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1. Introduction

During the last decades, the correlation-induced metal-insulator (Mott) transition

has been one of the challenging problems in condensed matter physics.1 In most

cases, the translational symmetry is broken in the Mott insulator.2 A notable ex-

ception is the one-dimensional repulsive (U > 0) Hubbard model3

HHub = t
∑
n

∑
α=↑,↓

(c†nαcn+1,α + c†n+1,αcnα) + U
∑
n

ρ̂n↑ρ̂n↓ (1)
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at half-filling, where the dynamical generation of a charge gap is not accompanied

by the breaking of a discrete symmetry.4 In Eq. (1), we have used standard notation,

namely c†nα (cnα) for electron creation (annihilation) operators and ρ̂nα = c†nαcnα
for the particle density at site n with spin projection α. The exact solution of

the model (1) in the case of a half-filled band reveals that the ground state is

uniform, with exponentially decaying density correlations.5 At the same time, spin

excitations are gapless and thus magnetic correlations decay only algebraically.6

This is readily understood in the large-U limit: indeed, for U � |t| the infrared

behavior of the model (1) at half-filling is fully described by the SU(2)-symmetric

spin S = 1/2 Heisenberg Hamiltonian

HHeis = J
∑
n

Sn · Sn+1 + J ′
∑
n

Sn · Sn+2 , (2)

where J = 4t2/U − 16t4/U3 and J ′ = 4t4/U3 up to the fourth-order terms in

t/U .7,8 Since the condition |t| � U implies that the frustration is weak J ′ � J ,

the next-nearest exchange is irrelevant and the low-energy behavior of the ini-

tial electron system is governed by the standard isotropic Heisenberg Hamiltonian

HHeis = J
∑

n Sn · Sn+1. Elegant techniques have been developed for calculating

higher order corrections to the Hamiltonian (2). These terms are also irrelevant and

leave the featureless character of the ground state intact.9–11

The spin sector may even remain translationally invariant in the case of an ex-

plicitly broken translational invariance of the electronic Hamiltonian. For example,

let us consider a scenario where two types of atoms are located respectively on even

and odd sites of the lattice, with different on-site energies and/or different on-site

couplings for the electrons. The Hamiltonian of such an extended version of the

Hubbard model is given by

H = t
∑
n,α

(c†nαcn+1,α+c†n+1,αcnα)+U
∑
n

(1+(−1)nδ)ρ̂n↑ρ̂n↓+
Δ

2

∑
n

∑
α

(−1)nρ̂nα ,

(3)

where 0 ≤ δ, Δ/U � 1. It possesses spin SU(2) symmetry, but the translational

symmetry has been reduced due to the doubling of the unit cell. At δ = 0 and Δ �= 0

this Hamiltonian corresponds to the ionic Hubbard model (IHM),12 where electrons

on even and odd sites have different on-site energies ±Δ/2, while at Δ = 0 and

δ �= 0 Eq. (3) represents the alternating-U Hubbard model,13 where the electrons

experience different on-site interactions on even and odd sites.

At U = 0, the half-filled IHM describes a regular band insulator with equal

charge and spin gaps and a long-range ordered (LRO) charge density wave (CDW)

in the ground state. With increasing U , the system undergoes two phase transitions,

a first one at U = Uc1 from the CDW-insulator to a LRO dimerized insulator, and

a second one at U = Uc2 > Uc1 from the dimerized phase to a strongly correlated

(Mott) insulator.14 At U = Uc2 the spin gap vanishes and the low-energy behavior of

the system for U > Uc2 is again described by the Heisenberg Hamiltonian (2), with

the difference that the spin exchange parameters J and J ′ now weakly depend on Δ.
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The broken translational symmetry of the model manifests itself only in the charge

degrees of freedom via the presence of a LRO CDW pattern which persists even in

the limit of strong repulsion, with the amplitude approaching zero at U → ∞.15

The weak-coupling renormalization group analysis of the repulsive alternating-U

Hubbard model (Δ = 0 and U(1± δ) > 0) shows a qualitatively similar low-energy

behavior at half-filling as the usual Hubbard model. Scattering processes arising

from the alternating part of the interaction, which are relevant in the commen-

surate case of 1/4- and 3/4-filled bands,13 are irrelevant at 1/2-filling where the

properties of the system are governed by the uniform part of the interaction. In the

limit of strong on-site repulsion (U � |t|), the infrared behavior of the alternating-

