Supplementary Materials and Methods

Clinical Sites and Investigators

Site	Principal Investigator	Co-Investigator
Severance Hospital	Prof. Si Young Song, MD,	
Division of Gastroenterology	PhD	
Department of Internal Medicine		
Yonsei University College of Medicine	Prof. Tae II Kim, MD, PhD	
Seoul, Korea		
Department of Internal Medicine	Prof. Joo Sung Kim, MD, PhD	
Seoul National University College of		
Medicine Seoul, Korea		
Asan Medical Center	Prof. Seung-Jae Myung, MD,	
Department of Gastroenterology	PhD	
University of Ulsan College of Medicine		
Seoul, Korea		
Centre Hospitalier Universitaire	Prof. Gian Dorta, MD	Dr Cristina Nichita, MD
Vaudois		
Département de médecine interne		
Service de Gastro-entérologie et		
d'Hépatologie		
Lausanne, Switzerland		
Kantonsspital St.Gallen	Prof. Jan Borovicka, MD	
Abt.Gastroenterologie/Hepatologie		
Kantonsspital St.Gallen		
St.Gallen, Switzerland		
Kantonsspital Liestal	Prof. Rémy Meier MD	Dr Anna-Maria Kunz, MD
Gastroenterology, Hepatology		Dr Julia Pilz, MD
and Nutrition Department		Dr Emanuel Burri, MD
University Hospital		
Liestal, Switzerland		
Spital Thun	Dr Boudewijn van der Weg,	Dr Andreas Frenzer, MD
Gastroenterologie	MD	Dr Daniel Rauch, MD
Facharzt für Innere Medizin und		
Gastroenterologie		
Thun, Switzerland		
Universitätsspital Basel	Prof. Christoph Beglinger, MD	
Department of Biomedicine		
Basel, Switzerland		
Ensemble Hospitalier de la Côte	Dr Cédric Vallet, MD	
Service de Chirurgie		
Morges, Switzerland		
Clinique Cecil	Dr Philippe Maerten, MD	
Lausanne, Switzerland		

Ethics Committees and IRB

	Cantons of Bern (No KEK 139/10)
Switzerland	St. Gallen (No. EKSG 10/091/1B)
	Basel (No. EKBB 242/10)
	Vaud (No. VD 77/10)
	The Severance Hospital, Yonsei University College of Medicine, (No. 4-2010-0128)
South Korea	Asan Medical Centre, University of Ulsan College of Medicine, Seoul, (IRB No. 2010-0221)
	Institutional Bioethics Review Board of Seoul National University
	Hospital, (IRB No. H-1004-020-315)

Central Pathology Board

Site	Responsible Pathologist
Basel University Hospital,	Prof. Luigi Terracciano, MD
Molecular Pathology Division	
Institute of Pathology,	
Basel, Switzerland	
Samsung Medical Centre,	Prof. Seok-Hyung Kim, MD
Department of Pathology,	
Seoul, Korea	
University of Kentucky, Lexington,	Prof. Eun Lee, MD
KY, USA	

Number of Recruited Subjects in the Swiss Hospitals

Site Numbers	Total	Control	AP	CRC	Others
Centre Hospitalier Universitaire Vaudois (Lausanne)	207	88	61	58	263
Kantonsspital St.Gallen (St. Gallen)	26	9	6	11	31
Kantonsspital Liestal (Liestal)	34	3	18	13	32
Spital Thun (Thun)	52	38	7	7	85
Universitätsspital Basel (Basel)	19	5	11	3	20
Ensemble Hospitalier de la Côte (Morges)	5	0	0	5	1
Clinique Cécil (Lausanne)	6	6	0	0	1

Manufacturers of the equipment mentioned in the Laboratory Procedures section.

Procedure	Equipment	Manufacturer
PBMC pellets resuspension	RNAlater [®] Solution	Life Technologies, Carlsbad, CA
Automated purification of total RNA	QIAcube by RNeasy Mini kit	QIAGEN, Venlo, The
		Netherlands
RNA integrity analysis	Agilent 2100 Bioanalyzer	Agilent Technologies, Santa
		Clara, CA
RNA reverse transcription into cDNA	SuperScript [®] VILO cDNA Synthesis	Invitrogen, Life Technologies,
	Kit	Carlsbad, CA
PCR reactions	RealTime ready Custom RT-qPCR	Roche, Basel, Switzerland
	assays	
PCR reactions	RealTime Ready™ DNA Probes	Roche, Basel, Switzerland
	Master Mix	
CEA, CYFRA21-1, CA125 and CA19-9	Architect immunoassay analyser	Abbott Diagnostics, Lake forest,
plasma concentrations measurement	platform	IL

Predictive Algorithm Development

The final predictive algorithms were defined on the training and validation sets, which included 120 and 61 samples, respectively, (Figure 1).

