventually turns to 2, either it remains 1 forever:
i) ∃k′ > i′ : ck′ = 2: Since r(i′) is continued, and

the colour cannot decrease, we have ∀i ≥ k′,
(Si, 2) ∈ r(i) and thus r(i) /∈ Fc. It follows
that rc is a non-accepting run.

ii) ∀k ≥ i′ : ck = 1: Here, the colour of the se-
quence remains 1 forever. By definition of the
transition function δc, if a 1-coloured compo-
nent exists at level k in the run, it implies
that there exists a 2-coloured component at
level k − 1. Since ck = 1 is true ∀k ≥ i′,
then ∀k ≥ i′ − 1, there exists a 2-coloured
component in rc(k), making all the states of
rc non-accepting for k ≥ i′ − 1.

So there exists no accepting run of x on Ac. x is therefore in
L(Ac).

We now show the opposite direction of the equivalence
statement, by proving that an ω-word not accepted by A can
produce an accepting run of Ac.

Lemma 8. Let x = x(0)x(1)x(2) . . . ∈ Σω \ L(A). Then ∃
run rc of Ac on x s.t. rc is accepting.

Proof. Let r′ be the unique run of A′ on x (such a run exists
under the assumption that A′ is complete). By Lemma 5, there
exist only finitely many i s.t. r′(i)F>. This means that ∃i′ ≥ 0
s.t. ∀i ≥ i′, !r′(i)F>. We now construct an accepting run rc of
Ac on x which jumps to the lower part Ǎ exactly at that point
i′ where r′ will have ceased holding sets that are continued
and accepting.

Let rc = rc(0)rc(1)rc(2) · · · ∈ Qω
c be a run of Ac on x s.t.

rc(i) ∈ Q̌ iff i ≥ i′.

We show, by contradiction, that rc is accepting. Suppose it is
not. Then ∃i′′ ≥ i′ s.t. ∀i ≥ i′′, rc(i) /∈ Fc, i.e. rc eventually
visits only non-accepting states.

By definition of the acceptance condition Fc of Ac, at least
one of components of rc(i′′) is 2-coloured. Formally: ∃1 ≤
j′′ ≤ |rc(i′′)| s.t. rc(i′′)(j′′) is 2-coloured.

We now define the unique greedy run of A containing
rc(i
′′)(j′′):

Let (S0, c0)(S1, c1)(S2, c2) · · · ∈ (2Q × [−1, 2])ω be a se-
quence s.t.:

• ∀k ≥ 0, (Sk, ck)
x(k)7→ (Sk+1, ck+1)

• (Si′ , ci′) = rc(i
′)(j′) for a unique j′ : 1 ≤ j′ ≤ |rc(i′)|

• (Si′′ , ci′′) = rc(i
′′)(j′′).

Since rc(i
′′)(j′′) is 2-coloured, the definition of δc implies

that there must exist an i′′′ : i′ ≤ i′′′ ≤ i′′ and a j′′′ : 1 ≤
j′′′ ≤ |rc(i′′′)| s.t. rc(i′′′)(j′′′) ⊆ F 4, which contradicts the
fact that ∀i ≥ i′, !r′(i)F>. Therefore our assumption that rc is
not an accepting run is contradicted and x ∈ L(Ac).

As a consequence of lemmas 7 and 8, we have the following:

Corollary 2. For x ∈ Σω , x ∈ L(A)⇔ x ∈ L(Ac).

This proves the correctness of the construction.

In terms of size of the construction, adding the colouring to
A′, does not introduce more than a 3k factor for each A′-state
with k components. The number of states of the lower part
#lower(m) is thus bounded by:

#lower(m) ≤
m∑

n=1

(
m

n

) n∑
k=0

k!

{
n

k

}
3k

A looser (but simpler) upper bound can further be defined
(using Stirling’s approximation of the factorial [15]):

#lower(m) ≤ 3m ·
m∑

n=1

(
m

n

) n∑
k=0

k!

{
n

k

}
≤ 3m · 2a(m)

≈ 3m · 2 1

2(ln 2)n+1
· n!

