
SUPPLEMENTARY MATERIAL 

Supplementary methods 

List of Drosophila stocks 

The following strains were used in this work: w1118 (courtesy of R. Stocker); Canton-S

(courtesy of R. Stocker); salm-Gal4, UAS-H2B::YFP (courtesy of C. Desplan; Mollereau et 

al., 2000); UAS-syt::eGFP, UAS-mCD8::Cherry (courtesy of O. Urwyler; Zhang et al., 2002);

FRT42D, so3 (courtesy of F. Pignoni; Pignoni et al., 1997), UAS-hazy (courtesy of J. Bischof;

Bischof et al., 2013), UAS-otd (courtesy of H. Reichert; Blanco et al., 2011), UAS-

mCD8::GFP and FRT82B, atow (courtesy of B. Hassan; Choi et al., 2009). Stocks containing 

glass mutant alleles were previously characterised in G. Rubin's lab (Moses et al., 1989), and 

obtained from the Bloomington stock center: gl60j (No. 509); FRT82B, gl60j (No. 6333); gl2, e4

(No. 507) and gl3 (No. 508). We used the following stocks as drivers for analysing mutant 

clones: eyFLP;; FRT82B, ubiGFP (courtesy of B. Hassan), eyFLP; FRT42D, arm-lacZ

(courtesy of J. Curtiss) and hsFLP; tub-Gal4, UAS-mCD8::GFP; FRT82B, tub-Gal80

(courtesy of B. Bello). For flip-out misexpression experiments we used hsFLP; tub(FRT 

cassette)Gal4, UAS-lacZ.nls (courtesy of E. Piddini). 

We took advantage of commonly used balancers and phenotypic markers for performing 

crosses and selecting flies of the desired genotype, in particular nocSco, Sp, CyO, TM2,

MKRS, TM6b (Lindsley and Zimm, 1992) and CyO dfd-eYFP (Le et al., 2006). 

Antibodies and fluorescent dyes 

We used the following primary antibodies: rabbit anti- Gal (1:1000, Cappel, No. 55976),

chicken anti- Gal (1:1000, Abcam, ab9361), rabbit anti-GFP (1:1000, Molecular probes, A-
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6455), chicken anti-GFP (1:1000, Abcam, ab13970), rabbit anti-DsRed (1:1000, Clontech,

No. 632496), rabbit anti-HRP (1:200, Sigma, P7899), guinea pig anti-Otd (1:750, courtesy of 

T. Cook; Ranade et al., 2008), rabbit anti-Hazy (1:500, courtesy of A. Zelhof; Zelhof et al., 

2003), rabbit anti-Rh2 (1:40, Mishra et al., 2016), rabbit anti-Rh6 (1:10000, courtesy of C. 

Desplan; Tahayato et al., 2003), rabbit anti-histamine (1:1000, ImmunoStar, No. 22939) and 

rabbit anti-Ato (1:5000, courtesy of B. Hassan). Mouse monoclonal antibodies anti-Rh4, Rh5, 

and Rh6 were obtained from S. Britt and used 1:40 (Chou et al., 1999). A number of rabbit 

polyclonal antibodies against proteins of the phototransduction cascade were produced in C. 

Zuker's lab and kindly provided by N. Colley: anti-Arr1 (1:100), anti-G q (1:100), anti-NorpA 

(1:100), anti-Trpl (1:100) and anti-InaD (1:100). We obtained the following antibodies from 

Developmental Studies Hybridoma Bank (DSHB) at The University of Iowa: mouse anti- Gal

(1:20, 40-1a), rat anti-Elav (1:30, No. 7E8A10), mouse anti-Chp (1:20, No. 24B10), mouse 

anti-Fas2 (1:20, ID4), mouse anti-Fas3 (1:20, 70G10), mouse anti-Futsch (1:20, 22C10),

mouse anti-Glass (1:10, 9B2.1), mouse anti-Rh1 (1:20, 4C5) and mouse anti-Trp (1:20,

MAb83F6). 

