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Multiple amplitude modes in strongly coupled phonon-mediated superconductors
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We study collective amplitude modes of the superconducting order parameter in strongly coupled electron-
phonon systems described by the Holstein model using the nonequilibrium dynamical mean-field theory with the
self-consistent Migdal approximation as an impurity solver. The frequency of the Higgs amplitude mode is found
to coincide with the superconducting gap even in the strongly coupled (beyond BCS) regime. Besides the Higgs
mode, we find another collective mode involving the dynamics of both the phonons and the superconducting
order parameter. The frequency of this mode, higher than twice the renormalized phonon frequency in the super-
conducting phase, is shown to reflect a strong electron-mediated phonon-phonon interaction. Both of collective
modes are predicted to contribute to time-resolved photoemission spectra after a strong laser pump as vertex
corrections to produce resonance peaks, which allows one to distinguish them from quasiparticle excitations.

DOI: 10.1103/PhysRevB.93.094509

I. INTRODUCTION

Theoretical and experimental investigations of coherent
dynamics in superconductors out of equilibrium have a long
history [1–24]. Renewed interests have been aroused by
recent observations of the amplitude mode in conventional
phonon-mediated superconductors driven by a strong THz
laser [15,16]. When a continuous symmetry is broken, there
emerge phase modes and amplitude modes. In a supercon-
ductor (SC), where the carriers are subject to a long-range
Coulomb interaction, the gapless phase mode couples with
the interaction and is lifted to the plasma frequency, which
is generally much higher than the SC energy scale. This
mechanism of gaining mass through a coupling with a gauge
boson is the so-called Anderson-Higgs mechanism [25,26],
and the unaffected amplitude mode is called the Higgs
amplitude mode in analogy with particle physics. Before this
experiment [15], the amplitude Higgs mode had been observed
only in a special case, 2H -NbSe2, where SC coexists with a
charge density wave [4–6,18,19]. Theoretical studies of the
SC order parameter dynamics have so far primarily focused
on the static mean-field dynamics [1–3,5–13,17,19,22–24].
One important conclusion of these works is that the frequency
of the Higgs amplitude mode (ωH) should coincide with
the SC gap (2�SC) in the BCS regime [27], which is a
threshold for quasiparticle excitations. This relation leads to a
suppression of the relaxation channel to Bogoliubov particles
and a power-law decay of the Higgs oscillation.

The material used in the recent experiments [15,16], NbN,
has a relatively large dimensionless electron-phonon coupling
λeff � 1, corresponding to the strong-coupling regime [28–
31]. Hence it is necessary to understand how strong electron-
phonon (el-ph) couplings can affect collective excitations in
conventional superconductors. An important issue is the rela-
tion between ωH and the SC gap in the strongly coupled regime,
which directly affects the lifetime of the amplitude mode and,
therefore, its accessibility in experiments. In a broader context
it is also important to understand the effects of the phonon
dynamics on the amplitude mode and what types of collective
excitations can exist in strongly coupled el-ph systems.

Previous studies on collective modes in strongly coupled
phonon-mediated SCs are limited to very recent works without
nonequilibrium phonon dynamics [20,21]. In principle, the
collective amplitude modes are represented by poles of the
dynamical pair susceptibility. This quantity can be obtained in
the strongly coupled regime by solving the Bethe-Salpeter
equation with a frequency-dependent irreducible vertex on
the Matsubara axis and by a subsequent numerical analytic
continuation for real-frequency information, which would be
a bottleneck to this approach. In this paper, instead of directly
solving the Bethe-Salpeter equation, we explore the behavior
of the collective modes in strongly coupled SCs by simulating
the nonequilibrium response to weak perturbations using the
nonequilibrium dynamical mean-field theory (DMFT) [32].

II. MODEL AND METHOD

The model for strongly coupled SCs that we consider here
is the Holstein model, whose Hamiltonian is

H = −v
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) − μ

∑
i

ni

+ω0

∑
i

a
†
i ai + g

∑
i

(a†
i + ai)(ni − 1), (1)

where c
†
i creates an electron with spin σ at site i, v is the

electron hopping, μ is the electron chemical potential, ni =
c
†
i,↑ci,↑ + c

†
i,↓ci,↓, ω0 is the bare phonon frequency, a

†
i creates

a phonon, and g is the el-ph coupling. We consider the s-wave
SC phase of this model.

In DMFT, the lattice model Eq. (1) is mapped onto a single-
site impurity model, whose action in the Nambu formalism
reads

Simp = i

∫
C
dtdt ′�†(t)Ĝ−1

0,σ (t,t ′)�(t ′) + i

∫
C
dtdt ′a†(t)

×(i∂t − ω0)a(t) − i

∫
C
dtg[a(t) + a†(t)]�†(t)σ̂3�(t),

(2)
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where
∫
C denotes an integral on the Kadanoff-Baym (KB)

contour, �†(t) ≡ [c†↑(t),c↓(t)] a Nambu spinor, Ô a 2 × 2

matrix, and σ̂α a Pauli matrix. Ĝ−1
0,σ (t,t ′) is the Weiss Green’s

function on the KB contour, which is determined self-
consistently so that the impurity Green’s function Ĝimp(t,t ′) =
−i〈TC�(t)�†(t ′)〉 and the impurity self-energy 	̂ coincide
with the local Green’s function for electrons, Ĝ(t,t ′) =
−i〈TC�i(t)�

†
i (t ′)〉, and the momentum-independent self-

energy in the original lattice problem [32]. Here, TC is
the contour ordering operator. DMFT is justified in the
limit of infinite spatial dimensions. For el-ph systems, we
introduce the phonon Green’s function defined as Dimp(t,t ′) =
−2i〈TCX(t)X(t ′)〉, with X = (a† + a)/