≈ 3m · 1

(ln 2)m+1
·
√

2πm ·
(m
e

)m
=

√
2πm

ln 2
·
(

3m

e ln 2

)m

≈
√

2πn · (1.59m)m

=
√

2π ·
(√

m
√
m · 1.59m

)m

4In words, this means that if we find 2-coloured component, then at some
point in the past of this sequence, an accepting state of A was visited.

Since m
√
m

m→∞−→ 1,

#lower(m) ∈ O((1.59m)m)

So the size of the entire construction |Qc| is not more than

2a(m)− 1 +

m∑
n=1

(
m

n

) n∑
k=0

k!

{
n

k

}
3k.5

and thus:

|Qc| ∈ O((1.59m)m)

This upper bound is very loose and its refinement is the subject
of ongoing research.

We resume our previous example and construct the comple-
ment of the automaton of Figure 1.

To avoid cumbersome notation in the following example, a
component (Sj , cj) will be denoted as:

Ŝj if cj = −1
Sj if cj = 0

Sj if cj = 1

Sj if cj = 2

The upper part Â of the complement automaton is just the
automaton A′ where we append colour −1 to all components
(Figure 6).

({̂qin}) ({̂qin}, {̂q1}) ({̂qin}, {̂q1}, {̂q2})
a, b

b

a

a, b

Fig. 6. Upper part Â of Büchi automaton Ac complement to A of Figure 1.

The lower part Ǎ is constructed in a similar way, but with the
addition of colours 0, 1 and 2. Let’s first look at the a-successor
in Ǎ of ({̂qin}). The two successor sets are {qin} and {q1}.
By definition of the transition function δ̌, since {qin} ∩ F =
∅, the colour (initially 0) remains 0. For the set {q1}, since
{q1} ⊆ F , the new colour is 2. So the a-successor of ({̂qin})
in Ǎ is ({qin}, {q1}). The same holds for symbol b and we
can draw the transition (Figure 7):

Let’s now look at the a-successor of this newly created state.
The a-successor of {q1} is {q2} and colour 2 remains. The a-
successors of {qin} are {qin} (left successor) and {q1} (right-
successor). Since {qin} ∩F = ∅, the colour of {qin} remains
0. The colour of {q1} is set to 1 because {q1} ⊆ F and colour
2 already exists in the predecessor state. So the a-successor of
({qin}, {q1}) is finally ({qin}, {q1}, {q2}) and we can draw
the transition in our automaton (Figure 8).

5Size of the upper part (which is equal to the size of A′) plus the size of
the lower part.

({̂qin}) ({̂qin}, {̂q1}) ({̂qin}, {̂q1}, {̂q2})

({qin}, {q1})

a, b

a, b

b

a

a, b

Fig. 7. Interim lower part Ǎ of Büchi automaton Ac.

({̂qin}) ({̂qin}, {̂q1}) ({̂qin}, {̂q1}, {̂q2})

({qin}, {q1})

({qin}, {q1}, {q2})

a, b

a, b

b

a

a, b

a

Fig. 8. Interim lower part Ǎ of Büchi automaton Ac.

By applying this simple method for all reachable Ac-states,
we get the automaton of Figure 9, where the accepting states
are the states of the lower part which do not contain a
2-coloured component. Here it is only the case for state
({qin}, {q1}, {q2}).

({̂qin}) ({̂qin}, {̂q1}) ({̂qin}, {̂q1}, {̂q2})

({qin}, {q1}) ({qin}, {q1}, {q2})

({qin}, {q1}, {q2}) ({qin}, {q1}, {q2})

a, b

a, b

b

a

b

a

a, b

a, b
b

a

b

a

a, b

a, b

Fig. 9. Automaton Ac complement to A.

E. An improved algorithm

The presented construction allows some optimisations to be
applied. First, it is possible to join all neighbouring 1-coloured
components, as well as all neighbouring 2-coloured com-
ponents, without changing the language of the constructed
automaton, but greatly reducing its size (and thus its worst-
case bound).

We define the join : Qc → Qc function as the function that
takes an arbitrary state of Qc and outputs another state of
Qc where all neighbouring 1-coloured components have been
joined together, and all neighbouring 2-coloured components
have been joined together. We extend the join function to sets
in the usual way:

join : 2Qc × Σ→ 2Qc

join(Q, a) :=
⋃
q∈Q

join(q)

Let Ac = (Qc,Σ, δc, q0, Fc) be a Büchi automaton as con-
structed by the algorithm above. Defining a new transition
function

δjoin : Qc × Σ→ Qc

δjoin(q, a) := join(δc(q, a)).

allows us to consider the automaton

Ajoin := (Qc,Σ, δjoin, q0, F).