Firstly, we defined an algorithm based on the 29-gene expression profiles. We refer to it as a multi-gene multi-classifier (MGMC) algorithm since our algorithm definition strategy envisaged the combination of multiple classifiers. This choice was based on the fact that there is not a single optimal classification method and that model combination can improve the robustness and stability of the test and its accuracy^{31, 32}. The process could be broken into the following steps:

- 1. Classifier generation on the training set. In order to define optimal classifiers for different classification problems, the following data subsets were used for model fitting: Controls + CRC stage I-IV, Controls + LAP, Controls + CRC stage I-II, Controls + Advanced Neoplasia (LAP+CRC I-IV). 144 statistical and 7200 fuzzy classifiers were generated and internally validated by non-overlapped bootstrap. 1000 random datasets were drawn with replacement with the same size as the training set. The model was re-fitted on each bootstrap and validated on the out-of-bag samples. The specificity and sensitivity average values over 1000 bootstraps were calculated, Receiver Operating Characteristics (ROC) curves were generated and the area under the curve (AUC) was calculated. External validation on an independent validation set and performance estimation.
- Selection of the best performing classifiers. Twelve classifiers (6 statistical and 6 fuzzy models) where selected according to the highest and most stable accuracy. Stable classifiers were defined as the ones showing the minimum distance for sensitivity and specificity across training, bootstrap and validation set.
- 3. To define the MGMC algorithm we repeated steps 1-3, using the 12 classifiers as variables instead of the 29 biomarkers.

Among several tested MGMCs, only one was retained and tested on the independent test sets. The final MGMC algorithm combines 5 classifiers fitted on different classification problems and releases a binary result which suggests the presence or absence of colorectal neoplasia.

Once the MGMC algorithm was defined, we combined it with tumor protein markers, to give rise to a MGMC-Protein (MGMC-P) algorithm. First, the Wilcoxon rank test was applied to CEA, CYFRA21-1, CA125 and CA19-9 plasma concentrations, using the same data subsets described above, to select the most significant tumor markers for CRC discrimination from the control group. For

selected markers, a cut-off value was defined by ROC curve analysis and by optimal trade-off selection between sensitivity and specificity. They were then combined with the MGMC algorithm, using a simple decision tree classification approach. The node rules were set in such a way that the sensitivity of the MGMC algorithm was maintained and the specificity was complemented and improved. The selection and validation of the MGMC-P algorithm followed steps 1-3 described above.

Supplementary Table 1. The 29-gene panel for colorectal cancer and large adenoma detection. Gene expression profiles obtained from the training set were explored by univariate analysis to compare the behavior of the 29 genes across the control (CON), the CRC and the LAP groups. Twelve genes were significantly differentially expressed in CRC and LAP compared to controls (p-value<0.05) by Wilcoxon rank test, applied to normalized gene expressions. Relative abundance of a gene transcript is represented by the fold change (FC), defined as $FC_{gene} = 2^{\Delta\Delta Cp}$, where $\Delta\Delta Cp = mean(\Delta Cp_{Disease}) - mean(\Delta Cp_{Control})$.