√
2, and it is equivalent

to D(t,t ′) = −2i〈TCXi(t)Xi(t ′)〉 in the lattice problem.
The most important part in DMFT is how to solve the

effective impurity problem. In principle, even in a nonequilib-
rium setup, one can solve the problem with a quantum Monte
Carlo (QMC) impurity solver [32,33]. However, because of a
dynamical sign problem [33] it is difficult to access the time
scales needed to study the relatively slow dynamics of phonons
and order parameters. In order to avoid this difficulty, we em-
ploy the self-consistent (renormalized) Migdal approximation
[34–42], which is justified when the phonon frequency ω0 is
small compared to the electronic bandwidth [34–36,38,40].
In the self-consistent Migdal approximation, the electron
self-energy (	̂) and phonon self-energy (
) in the effective
impurity model are given by

	̂(t,t ′) = ig2Dimp(t,t ′)σ̂3Ĝimp(t,t ′)σ̂3, (3a)


(t,t ′) = −ig2 tr[σ̂3Ĝimp(t,t ′)σ̂3Ĝimp(t ′,t)]. (3b)

In equilibrium, we choose the s-wave SC order parameter
φ ≡ 1

N

∑
i〈ci↓ci↑〉 ∈ R, where N is the number of sites. In

the following, we consider an infinitely coordinated Bethe
lattice, which has a semielliptic density of states, N (ω) =

1
2πv2∗

√
4v2∗ − ε2, and we set v∗ = 1, i.e., the electron band-

width W is 4. We focus on half filling, a small enough
phonon frequency ω0 = 0.4, and the coupling regime λeff � 2,
where the Migdal approximation should give qualitatively
correct results. Here, λeff is the dimensionless electron-phonon
coupling defined from the dressed phonon propagator (see
Appendix A). We have confirmed that the results for a lower
frequency ω0 = 0.2 are qualitatively similar to those for
ω0 = 0.4 (Appendix B).

In this paper, we consider two types of excitation protocols.
The first protocol is a perturbation Hamiltonian Hex(t) =
Fex(t)B0, with B0 = ∑

i (c†i↑c
†
i↓ + ci↓ci↑) and Fex(t) = dfδ(t).

Explanations about the implementation are provided in
Appendix C. This external field is used to evaluate the
dynamical pair susceptibility,

χR
pair(t − t ′) = −iθ (t − t ′)〈[B0(t),B0(t ′)]〉. (4)

We note that this susceptibility is relevant to the dynamics of
the amplitude of the SC order parameter, since we take φ to be
real.1 In order to obtain the susceptibility we choose a small

1At half filling the phase and amplitude of φ do not mix and φ

remains real even in the nonequilibrium dynamics.

FIG. 1. Diagrammatic expressions in the Nambu formalism for
(a) the dynamical pair susceptibility, (b) the vertex within the
unrenormalized Migdal approximation, and (c) the vertex within
the self-consistent Migdal approximation. Open circles represent �̂,
solid dots σ̂1 (bare vertex), and green parts �̂ defined in the text.
Solid double lines indicate dressed electron Green’s functions, wavy
double lines dressed phonon Green’s functions, and wavy single lines
bare phonon Green’s functions.

enough df . The second protocol is a modulation of the hopping
parameter, Hex(t) = −δv(t)

∑
〈i,j〉,σ (c†i,σ cj,σ + H.c.), which

mimics the effective band renormalization of a strong and
high-frequency laser [43].

We now elaborate on the dynamical pair susceptibility eval-
uated from DMFT+self-consistent Migdal approximation. In
general, we can express the dynamical pair susceptibility as
the retarded part of a response function on the KB contour,

χpair(t,t
′) ≡ δC[−i tr{σ̂1Ĝ(t,t + 0+

C )}]
δC[Fex(t ′)]

∣∣∣∣
Fex=0

= −i

∫
C
dt1dt2 tr

[
σ̂1

1

N

∑
k

Ĝk(t,t1)�̂(t1,t2; t ′)

×Ĝk(t2,t + 0+
C )

]
, (5)

where k is a momentum and δC[· · · ]/δC[· · · ] is the functional
derivative on the KB contour. The diagrammatic expression
for χpair(t,t ′) is shown in Fig. 1(a). Here, �̂ is a renormalized
vertex, which can be expressed as

�̂(t,t ′; t ′′) = �̂(0)(t,t ′; t ′′) + δC[	̂(t,t ′)]
δC[Fex(t ′′)]

∣∣∣∣
Fex=0

, (6)

where �̂(0)(t,t ′; t ′′) ≡ σ̂1δC(t ′′,t)δC(t ′′,t ′) is the bare vertex,
δC(t,t ′) is the delta function on the KB contour, while
the second term is the vertex correction. In perturbative
approximations the expression for the self-energy is known,
hence we can evaluate δC[	̂(t,t ′)]/δC[Fex(t ′′)] explicitly.

094509-2



MULTIPLE AMPLITUDE MODES IN STRONGLY COUPLED . . . PHYSICAL REVIEW B 93, 094509 (2016)

In the case of DMFT+self-consistent Migdal approxima-
tion, the vertex part is given as

�̂(t,t ′; t ′′)

= σ̂1δC(t ′′,t)δC(t ′′,t ′) + ig2D(t,t ′)�̂(t,t ′; t ′′)

+ g4σ̂3Ĝ(t,t ′)σ̂3

∫
C
dt3dt4D(t,t3)D(t4,t

′)

×{tr[�̂(t3,t4; t ′′)Ĝ(t4,t3)] + tr[Ĝ(t3,t4)�̂(t4,t3; t ′′)]}. (7)

Here, �̂(t,t ′; t ′′) ≡ 1
N

∑
k

∫
C dt1dt2σ̂3Ĝk(t,t1)�̂(t1,t2; t ′′)Ĝk

(t2,t ′)σ̂3. The diagrams for the vertex part � are displayed in
Fig. 1(c) and a detailed derivation of the expression is given in
Appendix D.