Secondary antibodies were conjugated with Alexa Fluor fluorescent proteins (405, 488, 546,

568 or 647) and we used them in a 1:200 dilution (Molecular Probes; No. A-11029, A11001, 

A-11031, A-21235, A-31553, A-11006, A-11077, A-21247, A-11008, A-11011, A-21244, A-

11039, A-11041, A-11073, A-11074, A-21450, A-10037, A-31571, A-21206, A-10042 and A-

31573). We also used Hoechst 33258 (1:100, Sigma, No. 94403) and DAPI (in Vectashield 

mounting medium, Vector, H-1200) as fluorescent markers of cell nuclei, and phalloidin 

conjugated with ATTO 647N to label actin microfilaments (No. 65906). 

Generation and analysis of clones 

MARCM analysis of glass mutant clones was performed in hsFLP; tub-Gal4, UAS-

mCD8::GFP; FRT82B, tub-Gal80/FRT82B, gl60j animals. Clones were induced in larvae two 
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days after the flies had laid the eggs with a 20 minute long heat shock at 37°C. We could 

identify gl60j clones in the pupal retina positively labelled with mCD8::GFP. 

Rescue of the glass mutant retina was tested by inducing Hazy and Otd-expressing clones. 

For this, we crossed hsFLP; tub(FRT cassette)Gal4, UAS-lacZ.nls; gl60j flies with others 

carrying combinations of the UAS-hazy and UAS-Otd constructs with the gl60j mutation. Hazy 

expression was induced alone and together with Otd in 6 day old animals (mainly pupae, at 

about 24 hours after pupation) with a 5 minute long heat shock at 37°C. We induced the 

expression of Otd alone in 5 day old animals (mainly late third instar larvae) with a 5 minute 

long heat shock at 37°C. For both Hazy and Otd we aimed to express them at the time point 

in which they should be expressed during development in wild-type PRs (Vandendries et al., 

1996; Zelhof et al., 2003). We were able to identify Hazy and Otd-expressing cells in the 

adult glass mutant retina because of the co-expression of nuclear Gal.

To test the potency of Glass to ectopically induce PR markers we generated clones in which 

combinations of Glass with Hazy and Otd were ectopically expressed. For this we crossed 

hsFLP; tub(FRT cassette)Gal4, UAS-lacZ.nls flies with others carrying the UAS-glass, UAS-

hazy and UAS-otd constructs. Clones were induced in 4-6 hour old embryos by a 6 minute 

heat shock at 37°C. Expression of the UAS promoters was driven by tub(FRT cassette)Gal4,

which we activated by removing the FRT cassette through hsFLP mediated recombination 

(Blair, 2003; Struhl and Basler, 1993). Gal4-expressing cells in the CNS of 4 day old larvae 

were labelled with nuclear Gal.

so3 mutant clones were obtained in the eye discs of eyFLP; FRT42D, arm-lacZ/FRT42D, so3

larvae, and could be identified as groups of cells negatively labelled for Gal.

atow mutant clones were generated in the eye discs of eyFLP;; FRT82B, ubiGFP/FRT82B, 

atow larvae, and we could recognise them as groups of cells negatively labelled for GFP. 
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Generation of transgenic flies 

In order to generate the hazy(wt)-GFP reporter construct, a 1085 bp fragment upstream of 

the hazy start codon was amplified by PCR from wild-type flies and cloned into pBluescript 

using KpnI and NotI sites attached to the primers. The two Glass binding motifs were then 

mutated individually and in combination using site directed mutagenesis (Stratagene), to 

produce the hazy(gl1mut)-GFP, hazy(gl2mut)-GFP and hazy(gl1,2mut)-GFP reporter 

constructs. The wild-type and mutant sequences were then transferred into an attB-GFP-

hsp70 3'UTR reporter vector (modified from a plasmid provided by J. Rister). All constructs 

were injected into nos-PhiC31; attP40 flies. For primer sequences see table S1. 