We here prove the language equivalence betweenA andAjoin.

Lemma 9. Let r be a run of A on an ω-word x. Let r′ be a
sequence of states such that join(r(i)) = r′(i), ∀i ≥ 0. Then
r′ is a run of Ajoin on x.

Proof. We show this by induction on the length of prefixes of
x. First, it is clear that r(0) = r′(0) because applying join to
a state of the upper part has no effect. So r′(0) is a run of A′
on ε.

For the induction step, by hypothesis we have that
r′(0) · · · r′(i) is a run of x(0) · · ·x(i− 1). Then we get:

r′(i+ 1) = join(r(i+ 1))

∈ join(δ(r(i), x(i)))

= δjoin(r(i), x(i))

= δjoin(join(r(i)), x(i))

= δjoin(r′(i), x(i))

So r′(0) · · · r′(i+ 1) is indeed a run of A′ on x.

The following corollary holds trivially:

Corollary 3. For any i ≥ 0, r(i) contains the same 1-coloured
states as r′(i). Also, r(i) contains the same 2-coloured states
as r′(i).

The “equivalence” of r and r′ in terms of acceptance, can
therefore be stated:

Lemma 10. A accepts r if and only if A′ accepts r′.

Proof. We first prove that r is accepting implies that r′

accepting. Let x ∈ Σω . Let r be an accepting run of A
on x. Then it visits infinitely many accepting states of A,
which contain no 2-coloured component. By Corollary 3, r′

also visits infinitely many states that contain no 2-coloured
component. r′ is thus accepting. The same argument holds in
the other direction.

In order to reduce the state space of the lower part, one can
apply a further optimisation. That is, a 2-coloured component
immediately followed by a 1-coloured component can be
joined into a single 2-coloured component. Intuitively, this can
be done because switching a 1-coloured component to colour
2 only delays the appearance of the next accepting state (of
Qc). Since, by the structure of δjoin such an operation can
only be done finitely many times, we only introduce finitely
many delays, and thus do not turn an accepting run of Ajoin

into a non-accepting run. This is proven formally below:

We define a function join2−1 : Qc → Qc which applies
the substitution described above recursively until there is
no 1-coloured component following a 2-coloured component.
join2−1 : 2Qc → 2Qc is extended to sets in the usual way. A
new transition function can be defined:

δ2−1 : Qc × Σ→ Qc

δ2−1(q, a) := join2−1(δjoin(q, a)).

The corresponding automaton

A2−1 := (Q = Q̂ ∪ Q̌ ∪ {s},Σ, δ2−1, q0, F)

contains states that have no two neighbouring 1-coloured
components, no two neighbouring 2-coloured components, and
no 1-coloured component immediately following a 2-coloured
component.

To show language equivalence, we first need to prove some
general properties of the colourings in a run on the con-
structed automaton. Let x ∈ Σω be an ω-word and r =
r(0)r(1)r(2) · · · ∈ Qω be a run of A on x such that ∃k > 0
such that r(i) ∈ Q̌ ⇔ i ≥ k. That is, l is the point where r
reaches the lower part Q̌.

This lemma states that, in the lower part Q̌, the number of 0-
coloured elements cannot increase from one state to the next.

Lemma 11. Let mi be the number of 0-coloured elements in
state r(i). Then for i ≥ l, mi ≥ mi+1.

Proof. By definition of δ̌ in the construction algorithm, a 0-
coloured component can have at most one 0-coloured succes-

sor. Therefore the number of 0-coloured components cannot
increase from a state of the run r to the next.

By boundedness of the number of components, it follows
immediately that there are only finitely steps where the number
of 0-coloured components can decrease.

Corollary 4. In r, there are finitely many i where mi > mi+1.

The following lemma shows language equivalence.

Lemma 12. L(A) = L(A2−1).