In contrast to our treatment, the BCS and unrenormalized
Migdal approximations [20,21] describe a situation where the
phonons always stay in equilibrium. In these two cases the
equation for the vertex part contains only the first and second
diagrams in Fig. 1(c) with the dressed phonon propagator
replaced by the BCS interaction or the unrenormalized phonon
propagator. In the unrenormalized Migdal approximation, the
expression for the self-energy reduces to

	̂uMig(t,t ′) = ig2D0(t,t ′)σ̂3Ĝimp(t,t ′)σ̂3, (8)

and we have

�̂(t,t ′; t ′′) = �̂(0)(t,t ′; t ′′) + ig2D0(t,t ′)�̂(t,t ′; t ′′). (9)

This equation is illustrated in Fig. 1(b). Thus the third and
fourth diagrams in Fig. 1(c) represent the feedback from the
phonon dynamics and have not been taken into account in the
previous papers on collective modes.

III. RESULTS

A. Dynamical pair susceptibility and collective amplitude
modes

We now discuss the behavior of the pair susceptibility χpair

in the strongly coupled SC. Figures 2(a) and 2(b) display
χR

pair(t). Also plotted is the bubble contribution χR
0,pair(t), which

is obtained by approximating �̂ ≈ σ̂1δC(t ′′,t)δC(t ′′,t ′). While
χR

0,pair(t) damps quickly (within t ∼ 1/W ), χR
pair(t) exhibits

long-lived oscillations. Since χ0,pair only includes the contri-
bution from the single-particle excitations, this indicates that
the long-lived oscillations result from collective excitations.
A further finding is that, in contrast to the BCS dynamics,
the oscillation contains multiple modes, which becomes more
evident as we increase the el-ph coupling.

We can capture the nature of the collective modes by
comparing in Figs. 2(c) and 2(d) the electron spectrum
A(ω) = − 1

π
GR(ω), the phonon spectrum B(ω) = − 1

π
DR(ω),

and −Im χR
pair(ω) = −Im

∫ tmax

0 dtχR
pair(t)e

iωt , with tmax = 200.
First, we note that the strong el-ph coupling makes the gap
edge smooth unlike in the BCS theory, and we define the gap
size 2�SC by the energy where A(�SC) = N (0). We also note
that, when the renormalized phonon frequency is comparable
to the SC gap, the strong el-ph coupling leads to a highly
asymmetric renormalized phonon spectrum in the SC state
with a sharp peak below the SC gap [see Figs. 2(c) and 2(d)
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FIG. 2. (a), (b) Dynamical pair susceptibility against t evaluated
with the full dynamics in the self-consistent Migdal approximation
[χpair(t)] and with the bubble diagrams [χ0,pair(t)] for (a) g = 0.45,
β = 80 (λeff = 1.38) and (b) g = 0.47, β = 80 (λeff = 1.89). (c), (d)
Comparison of the electron spectrum A(ω/2), the phonon spectrum
B(ω), −Im χR

0,pair(ω), and −Im χR
pair(ω) for (c) g = 0.45, β = 80 and

(d) g = 0.47, β = 80. χpair(ω) and χ0,pair(ω) are evaluated from the
data at t ∈ [0,200]. The factor of 2 in A(ω/2) facilitates a comparison
between 2�SC and ωH.

and Appendix A]. In the normal state, on the other hand, the
phonon spectrum exhibits an almost symmetric single peak
with a low-energy tail, and the renormalized phonon frequency
is softened by the el-ph coupling [34,39]. These features in
the phonon spectra have indeed been experimentally observed
in some strongly coupled SCs [44–48], and theoretically
explained as an effect of the phonon self-energy [49] (phonon
anomaly).

Figures 2(c) and 2(d) show that there exist two different
modes in −Im χR

pair(ω) at frequencies we call ωH and ωH2

(ωH < ωH2). The lower-frequency peak is always located near
the SC gap energy (ω/2 
 �SC), and this also holds as we
approach the BCS regime [see the inset of Fig. 3(b)]. We
can thus identify this mode as the amplitude (Higgs) mode
of the strongly coupled SC. In other words, the BCS relation
ωH = 2�SC is found to hold to a good approximation even
when the el-ph coupling is strong and the phonon energy is
comparable to the gap. The higher-frequency mode at ωH2

[Figs. 2(c) and 2(d)], on the other hand, is a new collective
amplitude mode. This mode becomes more prominent as
the el-ph coupling increases and is absent both in the
BCS [1–3,5,6,9–13,17,19,22–24] and unrenormalized Migdal
analyses [20,21]. These facts suggest that it does not exist in
the weak-coupling regime, where the BCS treatment should be
justified, and originates from the phonon dynamics. However,
ωH2 does not have a simple relation with the renormalized
phonon frequency ωr , which is defined as the peak position in
the phonon spectrum.