U Hubbard model is once again described by the Heisenberg Hamiltonian (2), but

with a slight modification — an alternating next-nearest-neighbor (NNN) exchange∑
n[J

′
0 + (−1)nJ ′

1]Sn · Sn+2.
16 Numerical and analytical studies of the Heisenberg

chain with alternating NNN exchange show that in the pertinent case of weak frus-

tration (J ′ � J), the alternation of J ′ is irrelevant and the infrared behavior of the

model is fully described by the standard Heisenberg model with nearest-neighbor

exchange.17 Thus, even though the Hamiltonian (3) describes a fermion system on

a lattice with broken translational symmetry, the information about the unit cell

doubling at half-filling is fully accommodated within the high-energy degrees of free-

dom; the low-energy behavior of the system is described by a translationally invari-

ant, isotropic spin Hamiltonian. It has to be noted that the above conclusion does

not remain valid in the presence of bond alternation, i.e., if the hopping amplitude t

is replaced by t0+(−1)nt1. In this case, one obtains that in the strong-coupling limit

at half-filling the effective Hamiltonian, still given by the Heisenberg model, con-

tains an alternating nearest-neighbor exchange
∑

n[J0 + (−1)nJ1]Sn · Sn+1, which

leads to the spin-Peierls instability with gapped spin excitations.18

We now turn our attention to a model having full translational symmetry, but

explicitly broken spin SU(2) symmetry, the so-called spin-asymmetric Hubbard

Hamiltonian

H =
∑
n,α

tα(c
†
nαcn+1,α + c†n+1,αcnα) + U

∑
n

ρ̂n↑ρ̂n↓ , (4)

where the hopping is spin-dependent (t↑ �= t↓). This model, introduced in the early

1990s19 to interpolate between the standard Hubbard model (t↑ = t↓) and the

Falicov–Kimball model20 (t↑ > 0, t↓ = 0), has been intensively studied during the

last two decades.21–26 Away from half-filling the spin-up and spin-down particles

are segregated in the ground state for large enough repulsion, both for the Falicov–

Kimball model27 and for the Hamiltonian (4) with t↑ �= t↓ �= 0.28 Therefore, the

spin-asymmetric Hubbard model appears to be well suited for studying transitions

between phase-separated and homogeneous states, especially in one dimension.29–31

More recently, increased interest in low dimensional correlated fermion models

with spin-dependent hopping has been triggered by the fascinating progress in ex-

perimental studies of low dimensional mixtures of optically trapped ultracold atoms
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of two different types,32 such as ultracold atoms loaded into spin-dependent optical

lattices33,34 or trapped atoms of different masses.35,36 The great freedom available

for generating optical lattices has also allowed one to play with the lattice geom-

etry and to create bipartite lattices, which turned out to be a key ingredient for

achieving higher-band condensates,37–39 coherence control,40 density-wave dynam-

ics41 and even graphene-like physics.42,43 It has to be emphasized that mixtures

of fermions with different hopping amplitudes naturally appear in solid-state sys-

tems as well, namely when several bands cross the Fermi surface. This happens, for

instance, in mixed-valence materials, organic superconductors,44 small radius nan-

otubes45 and even graphene-based heterostructures.46 However, experiments with

trapped ultracold atoms can actually engineer quantum many-body states and thus

realize models of correlated fermions and bosons which are not available in usual

solid-state structures.47 Recent theoretical predictions of various unconventional

superfluid or superconducting,48–54 insulating55,56 and magnetic57 phases in such

novel systems have further stimulated the interest in the spin-asymmetric Hubbard

model.