Proof. We first prove that L(Ajoin) ⊆ L(A2−1). Let x ∈
L(Ajoin) and let r be the run of Ajoin on x. Consider
the run r′ of x such that r′(i) := join2−1(r(i)), ∀i ≥ 0.
One can see, by looking at the transition function δ, that the
situation where a 1-coloured component immediately follows
a 2-coloured component can only arise after a 0-coloured
component disappears (because 2-coloured components are
inherently “older” than 1-coloured components, and that newly
created components (emerging from a 0-coloured component)
are placed to the left of older components). In r′, these
two components are merged. And the next occurrence of a
2-coloured component followed by a 1-coloured component
is necessarily the result of another 0-coloured component
disappearing. By Corollary 4, this can only happen finitely
many times. Since r is accepting, all states that are in 1- or
2-coloured components eventually disappear. In r′, this disap-
pearing can be delayed by the union of 1-coloured elements
into 2-coloured elements, but only by a finite amount of steps.
Therefore, all states present in a 1- or 2-coloured component
eventually disappear also, and at this point an accepting state
is marked. So r′ contains infinitely many accepting states.

In the other direction of proof, suppose r′ is accepting,
then all states contained in 2-coloured components eventually
disappear (each time an accepting state of A2−1 is visited).
The set of these states is a superset of the set of states in
2-coloured components that disappear in r. So ∀i such that
r′(i) ∈ F , then r(i) ∈ F . r′ is an accepting run of A2−1
immediately implies that r is an accepting run of Ajoin.

Since L(A) = L(Ajoin), we have L(A) = L(A2−1).

The following lemma states that it is sufficient to consider
tuples of which the first component is either 0-coloured, or
2-coloured. In other words, if the first component of a state is
of colour 1, that component can be coloured 2 and joined with
the following 2-coloured component, if such a next component
exists. We must define a new function f (for f irst component)
f : Qc → Qc that performs this operation on a state p :=
((S0, c0), (S1, c1), . . . , (Sm, cm)):

• If c0 = 1 and c1 = 0, then
f(p) := ((S0, 2), (S1, c1), . . . , (Sm, cm))

• If c0 = 1 and c1 = 2, then
f(p) := ((S0 ∪ S1, 2), (S2, c2), . . . , (Sm, cm))

• otherwise (and if |p| < 2): f(p) = p.

f : 2Qc → 2Qc is extended to sets in the usual way.

We define the transition function:

δf : Qc × Σ→ Qc

δf (q, a) := f(δ2−1(q, a)).

and the automaton:

Af := (Q = Q̂ ∪ Q̌ ∪ {s},Σ, δf , q0, F).

It is easy to see (using an argument as in 9 if necessary), that
for a run r = r(0) ·r(1) ·r(2) · · · of A on an ω-word x ∈ Σω ,
the run r′ := f(r(0)) · f(r(1)) · · · is a run of Af on x.

Lemma 13. L(A) = L(Af).

Proof. We first show that L(A2−1) ⊆ L(Af). Let x ∈
L(A2−1) and r be an accepting run of A2−1 on x. Let
r′ = f(r(0)) · f(r(1)) · · · be a run of Af on x. We use the
same argument as in the proof of Lemma 12. A 1-coloured
component on the leftmost position can only be the result
of a 0-coloured component that has previously disappeared.
Therefore, the switching of this 1-coloured component to
colour 2 (and possible merging with the next 2-coloured
component if it exists), can only happen finitely many times,
and as such does not alter the acceptance of the run. So r is
accepting if and only if r′ is accepting.

For the other direction L(A2−1) ⊇ L(Af), let x ∈ L(Af).
Let r be an accepting run of A21 on x and r′ = f(r(0)) ·
f(r(1)) · · · be a run of Af on x. ∀i ≥ 0, if r′(i) contains no
2-coloured component, then r(i) either. So if r′ is accepting
(and contains infinitely many states that have no 2-coloured
component), then r is also accepting.

As a consequence, L(A) = L(A1−2) = L(Af).