In order to obtain a full picture, we plot characteristic energy
scales against T in Fig. 3. As for the Higgs amplitude mode,
we can see that the relation ωH 
 2�SC is indeed robust for
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FIG. 3. Characteristic energies against temperature (T ) at (a) g =
0.45, ω0 = 0.4 and (b) g = 0.47, ω0 = 0.4. Vertical lines indicate Tc.
The inset shows the el-ph coupling (λeff ) dependence of ωH and 2�SC

at β = 80.

the whole region of T studied here.2 We consider that the
relation between ωH and 2�SC is not obvious in the strongly
coupled regime. This is because, in principle, the Higgs mode
can hybridize with other collective modes. One example is
the Higgs mode in a coexistence region of SC and charge
order, where the hybridization with the amplitude mode of
the charge order can push the Higgs mode below the SC
gap [5,19]. In the present case, as demonstrated below, the
Higgs mode hybridizes with the ωH2 mode, which makes
it slightly softened, but this effect is relatively small for
λeff � 2, so that ωH remains close to 2�SC. One important
consequence of the relation ωH 
 2�SC is that the damping
channel to quasiparticles remains small, so that the Higgs
amplitude mode remains long-lived. This applies especially
at low temperatures, where the gap edge is sharp enough and
the energies of quasiparticle excitations are lower bounded
at 2�SC. As we increase the temperature toward Tc, the
quasiparticle lifetime from the strong el-ph coupling decreases
and the gap edge becomes smoother. Hence the quasiparticle
excitation is not strictly lower bounded at 2�SC, which should
lead to a shorter lifetime of the Higgs oscillation. A detailed
analysis of the damping of the Higgs mode will be shown
elsewhere [50]. In addition, we note that a possible relaxation

2The uncertainty in the gap size is estimated from the peak position
of A(ω) and the position where A(ω) = N (0)/2 in Fig. 3.

channel from the Higgs mode into two phonons is restricted
due to the suppression of the phonon spectral weight in
the low-energy regime, which is associated with the phonon
anomaly.

Now we turn to the ωH2 mode. Both the ωH and ωH2 modes
are absent in the dynamical pair susceptibility in the normal
state. On the other hand, the latter mode is closely related
to the coherent phonon oscillation that persists at T > Tc. In
Fig. 3, we display ωXX, the frequency of coherent oscillations
in the response of 〈XX〉 (i.e., the fluctuation of the phonon
displacement) after a small hopping quench. We can see that
ωXX coincides with ωH2 in the SC phase, which indicates that
the oscillations in these two different susceptibilities originate
from the same collective mode. Hence this mode intertwines
both the phonon dynamics and superconducting amplitude
oscillations in the SC phase. With decreasing temperature, ωXX

softens in the normal phase, while it hardens in the SC. If the
ωH2, or ωXX, mode were merely a coherent phonon mode, the
frequency would be equal to 2ωr , where ωr is the renormalized
phonon frequency defined as the position of the dominant peak
in the phonon spectrum (see Appendix A). The factor 2 appears
because the present excitation does not induce any average
phonon displacement.3 This naive expectation (ωXX = 2ωr )
is satisfied in the normal state with el-ph couplings that are
not too strong, while in the SC phase ωH2 (= ωXX) drastically
deviates from 2ωr (see Fig. 3).

B. Diagrammatic analysis

In this section, we address (1) the effect of the phonon
dynamics on the amplitude Higgs mode, and (2) the origin of
the discrepancy between ωH2 and 2ωr in the SC. To gain some
insights, we evaluate the contributions from certain subsets
of the diagrams for χpair. The first subset is χel-ladder, which
is illustrated in Fig. 4(a). In the BCS and unrenormalized
Migdal approximations, where the nonequilibrium dynamics
of the phonons is neglected, the vertex �̂ includes the first two
diagrams in Fig. 1(c), which leads to ladder diagrams with
electron legs. Hence we can regard χel-ladder as the contribution
without phonon dynamics. Indeed, this subset is evaluated by
considering the time evolution with

	̂(t,t ′) = ig2Deq
imp(t,t ′)σ̂3Ĝimp(t,t ′)σ̂3, (10a)


(t,t ′) = −ig2 tr
[
σ̂3Ĝ

eq
imp(t,t ′)σ̂3Ĝ

eq
imp(t ′,t)

]
. (10b)

Here, “eq” indicates that the functions are fixed to their
equilibrium value. On the other hand, the third and fourth
diagrams for the vertex in Fig. 1(c) only appear in the self-
consistent Migdal approximation, and thus represent the effect
of the phonon dynamics. By eliminating the second diagram
in the vertex in Fig. 1(c), we obtain a set of diagrams for the
pair susceptibility, which is illustrated as χph-ladder in Fig. 4(a)
and represents the contribution from the phonon dynamics.

3Our excitation protocols are homogeneous and do not change the
total particle number. Hence no lattice distortion is induced, 〈X〉 = 0,
and only symmetric dynamics is allowed for the statistical distribution
for the lattice displacement. Hence 2ωr is most relevant for the
dynamics.
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FIG. 4. (a) Diagrammatic expression for χel-ladder and χph-ladder

with the electron-mediated phonon-phonon interaction (shaded box).
Comparison of contributions from different sets of diagrams for
(b) χ (t) and (c) −Im χ (ω) with g = 0.45, ω0 = 0.4, β = 80.

We can evaluate χph-ladder by computing the time evolution
with

	̂(t,t ′) = ig2Dimp(t,t ′)σ̂3Ĝ
eq
imp(t,t ′)σ̂3, (11a)


(t,t ′) = −ig2 tr[σ̂3Ĝimp(t,t ′)σ̂3Ĝimp(t ′,t)]. (11b)

In Figs. 4(b) and 4(c), we plot χR
pair, χR

el-ladder, and χR
ph-ladder

in the time and frequency domain. It turns out that each
of χR

el-ladder(t) and χR
ph-ladder(t) exhibits oscillations with a

single characteristic frequency, which agrees well with ωH

and ωH2, respectively. Hence ωH and ωH2 are mainly deter-
mined by the processes represented by χel-ladder and χph-ladder,
respectively.