Gene Description	Biological Function	p-value CRC/CON	FC CRC/CON	p-value LAP/CON	FC LAP/CON
S100 calcium binding protein A8	Cytokine / Chemotaxis/inflammation	5.07E-06	1.7	1.79E-01	1.1
interleukin 1, beta	Cytokine / Chemotaxis/inflammation	4.19E-04	2.1	1.23E-03	1.7
chemokine (C-C motif) receptor 1	Cell signal transduction/Chemotaxis/Inflammation	4.42E-04	1.7	6.85E-03	1.3
prostaglandin-endoperoxide synthase 2	Lipid metabolism/Inflammation	7.68E-04	2.1	6.85E-03	1.6
peroxisome proliferator-activated receptor gamma	Transcription Regulation/ Proliferation/ Differentiation	3.59E-03	1.4	1.36E-01	1.1
mitogen-activated protein kinase 6	Cell signaling/Proliferation	3.95E-03	1.2	6.01E-02	1.1
tumor necrosis factor (ligand) superfamily, member 13b	Cytokine/ Chemotaxis/inflammation	1.03E-02	1.2	7.82E-03	1.2
calcium channel, voltage-dependent, beta 4 subunit	Cell signal transduction/Ion transport	1.31E-02	-1.3	4.24E-01	-1.1
matrix metallopeptidase 11 (stromelysin 3)		1.66E-02	-1.3	7.60E-02	-1.2
lactotransforrin	Protease/ Matrix remodelling	2 1 45 02	2.4	C 71E 02	1.0
	Antimicrobial/Iron transport	2.14E-02	2.4	6.71E-02	1.6
CD63 molecule	Signal transduction	3.14E-02	1.1	2.18E-02	1.1
carboxylesterase 1	Esterase/ Drug metabolism	5.70E-02	1.2	5.05E-01	-1.0
chemokine (C-X-C motif) ligand 10	Cytokine / Chemotaxis/inflammation	7.13E-02	-1.3	4.43E-01	1.1
mitogen-activated protein kinase kinase 3	Cell signaling/Proliferation	9.89E-02	1.1	3.47E-02	1.1
matrix metallopeptidase 9 (gelatinase B)	Protease/ Matrix remodelling	1.21E-01	1.4	9.06E-01	-1.0
B-cell CLL/lymphoma 3	Transcription Regulation/ Cell Cycle	1.67E-01	1.1	7.82E-01	-1.1
ras homolog gene family, member C	Transcription Regulation/Motility	2.02E-01	-1.1	1.58E-01	1.1
chemokine (C-X-C motif) ligand 11	Cytokine / Chemotaxis/inflammation	3.20E-01	-1.2	4.08E-01	1.1
prostaglandin E synthase	Lipid metabolism/Inflammation	3.28E-01	-1.3	7.82E-01	1.0
early growth response 1	Transcription Regulation/Proliferation	3.79E-01	1.4	7.94E-02	1.7
integrin, alpha 2 (CD49B)	Cell signal transduction/Cell adhesion	3.90E-01	1.2	5.84E-01	1.2
jun proto-oncogene	- Transcription Regulation/Proliferation	5.61E-01	-1.1	5.64E-01	-1.1
GATA binding protein 2	Transcription Regulation/Proliferation/Differentiation	6.40E-01	-1.1	7.36E-01	1.1
non-metastatic cells 1, protein (NM23A)	Transcription Regulation/ Cell Cycle	7.39E-01	1.0	4.75E-01	1.0
integrin, beta 5	Cell signal transduction/Cell adhesion	7.85E-01	1.1	5.05E-01	1.1
chemokine (C-X-C motif) receptor 3	Cell signal transduction/Chemotaxis/inflammation	8.04E-01	-1.0	8.84E-01	-1.0
FXYD domain containing ion transport regulator 5	Cell signal transduction/Ion transport	9.48E-01	1.0	8.52E-01	-1.0
male-specific lethal 1 homolog (Drosophila)	Transcription Regulation /Histone acetyltransferase	9.60E-01	-1.0	2.07E-01	1.0
interleukin 8	Cytokine / Chemotaxis/inflammation	9.76E-01	1.0	7.27E-01	-1.0

Table S2. Gene expression analysis of the 29 biomarkers according to age and sex Two sided t-test was used to test genes differentially expressed between subjects y Statistical significance threshold was set at 0.05.

	Age	e (<65y vs >6	55y)		Sex (M vs F)			
	CON	LAP	CRC	CON	LAP	CRC		
Genes	p-value	p-value	p-value	p-value	p-value	p-value		
BCL3	5.7E-01	8.2E-01	3.6E-01	9.8E-01	3.8E-01	8.1E-01		
CACNB4	9.0E-01	2.1E-01	6.3E-01	4.8E-01	2.1E-02	1.4E-02		
CCR1	9.7E-01	1.0E-01	4.3E-01	1.3E-01	1.2E-01	1.1E-01		
CD63	2.3E-01	2.6E-01	1.7E-03	2.9E-01	3.9E-01	9.3E-01		
CES1	7.7E-01	7.7E-01	9.4E-01	4.3E-01	9.2E-01	1.7E-02		
CXCL10	7.7E-01	9.2E-01	5.6E-01	7.8E-01	5.1E-01	4.6E-02		
CXCL11	9.0E-01	9.6E-01	6.2E-01	3.9E-01	8.7E-01	1.2E-01		
CXCR3	2.9E-01	2.1E-01	1.0E-01	1.9E-03	7.4E-01	1.0E-01		
EGR1	4.6E-01	9.7E-01	7.6E-01	4.1E-01	1.1E-01	7.8E-01		
FXYD5	7.4E-01	6.8E-01	2.3E-01	1.8E-01	6.3E-01	7.5E-01		
GATA2	2.0E-01	1.1E-01	6.1E-01	2.2E-01	1.6E-01	3.2E-01		
IL1B	8.8E-01	1.3E-01	7.7E-01	2.2E-01	5.9E-02	1.4E-01		
IL8	8.3E-01	8.9E-01	1.6E-01	4.5E-01	6.4E-01	4.9E-01		
ITGA2	6.2E-01	7.2E-01	1.0E-01	3.8E-01	1.6E-04	2.3E-01		
ITGB5	9.2E-01	8.8E-01	1.7E-02	8.8E-01	7.5E-04	3.7E-01		
JUN	2.5E-01	7.4E-01	5.0E-01	1.8E-01	2.9E-01	5.3E-01		
LTF	5.1E-01	5.4E-01	3.1E-01	9.2E-01	5.5E-01	3.2E-01		
MAP2K3	2.8E-01	6.7E-01	5.8E-03	7.0E-01	4.2E-01	7.7E-01		
MAPK6	9.0E-01	5.4E-02	3.3E-02	9.0E-01	5.8E-01	6.2E-01		
MMP11	3.8E-01	1.7E-01	2.3E-02	1.1E-02	7.0E-01	6.6E-01		
MMP9	9.2E-01	5.3E-01	8.5E-04	7.7E-06	1.7E-01	2.7E-01		
MSL1	7.8E-01	3.5E-01	4.1E-01	4.8E-01	7.9E-01	4.8E-02		
NME1	7.9E-01	8.7E-01	9.9E-01	7.7E-01	2.9E-01	7.1E-01		
PPARG	8.4E-01	5.9E-01	3.3E-01	2.9E-01	7.9E-04	3.9E-01		
PTGES	7.8E-01	7.3E-01	7.5E-01	1.4E-02	4.5E-01	9.8E-01		
PTGS2	9.1E-01	1.1E-01	4.3E-01	9.7E-01	1.4E-01	2.7E-01		
RHOC	5.5E-01	2.6E-01	1.8E-02	9.9E-02	5.8E-01	7.7E-01		
S100A8	6.2E-01	1.1E-01	1.1E-02	2.3E-02	2.0E-01	8.2E-01		
TNFSF13B	6.1E-01	9.1E-01	1.7E-01	4.2E-01	7.6E-01	3.2E-01		