These optimisations reduce the set of possible states in the
lower part. We first must count the number col(k) of different
ways of colouring a tuple of size k (which we henceforth call
a k-tuple). Let col0(k), col1(k) and col2(k) be the number of
colourings of a k-tuple which leftmost component is coloured
0, 1 or 2, respectively. The above optimisations (namely
“join”, “2 − 1” and “f”) yield the following recurrence
relations, valid for k ≥ 1:

• col0(k + 1) = col0(k) + col1(k) + col2(k) = col(k)
• col1(k + 2) = col0(k + 1) + col(k)
• col2(k + 1) = col0(k)

The number of colourings can then be recursively evaluated,
∀k ≥ 1:

col(k + 3) = col0(k + 3) + col1(k + 3) + col2(k + 3) (1)
= col(k + 2) + col0(k + 2) + col2(k + 2) + col0(k + 2)

(2)
= col(k + 2) + 2col(k + 1) + col2(k + 2) (3)
= col(k + 2) + 2col(k + 1) + col0(k + 1) (4)
= col(k + 2) + 2col(k + 1) + col(k) (5)

From this, we can deduce that, ∀k ≥ 1:

col(k + 2) ≤ col(k + 1) + col(k)

Reintroduced in equation 5, this gives us:

col(k + 3) = col(k + 2) + 2col(k + 1) + col(k)

= col(k + 2) + col(k + 1) + col(k + 1) + col(k)︸ ︷︷ ︸
≥col(k+2)

≥ col(k + 2) + col(k + 1) + col(k + 2)

= 2col(k + 2) + col(k + 1)

≥ 2col(k + 2)

This result can be used in equation 5 again to bound the
increase of col:

col(k + 3) = col(k + 2) + 2col(k + 1)︸ ︷︷ ︸
≤col(k+2)

+ col(k)︸ ︷︷ ︸
≤1/2col(k+1)

≤ col(k + 2) + col(k + 2) + 1/2col(k + 1)︸ ︷︷ ︸
1/4col(k+2)

≤ 2.25 · col(k + 2)

We are left to find the initial values of col in order to have a
valid bound. There are 2 colourings of tuples of size 1:

1) ((S1, 0))
2) ((S1, 2))

There are 4 colourings of tuples of size 2:

1) ((S1, 0), (S2, 0))
2) ((S1, 0), (S2, 1))
3) ((S1, 0), (S2, 2))
4) ((S1, 2), (S2, 0))

And there are 9 colourings of tuples of size 3:

1) ((S1, 0), (S2, 0)), (S3, 0))
2) ((S1, 0), (S2, 0)), (S3, 1))
3) ((S1, 0), (S2, 0)), (S3, 2))
4) ((S1, 0), (S2, 1)), (S3, 0))
5) ((S1, 0), (S2, 1)), (S3, 2))
6) ((S1, 0), (S2, 2)), (S3, 0))
7) ((S1, 2), (S2, 0)), (S3, 0))

8) ((S1, 2), (S2, 0)), (S3, 1))
9) ((S1, 2), (S2, 0)), (S3, 2))

We sum up:

• col(1) = 2
• col(2) = 4
• col(3) = 9

So from these initial values, and the recurrence relation
calculated above, we get:

col(k) ≤ 2.25k ∀k ≥ 0.

The number of states in the lower part of the optimised
automaton is then:

#lower(m) ≤
m∑

n=1

(
m

n

) n∑
k=0

k!

{
n

k

}
2.25k

and we may recalculate the approximation:

#lower(m) ∈ O((
2.25

3
· 1.59m)m) = O((1.195m)m)

F. Further possibilities for Optimization

Without further proof here, it is easy to see that there is some
room for other language-preserving operations. For instance
in the case where automaton A is complete, we observe that
Ac-states of which the rightmost component has colour 2 can
be ignored, as well as all their successors. This is because
the completeness enforces that “branches” of the execution
tree can only “die” if at some point, the deletion process
described in section III removes the component. Since the
deletion process is done right-to-left, this is only possible if
there exists another component on the right, which is not the
case here. Therefore a rightmost branch is persistent and if its
colour is 2, this colour never disappears and future states can
never become accepting.

Taking our previous example, since A is complete, optimiza-
tion directly leads to the automaton of Figure 10 (applied at
construction time and not as a reduction from Figure 9).