As for question (1), even though the response without
phonon dynamics mainly sets the energy scale of the Higgs
mode, we do observe effects from the phonon dynamics, in the
form of a phase shift in the Higgs oscillation between χR

pair(t)
and χR

el-ladder(t), and also in the form of an overestimation of ωH

in the latter approximation by several percent [see Figs. 4(b)
and 4(c)]. In addition, the larger intensity in χR

pair(ω) at ωH

than in χR
el-ladder(ω) is consistent with the expectation that the

damping of the Higgs oscillation should be slower in the former
because the softened ωH value leads to suppression of available
quasiparticle relaxation channels. These differences can be
attributed to the remaining diagrams in χpair, which are not
included in χel-ladder and χph-ladder. These diagrams hybridize
electron ladders and phonon ladders, and the decrease of ωH

estimated from χel-ladder can be ascribed to an effect of the
hybridization between the Higgs mode in χel-ladder and the
phonon-origin mode in χph-ladder.

As for question (2), we first note that 2ωr oscillations are
expected from the two parallel phonon propagators in the
second and third diagrams for χph-ladder. Therefore, the notable

κph−ladder

κph−lowest
(a)

-1  0  1

(a) g=0.45,ω0=0.4, β=80 

ω

A
.U

|κR(ω)|
|κR

ph-lowest(ω)|
|κR
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B(ω/2)

-1  0  1

(b) g=0.47,ω0=0.4, β=60 

ω

A
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2ωr

2ωr

ωH2

ωH2

(c)(b)

FIG. 5. (a) Diagrammatic expression for κph-ladder and κph-lowest.
The data at t ∈ [0,200] are used. (b), (c) Comparison of κR(ω)
evaluated from different sets of diagrams and the phonon spectrum
B(ω) for (b) g = 0.45, ω0 = 0.4, β = 80 and (c) g = 0.47, ω0 = 0.4,
β = 60. Positions of 2ωr and ωH2 are indicated.

hardening of ωH2 from 2ωr in the SC is attributed to what we
can call the “electron-mediated phonon-phonon interactions”
[the shaded rectangle in Fig. 4(a)], while in the normal phase
this effect is weaker.

We can also confirm the effect of the phonon-phonon
(ph-ph) interaction mentioned above in another susceptibility.
Here, we focus on κR(t) ≡ −iθ (t)〈[XX(t),B0]〉 (response
of XX against the external pair field). This quantity can
be expressed in terms of �(t,t ′; t ′′) defined in Eq. (D6) in
Appendix D. Now, we evaluate a subset of diagrams, κph-ladder,
which corresponds to χph-ladder in that the dynamics is described
by Eq. (11). The diagrammatic expression for κph-ladder is shown
in Fig. 5(a). Here, one can note that the first diagram in κph-ladder

corresponds to the second and third ones in χph-ladder. In the
following, we denote the contribution from the first diagram
as κph-lowest. In Figs. 5(b) and 5(c) we compare κR(ω) from
the full dynamics in the self-consistent Migdal approximation,
κR

ph-lowest(ω), κR
ph-ladder(ω), and the phonon spectrum B(ω/2).

From the result one finds that κR
ph-lowest(ω) indeed exhibits a

peak at 2ωr , which deviates from ωH2. However, if one takes
account of the effect of the ph-ph interaction as in κR

ph-ladder(ω),
there emerges a peak around ωH2.

The different effects of the ph-ph interaction in the SC and
normal states can be attributed to the difference in its behavior
in these phases. The expression for the ph-ph interaction on
the KB contour is

Iph(t1,t2,t3,t4)

≡ g4

N

∑
k

{tr[σ̂3Ĝ(t1,t2)σ̂3Ĝk(t2,t4)σ̂3Ĝ(t4,t3)σ̂3Ĝk(t3,t1)]

+ tr[σ̂3Ĝ(t1,t2)σ̂3Ĝk(t2,t3)σ̂3Ĝ(t3,t4)σ̂3Ĝk(t4,t1)]}.
(12)

094509-5



MURAKAMI, WERNER, TSUJI, AND AOKI PHYSICAL REVIEW B 93, 094509 (2016)

FIG. 6. IM
ph(iνn1 ,iνn2 ,iνn3 )/g4 for various values of νn3 in the

normal state (a) and in the SC state (b) for g = 0.45, ω0 = 0.4,
β = 80. For the normal state, we suppress SC by hand.

In particular, the Matsubara components are

IM
ph(τ1,τ2,τ3)

≡ g4

N

∑
k

{tr[σ̂3Ĝ(τ1 − τ2)σ̂3Ĝk(τ2)σ̂3Ĝ(−τ3)σ̂3

×Ĝk(τ3 − τ1)]

+ tr[σ̂3Ĝ(τ1 − τ2)σ̂3Ĝk(τ2 − τ3)σ̂3Ĝ(τ3)σ̂3Ĝk(−τ1)]},
(13)

and

IM
ph(iνn1 ,iνn2 ,iνn3 )