Table S3. Positive rate of the MGMC and MGMC-P algorithms for

non-colorectal cancers

		MGMC	MGMC-P
	Total	Positive	Positive
	Total	rate	rate
	п	%	%
Other cancers, total ^a :	63	63.5	66.7
GI cancers other than CRC^{b}	15	80.0	66.7
Pancreatic cancer	12	41.7	66.7
Prostate cancer	20	60.0	55.0
Lung and tracheal cancers	11	72.7	81.8
Breast, ovary and endometrial cancers	4	50.0	75.0

^a One metastatic cancer of unknown origin

^b Five Esophageal, 4 Gastric, 3 Liver, 2 Bile

duct and 1 Duodenal cancer

Supplementary Table S4.

Positive rate of the predictive MGMC and MGMC-P algorithms applied to non per-protocol cases.

		MGMC	MGMC-P
	Total	Positive	Positive
	n	(%	%
Controls ^a	16	6.2	6.2
LAP ^b	23	56.5	52.1
CRC ^c	21	90.5	85.7
CRC stage unknown	8	50.0	50.0
AP<1cm ^b	48	35.4	31.2
Other medical conditions and diseases ^d	42	54.7	40.5
Other cancers ^e	30	70.0	66.6

 $^{\rm a}$ These subjects presented with $\,$ a personal history of polyps or asthma with ongoing treatment

^b Most of the cases presented with concomitant hyperplastic polyps, inflammatory diseases or gallstones

^C The majority of the cases presented with concomitant gallstones, bacterial infections under treatment or other types of cancer.

^d Cases were presenting with abnormal laboratory parameters, transplantation, co-morbidities including inflammatory and/or autoimmune disease, etc.

 $^{\rm e}$ Most of the cases presented concomitant adenomas, bacterial infections under treatment or gallstones

Table S5. Positivity of Colox test by age, sex and type of recrutment

		Controls					CRC				
Variable	Class	Total Control	MGMC Positive (%)	MGMC-P Positive (%)	p-value* MGMC	p-value* MGMC-P	Total CRC	MGMC Positive (%)	MGMC-P Positive (%)	p-value* MGMC	p-value* MGMC-P
Age	50-64	59	6 (10.2)	3 (5.1)	1.00	0.23	16	12 (75.0)	11 (68.8)	0.73	0.32
	>65	31	3 (9.7)	4 (12.9)			57	46 (80.7)	46 (80.7)		
Sex	female	42	5 (11.9)	4 (9.5)	0.73	0.70	32	27 (84.4)	25 (78.1)	0.40	1.00
	male	48	4 (8.3)	3 (6.3)			41	31 (75.6)	32 (78.1)		
Type of	Colonosco	ру					19	13 (68.4)	14 (73.7)	0.51	0 720
recrutment	Surgery						33	26 (66.7)	26 (66.7)	0.51	0.759

* two sided Fisher's exact test, p>0.05 is considered statistically significant