G. Benchmark results

In this section, we give the output of our performance test
against other complementation constructions. For these ex-
periments, we have implemented the algorithm presented in
Section III, with the “2−1” optimisation of Section IV-E. The
algorithm was implemented in Java and then transformed into
a plugin for the GOAL6 software. It was checked against usual
complementation methods: slice, rank and Safra-Piterman,

6http://goal.im.ntu.edu.tw/

({̂qin}) ({̂qin}, {̂q1}) ({̂qin}, {̂q1}, {̂q2})

({qin}, {q1}, {q2})

({qin}, {q1}, {q2})

a, b

b

a

a

a, b

a, b
b

a a, b

Fig. 10. Reduced automaton Ac complement to A.

which are all already implemented in GOAL. No specific
optimisation (reduction of dead states, maximising of the
acceptance condition,. . .) was used for either of the algorithm.
It is clear that applying such optimisations will often reduce
the output size, as well on our construction than on the
algorithms it is tested against.

These preliminary benchmarks only take into account the
number of states of the constructed automaton. In order to
compare the presented algorithm (that we name here “Tuple”)
with each other, we wrote a GOAL script that generates random
Büchi automata with following properties:

• Number of states: 6
• Number of transitions: 24
• Size of (propositional) alphabet: 2
• Density of accepting states: 0.3

The script applies the tuple construction on one side, and the
other algorithm on the other side, and outputs the number
of states and transitions for each construction. You will note
that the complementation time is not considered here. The
reason is that computation time depends too much on the
GOAL framework and on the way the various algorithms are
implemented.

As it is suggested in [16], the Safra-Piterman [17] algorithm
produces the least states than any other construction to date.
Here are the results for 1000 generated automata (we print the
average number of states and transitions):

Safra-Piterman Tuple
av. # states 180 199

av. # transitions 721 850
wins 555 445

The wins line shows how many times the algorithm has
beaten its counterpart. Interestingly, the tuple construction

beats Safra-Piterman nearly half of the time. This shows that
our preliminary construction shows good potential on random
automata and motivates further research on efficiency.

We also deliver some test results against other algorithms
implemented if GOAL. Because these other algorithms take
a lot more time, the test is only done on 100 automata:

Slice (with turn-wise cut-point optimisation) [2] :

Slice Tuple
av. # states 3453 227

av. # transitions 18571 957
wins 0 100

Rank (with tight-rank and turn-wise cut-point optimisations)
[18]:

Rank Tuple
av. # states 1762 192

av. # transitions 33233 829
wins 0 100

Our construction is clearly more efficient one practical cases
than those two approaches.

H. An Alternative Construction

The worst-case bounds discussed above can be improved, as it
was shown in [1] that the O(0.76m)m bound is tight. There-
fore, there exist complementation methods that do not exceed
that bound. We can improve the bound of our construction
by modifying the transition function. It is possible to consider
only one 2-coloured component at a time. The state-space of
the lower part is then loosely bounded by:

#lower(m) ≤
m∑

n=1

(
m

n

) n∑
k=0

k!

{
n

k

}
1.62k

A very loose upper bound for this expression is O(0.86m)m,
and there is strong evidence (by computation of actual values
of the expression) that it can be bounded by O(0.76m)m.
Demonstrations of these statements will be the subject of
a future paper. We may nevertheless already mention that
experimental results lead to observe that this alternative con-
struction does not behave as well as the primary (optimised)
construction.

V. CONCLUSION

We have presented here a direct complementation construction
for Büchi automata. The goal was not to find an efficient
algorithm, such a search would have been vain because of the
theoretical limits of complementation. We however strongly
believe that some practical construction can stem from a better

comprehension of the internal mechanism of the complement
operation on Büchi automata. Our algorithm already outper-
forms most complementation constructions, and still holds
possibilities of improvement.

Constructed as a concatenation of two deterministic automata,
the resulting complement automaton has the nice property
of being deterministic in the limit. As a side note, the non-
determinism degree of the complement is 2. Another inter-
esting property is the fact that the simple complementation
algorithm for deterministic Büchi automata is a special case
of our construction.

Future prospects include the tightening of the complexity
bounds, as well as further improvements to the algorithm’s
efficiency.

REFERENCES

[1] S. Schewe, “Büchi complementation made tight,” in STACS, ser. LIPIcs,
S. Albers and J.-Y. Marion, Eds., vol. 3. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2009, pp. 661–672.