≡
∫ β

0
dτ1dτ2dτ3e

iνn1 τ1eiνn2 τ2eiνn3 τ3IM
ph(τ1,τ2,τ3), (14)

where νnα
= 2nαπ/β. Now, in order to clarify the difference in

the ph-ph interaction in the normal and SC phases, we directly
evaluate IM

ph(iνn1 ,iνn2 ,iνn3 ). In Fig. 6, we show the results for
the normal and SC cases for g = 0.45, ω0 = 0.4, β = 80. In
order to obtain the result for the normal state, we suppress
SC by hand. First, we note that IM

ph(iνn1 ,iνn2 ,iνn3 ) is real.
In the normal state, the ph-ph interaction strongly depends
on the Matsubara frequency and has a clear sign change.
On the other hand, the SC phase has a drastically different
behavior: In the frequency regime comparable to the SC gap,
the frequency dependence becomes much weaker and the
sign change almost disappears. This allows us to approximate
IM

ph(iνn1 ,iνn2 ,iνn3 ) by a constant in the SC state. From a

comparison with diagrams that appear in the perturbation
expansion for a simple phonon model with an anharmonic
term, H eff

ph = ωpha
†a + I4X

4, it turns out that an approximate
constant IM

ph(iνn1 ,iνn2 ,iνn3 ) corresponds to the case of I4 > 0.
Since the anharmonic term makes the potential steeper, the
frequency of the coherent oscillations increases for I4 > 0.
This analysis is indeed consistent with our observation of the
hardening from 2ωr to ωH2 in the SC phase. In the normal
state, it is expected that the cancellation from the sign change
in the frequency dependence reduces this effect.

C. Time-resolved photoemission spectroscopy

Although the dynamical pair susceptibility is not a direct
observable in experiments, here we discuss that these modes
can be observed in pump-probe spectroscopy measurements.
We focus on the dynamics of the spectral function observed in
time-resolved photoemission spectroscopy (tr-PES) [51],

APES(tprobe,ω)

≡ 1

π
Im

∫
dtdt ′s(t − tprobe)s(t ′ − tprobe)eiω(t−t ′)G<(t,t ′).

(15)

Here, tprobe is the center of the probe pulse and s(t) is its
envelope, for which we use a Gaussian with sufficiently large
cutoff time tc, i.e., s(t) = 1√

2πσprobe
exp (− t2

2σ 2
probe

)θ (tc − |t |). We

note that a previous study with equilibrium phonons has
pointed out the possibility of detecting the amplitude mode
in the time-resolved photoemission signal near the Fermi
level [20]. Here, we focus on a wider energy range and the
new amplitude mode. The pump is mimicked by a modulation
of the hopping,

v(t) = v + δv exp

[
− (t − tpump)2

2σ 2
pump

]
, (16)

where σpump and tpump respectively denote the width and
the center of the pump pulse. This type of pump can be
effectively realized with a strong laser through an effective
band renormalization [43] or through light-induced lattice
distortions [21,52,53]. In the following, we choose tpump = 5.0,
σpump = 1.0, and tc = 25. In Figs. 7(a)–7(c), we plot the
difference between the spectra with and without a pump
normalized by the pump strength δv,

A′
PES(tprobe,ω)

≡ lim
δv→0

APES(tprobe,ω; δv) − APES(tprobe,ω; 0)

δv
, (17)

where we add the third argument for APES, which indicates
the strength of the pump. Clear oscillations are seen in a wide
energy range for ω � 0. One can see that for smaller σprobe

the resolution for ω decreases, while for tprobe it increases. The
Fourier transform along tprobe,

A′
PES(ωt,ω) ≡

∫ tmax−tc

tc

dtA′
PES(t,ω)eiωt t , (18)

reveals that the dominant oscillations are the ωH and ωH2

components [see Figs. 7(d)–7(f)]. These signals are visible in
a wide energy range for ω � 0 as bundles at the corresponding
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FIG. 7. (a)–(c) A′
PES(t,ω) against t and ω for various values of σprobe for g = 0.45, ω0 = 0.4, β = 80. (d)–(f) |A′

PES(ωt ,ω)| against t and ω

for various values of σprobe for g = 0.45, ω0 = 0.4, β = 80. The white vertical lines in (d)–(f) indicate ωH and ωH2. The condition for the pump
and probe is tpump = 5.0, σpump = 1.0, and tc = 25.

energies, especially near the band edge (ω 
 W/2) and the
gap edge (ω 
 �SC).

Finally, we demonstrate that the oscillations in the tr-PES
spectra cannot be explained by single-particle excitations,
i.e., the contribution from the bubble diagram. In the linear-
response regime, we have to consider the following quantity
for the tr-PES spectrum,

δC[Ĝk(t,t ′)]
δC[v(t ′′)]

∣∣∣∣
v(t)=v

=
∫
C
dt1dt2Ĝk(t,t1)�̂hop,k(t1,t2; t ′′)Ĝk(t2,t

′). (19)

Following the same procedure as for the pair susceptibility, we
obtain the expression for the vertex part as

�̂hop,k(t,t ′; t ′′) = �̂
(0)
hop,k(t,t ′; t ′′) + δC[	̂(t,t ′)]

δC[v(t ′′)]

∣∣∣∣
v(t)=v

. (20)

Here, �̂
(0)
hop,k(t,t ′; t ′′) = εk

v
σ̂3δC(t ′′,t)δC(t ′′,t ′) and the second

term is the vertex correction. The result for the tr-PES spec-

Bubble contribution to A’PES(tprobe,ω) for σprobe=π

tprobe

ω

 0  50  100  150  200
-4

-2

 0

 2

-0.04
-0.03
-0.02
-0.01
 0
 0.01
 0.02
 0.03
 0.04

FIG. 8. Contribution of the bubble diagrams to A′
PES(tprobe,ω) at

g = 0.45, ω0 = 0.4, β = 80. The condition for the pump and probe
is tpump = 5.0, σpump = 1.0, tc = 25, and σprobe = π .

trum, A′
PES(tprobe,ω), evaluated with the bubble contribution

(without the vertex correction) is displayed in Fig. 8. While
during the pump it shows a similar behavior as the full
dynamics in Fig. 7, there is no oscillation after the pump. Hence
we again conclude that the oscillations in the photoemission
spectra do originate from collective excitations, and we predict
that they can be observed in pump-probe experiments in a wide
range of ω.