The broken SU(2) spin symmetry of the model (4) at t↑ �= t↓ is manifestly seen

for a half-filled band in the strong-coupling limit (U � |t↑|, |t↓|), where to leading

order the infrared behavior of the system is described by the anisotropic XXZ

Heisenberg Hamiltonian

H = J
∑
n

(Sx
nS

x
n+1 + Sy

nS
y
n+1 + γSz

nS
z
n+1) , (5)

with J = 4t↑t↓/U and γ = (t2↑ + t2↓)/2t↑t↓.
22 As the anisotropy parameter |γ| is

larger than 1 for arbitrary t↑ �= t↓, the system has a finite spin gap and long-

range antiferromagnetic order in the ground state.58 Nevertheless, the translational

invariance of the initial lattice model (4) is retained by the effective Hamiltonian

(5), even if the ground state has lower symmetry due to the general phenomenon

of spontaneous symmetry breaking.

In a recent paper, we have studied the one-dimensional spin-asymmetric IHM

in the limit of strong on-site repulsion (for a half-filled band).59 We have shown

that for t↑ �= t↓ the doubling of the unit cell by the alternating ionic potential

Δ �= 0 directly manifests itself in the spin degrees of freedom, and the effective

spin Hamiltonian in the strong-coupling limit is given by the anisotropic XXZ

Heisenberg chain with a staggered magnetic field

H = J
∑
n

(Sx
nS

x
n+1 + Sy

nS
y
n+1 + γSz

nS
z
n+1)− h

∑
n

(−1)nSz
n , (6)

where

J =
4t↑t↓

U(1− x2)
, γ =

t2↑ + t2↓
2t↑t↓

, h =
2(t2↑ − t2↓)x

U(1− x2)
, (7)

and x = Δ/U . For t↑ �= t↓ and finite x, the translational symmetry is broken already

at the level of the effective spin Hamiltonian via the presence of the staggered

4

ht
tp

://
do

c.
re

ro
.c

h



magnetic field. Since this represents a strongly relevant perturbation to the spin

system, the ground state is characterized by a long-range antiferromagnetic order

with explicitly broken translational symmetry. The excitation spectrum is gapped

and the gap exhibits power-law dependence on the parameter h.60

In the present paper, we extend our analysis to the case of explicitly bro-

ken translational symmetry in the on-site interaction and derive the effective spin

Hamiltonian for the one-dimensional spin-asymmetric alternating-U ionic Hubbard

chain represented by

H =
∑
n,α

tα(c
†
nαcn+1,α+c†n+1,αcnα)+U

∑
n

(1+(−1)nδ)ρ̂n↑ρ̂n↓+
Δ

2

∑
n

∑
α

(−1)nρ̂nα .

(8)

We find that up to fourth-order terms in tα/U , the infrared behavior of the lat-

tice fermion model (8) at half-filling is governed by the following effective spin

Hamiltonian:

Heff =
∑
n

{
J⊥(S

x
nS

x
n+1 + Sy

nS
y
n+1) + J‖

(
Sz
nS

z
n+1 −

1

4

)

+ J ′
⊥(n)(S

x
nS

x
n+2 + Sy

nS
y
n+2) + J ′

‖(n)

(
Sz
nS

z
n+2 −

1

4

)

+W⊥(n)
[
(Sx

n−1S
x
n + Sy

n−1S
y
n)S

z
n+1 + Sz

n−1(S
x
nS

x
n+1 + Sy

nS
y
n+1)

]

+W‖(n)S
z
n−1S

z
nS

z
n+1 − h(n)Sz

n

}
, (9)

where

J⊥ =
4t↑t↓

U(1− λ2)

[
1−

2(t2↑ + t2↓)

U2(1 − λ2)2

(
2 + 2λ2 −

1− λ2

1 − δ2

)]
, (10)

J‖ =
2(t2↑ + t2↓)

U(1− λ2)
−

6(t4↑ + t4↓)

U3(1− λ2)3
(1 + 3λ2)−

4t2↑t
2
↓

U3(1 − λ2)3

(
5− λ2 −

4(1− λ2)