To generate the otd(wt)-GFP reporter construct, the 1.5 kb PR enhancer element 

(Vandendries et al., 1996) was amplified by PCR from wild-type flies and cloned into 

pBluescript using the endogenous  KpnI and BamHI sites flanking this element. For making 

otd(glmut)-GFP, the Glass binding motif was mutated by PCR amplification from wild-type 

flies of two fragments of the enhancer with the 5' and 3' flanking primers combined with 

primers extending to and from the Glass binding motif with a XhoI restriction site replacing 

the Glass binding motif. The wild-type and mutant constructs were then transferred into the 

attB-GFP-hsp70 3'UTR reporter vector. Both constructs were injected into nos-PhiC31; 

attP40 flies. For primer sequences see table S1. 

For generating the UAS-glass flies we used the Glass PA isoform (REFSEQ:NP_476854, 

FBpp0083005), containing all five zinc fingers, which has been reported to be functional 

(O'Neill et al., 1995). To obtain this isoform we had to remove the last intron from the only 

fully sequenced BDGP DGC glass cDNA clone (GH20219) available encoding the Glass PB 

isoform. This isoform lacks the last 47 amino acids including half of the last zinc-finger due to 

the presence of a stop codon within the last intron. We removed this intron by PCR 

amplification of the sequences encoding the Glass PA isoform using primers with overhangs 
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that match the coding sequence at the other side of the intron, ligating the two fragments 

together and PCR amplifying the entire Glass PA coding region and 5'UTR. We cloned this 

PCR product into the BamHI and XhoI sites of pBluescript using restriction sites added to the 

flanking primers. We next PCR amplified the Glass PA coding region with primers for 

gateway cloning and inserted it into a pUASg.attB plasmid (courtesy of J. Bischof; Bischof et 

al., 2013). The construct was injected into nos-PhiC31; attP40 flies. We tested the ability of 

the UAS-glass flies to ectopically express the protein by antibody staining against Glass, and 

found that this construct rescues the glass mutant phenotype when expressed in the eye 

during development (data not shown). For primer sequences see table S1. 

For the glass-GFP reporter constructs a 293 bp BamHI-EcoRI fragment from the middle of 

the 5.2 kb upstream genomic region of glass was cloned in front of a minimal hsp70 

promoter + GFP reporter gene using the endogenous BamHI and EcoRI sites. The BamHI 

site present in our genomic sequence is missing in the Flybase sequence due to a single 

nucleotide polymorphism. The putative So binding sites were mutated by PCR amplifications 

using primers with overhangs replacing the So sites with restriction sites for SpeI (so1) and 

NcoI (so2 and so3). Since so2 and so3 are very close to each other (within 25 bp) they were 

mutated together. The PCR fragments were ligated and cloned in front of the minimal hsp70 

promoter + GFP reporter gene. Both transgenes were injected into nos-PhiC31;; attP2 flies. 

For primer sequences see table S1. 
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Table S1: primer sequences 

hazy -1.1 Kpn fw ctggtaccACATGTGTGCAGAGGCAAAGGG

hazy noStart Not re aagcggccgcGCGAATCCTGAGCTTCCTGTTGG

hazy gl1 site mut Sph fw GGGCGACTTCTACgcatgcTGTCGACGGACAGCACG

hazy gl1 site mut Sph re CGTGCTGTCCGTCGACAgcatgcGTAGAAGTCGCCC

hazy gl2 site mut RV fw GAAGAAGCAGCGACGCgatatcCTCGAAGTGTCGACG

hazy gl2 site mut RV re CGTCGACACTTCGAGgatatcGCGTCGCTGCTTCTTC

otd PRenh Kpn fw cggagcgttGGTACCtcgtc

otd PRenh BamHI re ggccagaccatcGGATCCcc

otd PRenh gl mut Xho fw agCTCGAGcctgcagtggtcggctcc

otd PRenh glmut Xho re ggCTCGAGtccttaatcgctgttgctttttacggc

glass 5'UTR BamH fw gaggatCCTCGCCAAAAGTCGCTTCTTG

glass exon 4 re ccccgactgcgaaaatCTGAGCAGGCAGAGCTTGCAC

glass exon 5 fw gctctgcctgctcagATTTTCGCAGTCGGGGAACTTG

glass Stop Xho re ggctcgaGTCATGTGAGCAGGCTGTTGCC

glass Start+Kozak attB1 fw
ggggacaagtttgtacaaaaaagcaggcttcaaCATGGGATTGTTATATAAGG

GTTCCAAACT

glass Stop attB2 re ggggaccactttgtacaagaaagctgggtcgTCATGTGAGCAGGCTGTTGCC

glass BRenh so1 mut Spe fw acACTAGTttgaagcgaagtaaaaaaaaaaagaaatataaaaattgaaaactgg