IV. CONCLUSION

We have investigated the properties of collective amplitude
modes in strongly coupled SC in the Holstein model using the
nonequilibrium DMFT implemented with the self-consistent
Migdal approximation. The BCS relation between the SC gap
and the Higgs energy turns out to be robust beyond the BCS
regime. Besides the Higgs mode, we have unraveled another
amplitude mode involving the dynamics of the phonons. The
frequency of this mode, higher than twice the renormalized
phonon frequency in the superconducting phase, was shown to
reflect a strong electron-mediated phonon-phonon interaction.
We have also predicted that both collective modes should be
observable as oscillations of the PES spectrum in a wide energy
range after a strong laser pump. Even though the new mode
involving the dynamics of the SC order parameter and the
phonon dynamics has not yet been observed in real materials,
this information would be helpful for searching for such a
mode. We stress that the Holstein model is a fundamental
model describing the essential physics of electron-phonon
systems with a local coupling. In addition, our approximate
method, the nonequilibrium DMFT+self-consistent Migdal
approximation, is the nonequilibrium extension of the Migdal-
Eliashberg theory, which has been successful in describing
strongly coupled conventional SCs, in the limit of infinite
spatial dimensions. Hence we believe that the present study for
a fundamental model with a fundamental approximation may
stimulate further analyses for collective excitations beyond
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the BCS limit. An interesting future direction is to study these
collective modes in more realistic setups, such as multiband
systems [54–56], models with local and nonlocal Coulomb
interactions, and more general el-ph couplings. In order to deal
with these setups, further developments of impurity solvers
and/or extensions of the DMFT framework are required.
We also note that it has been recently pointed out that,
depending on the details of the pump excitation, there can be
significant contributions from quasiparticle excitations to the
third-harmonic generation with a strong THz excitation [57].
Therefore, systematic studies of how the contributions from
quasiparticle excitations and collective excitations depend on
the excitation protocols and observables will also be important
directions for future research.
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APPENDIX A: RENORMALIZED PHONONS

Here, we explain the dimensionless el-ph coupling for
renormalized phonons and the behavior of the phonon spec-
trum in SC. The dimensionless el-ph coupling is defined as

λeff ≡ 2
∫ ∞

0
dω

α2F (ω)

ω
, (A1)

α2F (ω) = N (0)g2B(ω), (A2)

where N (0) is the density of states (DOS) at the
Fermi level, B(ω) = − 1

π
Im DR(ω), and we obtain λeff =

N (0)g2DM(iνn = 0). Here, the superscript M indicates the
Matsubara component. So-called strong-coupling supercon-
ductors correspond to cases of λeff ∼ 1. The λeff for the
parameters employed in the paper is show in Fig. 9. In all
cases, the temperature dependence is weak.

 0.5

 1

 1.5

 2

 0  0.01  0.02  0.03  0.04  0.05
T

g=0.43

g=0.45

g=0.47

λ e
ff

FIG. 9. The dimensionless el-ph coupling λeff against T for
various values of g.
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(d) ω0=0.4, g=0.47

ω
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ω
)
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β=60

FIG. 10. (a), (b) Phonon spectrum at various temperatures for (a)
ω0 = 0.4, g = 0.45 and (b) ω0 = 0.4, g = 0.47. Arrows indicate the
peak positions (ωr ). (c), (d) Electron spectrum at various temperatures
for (c) ω0 = 0.4, g = 0.45 and (d) ω0 = 0.4, g = 0.47. In all cases,
the system is in the normal phase at β = 30, while it is in the SC
phase at other temperatures.

In Fig. 10, we show the detailed temperature dependence
of the phonon spectra for the cases corresponding to Fig. 3 as
well as the electron spectra for the whole energy range. For
both couplings, β = 30 is in the normal state, and the phonon
spectra exhibit an almost symmetric structure around a peak
at ωr . In the SC phase, the SC gap develops as we decrease the
temperature. At the same time, there occurs a drastic change
of the phonon spectrum. In particular, the spectral weight in
the low-energy regime is strongly suppressed and a sharp peak
develops below the SC gap. The former is attributed to the fact
that the scattering of phonons with quasiparticles is suppressed
below the SC gap energy.

APPENDIX B: RESULTS FOR ω0 = 0.2

In Fig. 11, we show the result for ω0 = 0.2. The result
involves very similar features as for ω0 = 0.4 (see Fig. 2).
This fact indicates that the discussions in the main part are
applicable to lower phonon frequencies, where the Migdal ap-
proximation becomes quantitatively more reliable. However,
we note that systematic analyses for lower phonon frequencies

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  50  100  150  200  250  300

(a) ω0=0.2, g=0.32, β=120

t

χR
0,pair(t)

χR
pair(t)

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4

(b) ω0=0.2, g=0.32, β=120

ω

ωH

ωH2

2Δsc

ωr

2A(ω/2)

B (ω)/40

-Im χR
0,pair(ω)

-Im χR
pair(ω)

FIG. 11. (a) Dynamical pair susceptibility against t evaluated
with the full dynamics in the self-consistent Migdal approximation
[χpair(t)] and with the bubble diagrams [χ0,pair(t)] for ω0 = 0.2,
g = 0.32, β = 120 (λeff = 1.65). (b) Comparison of the electron
spectrum A(ω/2), the phonon spectrum B(ω), −Im χR

0,pair(ω), and
−Im χR

pair(ω) for ω0 = 0.2, g = 0.32, β = 120. χpair(ω) and χ0,pair(ω)
are evaluated from the data at t ∈ [0,300].
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than ω = 0.4 are difficult. This is because all dynamics
involved becomes slower and hence numerical simulation
becomes more demanding.