[2] S. Fogarty, O. Kupferman, T. Wilke, and M. Y. Vardi, “Unifying büchi
complementation constructions,” Logical Methods in Computer Science,
vol. 9, no. 1, 2013.

[3] D. Kähler and T. Wilke, “Complementation, disambiguation, and de-
terminization of büchi automata unified,” in ICALP (1), ser. Lecture
Notes in Computer Science, L. Aceto, I. Damgård, L. A. Goldberg,
M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds., vol. 5125.
Springer, 2008, pp. 724–735.

[4] U. Ultes-Nitsche, “A power-set construction for reducing Büchi au-
tomata to non-determinism degree two,” Information Processing Letters
(IPL), vol. 101, no. 3, pp. 107–111, February 2007.

[5] F. Nießner, U. Nitsche, and P. Ochsenschläger, “Deterministic ω-regular
liveness properties,” in Proceedings of the 3rd International Conference
on Developments in Language Theory (DLT’97), S. Bozapalidis, Ed.,
Thessaloniki, Greece, 1998, pp. 237–247.

[6] J. R. Büchi, “On a decision method in restricted second order arith-
metic,” in Proceedings of the International Congress on Logic, Method-
ology and Philosophy of Science 1960, E. Nagel et al., Eds. Stanford
University Press, 1962, pp. 1–11.

[7] W. Thomas, “Automata on infinite objects,” in Formal Models and
Semantics, ser. Handbook of Theoretical Computer Science, J. van
Leeuwen, Ed., vol. B. Elsevier, 1990, pp. 133–191.

[8] H. Hoogeboom and G. Rozenberg, “Infinitary languages: Basic theory
and applications to concurrent systems,” in Current Trends in Concur-
rency, ser. Lecture Notes in Computer Science, J. de Bakker, W.-P.
de Roever, and G. Rozenberg, Eds., vol. 224. Springer Verlag, 1986,
pp. 266–342.

[9] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1994.

[10] D. E. Knuth, “The art of computer programming, volume 1 (3rd ed.):
fundamental algorithms,” 1997.

[11] R. Sprugnoli, “Riordan arrays and combinatorial sums,” Discrete
Math., vol. 132, no. 1-3, pp. 267–290, Sep. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0012-365X(92)00570-H

[12] O. A. Gross, “Preferential arrangements,” no. 69, pp. 4–8, 1962.
[13] J. Barthelemy, “An asymptotic equivalent for the number

of total preorders on a finite set,” Discrete Mathematics,
vol. 29, no. 3, pp. 311 – 313, 1980. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0012365X80901594

[14] M. Vardi, “Expected properties of set partitions,” The Weizmann Insti-
tute of Science, Tech. Rep., 1980.

[15] J. Stirling, Methodus Differentialis, sive tractatus de summation et
interpolation serierum infinitarium, London, Ed., 1730.

[16] M.-H. Tsai, S. Fogarty, M. Y. Vardi, and Y.-K. Tsay, “State of Büchi
complementation.” in CIAA’10, 2010, pp. 261–271.

[17] N. Piterman, “From nondeterministic Büchi and streett automata
to deterministic parity automata,” in Proceedings of the
21st Annual IEEE Symposium on Logic in Computer
Science, Seattle, WA, 2006, pp. 255–264. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1157735.1158062

[18] O. Kupferman and M. Y. Vardi, “Module checking,” in CAV’96, ser.
Lecture Notes in Computer Science, R. Alur and T. A. Henzinger, Eds.,
vol. 1102. New Brunswick, N.J.: Springer Verlag, 1996, pp. 75–86.

[19] C. Göttel, “Implementation of an Algorithm for Büchi Complementa-
tion,” Bachelor thesis, University of Fribourg, Switzerland, 2013.

[20] M. Michel, “Complementation is more difficult with automata on infinite
words,” CNET, Paris, Tech. Rep., 1988.

[21] W. Thomas, “Handbook of formal languages, vol. 3,” G. Rozenberg
and A. Salomaa, Eds. New York, NY, USA: Springer-Verlag New
York, Inc., 1997, ch. Languages, Automata, and Logic, pp. 389–455.
[Online]. Available: http://dl.acm.org/citation.cfm?id=267871.267878

	Blank Page