glass BRenh so1 mut Spe re ttTGATCAgtttcatgtcaacaacttggctaaggac

glass BRenh so2+3 mut Nco fw ggGACGCtgggggatatagctCCATGGgtatgcgatcactgcaagcc

glass BRenh so2+3 mut Nco re acCCATGGagctatatcccccaGCGTCccttaccttatcgatgggaatttcagg
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Immunohistochemistry 

In the case of adult heads, we incubated them in cryoprotectant solution (sucrose 25% in PB) 

at 4°C overnight. Next we embedded them in OCT and cut 14 m cryosections in the 

transverse plane, after which we proceeded to stain them.  

For staining both cryosections and whole mounted samples, we first washed them at room 

temperature with PBT (Triton X-100 0.3% in PB) at least three times for a minimum of 20 

minutes each: this procedure was repeated in all washing steps that follow. Incubation in 

primary antibody solution was done overnight at 4°C and was followed by PBT washes. Next, 

we incubated our samples in secondary antibody solution overnight at 4°C, after which we 

washed them. We mounted our samples either in 50% glycerol or Vectashield. 
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Supplementary figures 

Fig. S1. glass mutant PR precursors are not correctly recruited into the developing 

ommatidia in the third instar eye disc. It has been reported that, at this stage, glass mutant 

PR precursors fail to acquire a correct subtype identity, based on the expression of subtype 

specific PR markers (Hayashi et al., 2008; Jarman et al., 1995; Lim and Choi, 2004; 

Treisman and Rubin, 1996). To analyse in detail the order in which PR precursors are 

recruited in glass mutant, we counted the number of Elav-positive cells in the third instar eye 

disc of wild-type and gl60j larvae. Each ommatidium was pseudo-coloured according to the 

number of PR precursors that it contains. This image illustrates how PR precursors in the the 

wild-type eye disc are orderly recruited into the developing ommatidia (A). By comparison, in 

the glass mutant eye disc PR precursors are recruited slower and disorderly (B). Scale bars 

represent 30 m.
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Fig. S2. glass mutant PR precursors survive metamorphosis and are still present in the adult 

retina. Expression of YFP (green) and Elav (magenta) in the salm>H2B::YFP reporter line in 

the adult retina of control (A) and gl3 mutant flies (B). In both cases, a subset of presumptive 

PRs can be identified by the co-expression of YFP and Elav, while cone cells express YFP 

but not Elav. Scale bars represent 40 m.
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Fig. S3. glass mutant PR precursors are irregularly distributed in the retina. (A-C''') We used 

MARCM analysis to induce the formation of gl60j mutant clones, labeled with the expression 

of UAS-mCD8::GFP. Retinas were dissected ~50 hours after pupation, and stained against 
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GFP (green), Elav (used to label the nuclei of neurons, red) and Fas3 (used to label the 

membranes of interommatidial cells, blue). For each image, these three channels are shown 

below in greyscale. All images belong to the same confocal stack (Movie S1), in which those 

cells that are wild-type for glass are located in the upper half of the area that is shown, while 

a big homozygous gl60j clone crosses the lower half. Distally in the retina, cones strongly 

express Fas3 and can be seen as groups of 4 cells in the wild-type (GFP-negative) region of 

the image (arrowheads; A, A'''). This kind of organization is not present in the GFP-labeled 

glass mutant clone  (A, A'''). More proximally, PR precursors are abundant in the wild-type 

area, where they distribute in rosettes of 8 Elav-positive cells (arrows; B, B''). Rosettes are 

separated from each other by pigment and bristle cells, which form the hexagonal lattice of 

the ommatidia, and are strongly stained for Fas3 (arrowheads; B, B'''). By contrast, in the 

glass mutant region there are fewer Elav-positive cells, and cells do not group in any 

structure resembling an ommatidium (B, B'', B'''). This is different from earlier developmental 

stages, since ommatidial clusters can still be seen in the glass mutant eye disc (Figs. 1E, S1; 