APPENDIX C: IMPLEMENTATION OF THE PULSE FIELD

The Dyson equations involved in DMFT of the
Holstein model with the pair potential Hex(t) =
Fex(t)

∑
i (c†i↑c

†
i↓ + ci↓ci↑) are

D(t,t ′) = D0(t,t ′) + [D0 ∗ 
 ∗ D](t,t ′), (C1)[
i∂t + μ −Fex(t)
−Fex(t) i∂t − μ

]
Ĝ(t,t ′) − [(	̂ + �̂) ∗ Ĝ](t,t ′)

= Î δC(t,t ′), (C2)[
i∂t + μ −Fex(t)
−Fex(t) i∂t − μ

]
Ĝ0(t,t ′) − [�̂ ∗ Ĝ0](t,t ′)

= Î δC(t,t ′). (C3)

Here, Î is the identity matrix, and �̂(t,t ′) is the hybridization
function, which is v2σ̂3Ĝ(t,t ′)σ̂3 on the Bethe lattice. When we
take Fex(t) = dfδ(t), one finds from the above Dyson equations
that the effect of the external field leads to a jump in Ĝ0 and Ĝ

around t = 0,

ĜR(0+,0+) = −iÎ , (C4)

Ĝ�(0+,τ ′) = M̂Ĝ�(0−,τ ′), (C5)

Ĝ<(0+,0+) = M̂Ĝ<(0−,0−)M̂†, (C6)

where we have defined the matrix M̂ ,

M̂ ≡ 1

1 + d2
f
4

[
1 − d2

f
4 −idf

−idf 1 − d2
f
4

]
. (C7)

The expressions for the discontinuity of the Weiss Green’s
functions are obtained by replacing G with G0 in
Eqs. (C4)–(C6). On the other hand, the phonon Green’s
function (D) is continuous there.

APPENDIX D: DYNAMICAL PAIR SUSCEPTIBILITY

The dynamical pair susceptibility can be expressed by the
response of the Green’s functions to modulations of the pair
potential as in Eq. (5). Hence we want to calculate the quantity,

�̂k(t,t ′; t ′′) ≡ δC
[
Ĝk(t,t ′)

]
δC[Fex(t ′′)]

∣∣∣∣∣
Fex(t)=0

. (D1)

In the case of a free system, this quantity becomes

�̂0,k(t,t ′; t ′′) = Ĝ0,k(t,t ′′)σ̂1Ĝ0,k(t ′′,t ′), (D2)

where the suffix 0 denotes bare propagators. For general
interacting cases, we introduce the vertex part �̂k as

�̂k(t,t ′; t ′′) =
∫
C
dt1dt2Ĝk(t,t1)�̂k(t1,t2; t ′′)Ĝk(t2,t

′). (D3)

In the following, we assume that the self-energy is momentum
independent (DMFT approximation). From the Dyson equa-
tion for Ĝk, it then follows that

�̂k(t,t ′; t ′′)

= �̂0,k(t,t ′; t ′′)

+
∫
C
dt1dt2�̂0,k(t,t1; t ′′)	̂(t1,t2)Ĝk(t2,t

′)

+
∫
C
dt1dt2Ĝ0,k(t,t1)

δC
[
	̂(t1,t2)

]
δC[Fex(t ′′)]

∣∣∣∣∣
Fex=0

Ĝk(t2,t
′)

+
∫
C
dt1dt2Ĝ0,k(t,t1)	̂(t1,t2)�̂k(t2,t

′; t ′′). (D4)

From Eqs. (D3) and (D4) and the Dyson equation, we obtain
the expression for the vertex part Eq. (6). One notices that the
vertex does not depend on k either.

For diagrammatic approximations we explicitly know the
expression for the self-energy, hence we can directly determine
the vertex correction δC [	̂(t,t ′)]

δC [Fex(t ′′)] |Fex=0
from it. In the present case

of a DMFT+self-consistent Migdal approximation, the self-
energies for electrons (	̂) and phonons (
) are expressed as
Eq. (3). From this we obtain

δC
[
	̂(t,t ′)

]
δC[Fex(t ′′)]

=ig2D(t,t ′)�̂(t,t ′; t ′′)

+ ig2�(t,t ′; t ′′)σ̂3Ĝ(t,t ′)σ̂3, (D5)

where we have defined

�(t,t ′; t ′′) ≡ δC[D(t,t ′)]
δC[Fex(t ′′)]

≡
∫
C
dt1dt2D(t,t1)�(t1,t2; t ′′)D(t2,t

′) (D6)

and, as in the main text, �̂(t,t ′; t ′′) ≡ 1
N

∑
k

∫
C dt1dt2

σ̂3Ĝk(t,t1)�̂(t1,t2; t ′′)Ĝk(t2,t ′)σ̂3. From the Dyson equation
for the phonon Green’s function Eq. (C1) and with the same
procedures as for �̂k, we find

�(t,t ′; t ′′) = δC[
(t,t ′)]
δC[Fex(t ′′)]

= −ig2{tr[�̂(t,t ′; t ′′)Ĝ(t ′,t)]

+ tr[Ĝ(t,t ′)�̂(t ′,t ; t ′′)]}. (D7)

Hence the final expression for the vertex function becomes
Eq. (7) in the main text. The derivation of Eq. (9) for the
unrenormalized Migdal approximation is similar but much
simpler.
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