Moses et al., 1989; Treisman and Rubin, 1996). The most proximal region of the wild-type 

retina contains the nuclei of bristle neurons, which are orderly arranged between the 

ommatidia (arrowheads; C, C''). At this level, the glass mutant clone contains densely packed 

groups of neurons (C, C''), including the PR precursors missing in the medial section. Scale 

bar represents 30 m.
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Fig. S4. Glass is required for the acquisition of the phototransduction machinery. (A-T) 

Expression of different proteins involved in the phototransduction cascade in the adult retina 

of control (salm>H2B::YFP) and gl2 mutant flies. Samples were stained against 

phototransduction proteins (green) and counterstained with DAPI (magenta). Rhodopsins 

Rh1 (A), Rh4 (B), Rh5 (C), and Rh6 (D) are expressed in different subsets of PRs in control 

retinas. In the gl2 mutant retina there is no expression of Rh1 (F), Rh4 (G), Rh5 (H) or Rh6 

(I). Proteins downstream in the phototransduction cascade are expressed in all PRs in the 

retina of control flies: Arr1 (E), G q (K), NorpA (L), Trp (M), Trpl (N) and InaD (O). These 

proteins are not expressed in the retina of gl2 mutant flies: Arr1 (J), G q (P), NorpA (Q), Trp 

(R), Trpl (S), or InaD (T). Scale bars represent 40 m.
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Fig. S5. Glass is required for Rh2 expression. Both control and glass mutant flies were 

stained against Rh2 (green) and counterstained with Elav (magenta). Rh2 is expressed in 

ocellar PRs in control flies (A). In glass mutant, there is no expression of Rh2 in the 

presumptive ocelli PRs (arrowheads, B). Scale bars represent 40 m.
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Fig. S6. Glass is required for the correct expression of Hazy and Otd. (A-D') We used the 

salm>H2B::YFP reporter to label the retina of adult flies, and stained against GFP (green), 

either Hazy or Otd (red), and the neuronal marker Elav (Blue). For each image, the red 

channel is shown below in greyscale. There is expression of Hazy in the nuclei of PRs in 

control flies (A, A') but not in the presumptive PRs of glass mutant flies (B, B'). Otd is 

expressed in the PRs of control flies (C, C') but only a fraction of presumptive glass mutant 

PRs express Otd (D, D'). Scale bars represent 50 m. 
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Fig. S7. Expression of the otd(wt)-GFP reporter is independent of Glass. Samples were 

stained against GFP (green) and against the neuronal marker Elav (magenta). (A-C) In adult 

flies, otd(wt)-GFP is expressed both in control (A) and glass mutant background (B). This 

reporter is also expressed when the Glass binding motif is mutated (C). (D, E) At 40-50 hours 

after pupation, all PR precursors express the otd(wt)-GFP reporter in control animals (D). 

After mutation of the Glass binding motif the reporter is still expressed in all PRs (E). Scale 

bars represent 10 m in panels D-E, and 50 m in panels A-C.
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Fig. S8. Induced co-expression of Hazy and Otd does not rescue the glass mutant 

phenotype better than Hazy alone. (A-F') Hazy and Otd were expressed in the glass mutant 

retina in clones labelled with nuclear Gal. Samples were stained against Gal (green), 
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different proteins involved in the phototransduction cascade (red) and with DAPI (used to 

label cell nuclei, blue). For each image, the red channel is shown below in greyscale. We did 

not observe the rescue of any of those proteins that were not rescued by Hazy alone (the 

rescue of glass mutant with Hazy is shown in Fig. 5), namely the expression of Rh1 (A, A'), 

Rh2 (B, B'), Rh4 (C, C'), Rh5 (D, D'), G q (E, E') and Trp (F, F') was not induced in Hazy-

Otd-expressing clones. Scale bars represent 40 m.
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Fig. S9. Expression of PR markers in the CNS of third instar larvae. (A-H') The CNS of 

control (Canton-S) animals was stained with antibodies against different PR proteins (green) 

and counterstained with Hoechst 33258 (used to label cell nuclei, magenta). For each image, 

the green channel is shown below in greyscale. Hazy is expressed in the nuclei of PRs in the 

Bolwig organ (Zelhof et al., 2003), and cannot be seen in the CNS (A, A'). Chp is primarily 

expressed in the axons of PRs in the Bolwig organ, which project into the optic lobe 

(arrowheads; B, B'). In addition,a small number of cells in the brain are stained (arrow; B, B'). 
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Neither Rh1 nor Rh2 are expressed in the CNS of the larvae (C, D). Both Arr1 and NorpA are 

expressed in the axon projections of the Bolwig organ PRs (arrowheads; E, E', F, F'). Trpl is 

expressed in the axons of PRs in the Bolwig organ (arrowheads; G, G') and in 3-4 cells 

located rostrally in each of the brain lobes (arrows; G, G'). InaD is expressed in the axon 

projections of the Bolwig organ PRs (arrowheads; H, H'). Scale bars represent 80 m. 
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Fig. S10. Co-misexpression of Glass and Hazy is not sufficient to ectopically induce all the 

phototransduction proteins that we have tested, and co-misexpression of Glass and Otd 

does not ectopically induce more phototransduction proteins than Glass alone (for a 

comparison, see Fig. 6). Misexpression of these transcription factors was induced during 

embryonic development in clones, which were labelled by the presence of nuclear Gal. We 

dissected and stained the CNS of third instar larvae with antibodies against Gal (green), 

different phototransduction proteins (red/magenta) and with Hoechst 33258 (used to label 

cell nuclei, blue). Close-ups are shown below each sample. (A-E') Co-misexpressing Glass 

and Hazy is not sufficient to ectopically induce Rh4 (A, A'), Rh5 (B, B'), Rh6 (C, C'), G q (D, 

D') nor Trp (E, E'). (F-N') Co-misexpressing Glass and Otd is not sufficient to ectopically 

induce Rh4 (F, F'), Rh5 (G, G'), Rh6 (H, H'), G q (I, I'), Trp (J, J'), Rh1 (K, K'), Arr1 (L, L'), 

NorpA (M, M') nor InaD (N, N'). Scale bars represent 10 m in A'-N', and 80 m in A-N.
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Fig. S11. The proneural transcription factor Ato is not required for glass expression. (A) 

During the development of the third instar eye disc, Ato expression (red) precedes that of  

Glass (green). Counterstaining with phalloiding (blue) serves to locate the position of the 

morphogenetic furrow (arrow), where both transcription factors overlap in a narrow band of 

cells. The three channels are shown in greyscale on the right (A'-A'''). (B) To test whether Ato 

is required for the expression of glass we induced the formation of atow mutant clones in the 

third instar eye disc, which were labelled by the absense of GFP staining. Samples were 

stained against Glass (red), GFP (green) and with Hoechst 33258 (used to label cell nuclei, 

blue). A close-up on the right shows that Glass (magenta) is expressed in atonal mutant 

clones, which lack GFP (green) (B''). Scale bars represent 10 m in B', and 40 m in A and 

B.
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Movie S1. Confocal stack showing the structure of a retina that contains a GFP-labeled gl60j

clone, induced by MARCM. Images from this stack were used for Fig. S1. Z-stack frames are 

ordered from distal to proximal, and show staining against GFP (green, A'), Elav (used to 

label the nuclei of neurons, red, A'') and Fas3 (used to label the membranes of 

interommatidial cells, blue, A'''). The typical structure of the ommatidia can be recognized in 

the upper half of the stack, where cells possess the wild-type version of glass, but not in the 

lower half of the stack, where cells are homozygous for gl60j and are disarrayed. Taking the 

expression of Elav as a guide, it seems that most PR precursors relocate basally in the gl60j

clone. Scale bar represents 30 m.
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