1− δ2

)
,

(11)

J ′
⊥(n) =

4t2↑t
2
↓

U3(1− λ2)3

[
2 + 2λ2 −

(1 − λ2)2

1− δ2

]
+ (−1)n

4δt2↑t
2
↓

U3(1− λ2)(1− δ2)
, (12)

J ′
‖(n) =

2(t4↑ + t4↓)

U3(1 − λ2)3

[
1 + 3λ2 +

1− λ4

1− δ2

]
−

4t2↑t
2
↓

U3(1− λ2)2
1 + δ2

1− δ2

+ (−1)n
2δ

U3(1− λ2)2(1− δ2)
[4t2↑t

2
↓ − (t4↑ + t4↓)(1 + λ2)] , (13)

W⊥(n) =
4λt↑t↓(t

2
↑ − t2↓)

U3(1 − λ2)2

{
2δ

1− δ2
+ (−1)n

[
3 + λ2

1− λ2
+

2

1− δ2

]}
, (14)
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W‖(n) =
4λ(t4↑ − t4↓)

U3(1 − λ2)2

{
2δ

1− δ2
+ (−1)n

[
3 + λ2

1− λ2
+

2

1− δ2

]}
, (15)

h(n) = h0 + (−1)nh1 =
2λδ(t4↑ − t4↓)

U3(1− λ2)2(1 − δ2)

+ (−1)n
2λ(t2↑ − t2↓)

U(1− λ2)

{
1−

t2↑ + t2↓
2U2(1− λ2)2

[
5(3 + λ2)−

2(1− λ2)

1− δ2

]}
, (16)

with λ = δ +Δ/U .

As we observe, the leading terms (∝U−1) are the same as in (7) except that

the parameter x is replaced by λ. The higher order terms (∝U−3) include the

renormalization of the nearest-neighbor coupling J , the NNN exchange with an

alternating part whose existence is determined solely by δ, and corrections to the

magnetic field alongside the less conventional three-spin terms, all having both

homogeneous and alternating parts. We also note that the expressions of the fourth-

order terms obtained in our earlier work59 are not entirely correct and they should

be replaced by the appropriate limit (δ = 0) of the above results.

A detailed derivation of the expressions (9)–(16) will be presented in the follow-

ing. In Secs. 2 and 3, a unitary transformation is applied to the electronic Hamil-

tonian in the case of a half-filled band, eliminating hopping processes between

many-electron states with different numbers of doubly occupied sites. In Sec. 4 we

briefly discuss the Hubbard operators, which are used in the subsequent Sec. 5 to

derive the effective spin Hamiltonian. Finally, Sec. 6 summarizes the main results

of the paper, while the Appendix contains some technical calculations of the spin

exchange terms.

2. The Strong-coupling Approach

In the strong coupling limit (U � |t|), the perturbative treatment of the half-filled

Hubbard model based on expansion of the Hamiltonian in powers of t/U goes back

to the original derivation of the effective spin Hamiltonian to the second order

by Anderson.61 Afterwards, using different versions of the degenerate perturbation

theory, effective spin Hamiltonians up to higher orders in t/U have been obtained.

In particular, Klein and Seitz62 derived the sixth-order spin interaction for the

Hubbard chain, while Bulaevskii7 and Takahashi8 obtained the fourth-order terms

for the half-filled Hubbard model in higher dimensions. More recently, these per-

turbative methods have also been applied to Hubbard models with more general

interactions.63

An alternative approach to construct the effective Hamiltonian is based on uni-

tary transformations. Harris and Lange64 used such a transformation to obtain

second-order results and to calculate spectral properties of the Hubbard model. A

transformation which systematically incorporates higher orders in t/U has been

proposed by Chao et al.65 In their expansion, closed expressions for the effective
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spin exchange are obtained to any order. However, beyond the second order their

method is not very well controlled since the transformation of the Hamiltonian

involves an approximation for the band energies, and higher order terms mixing

different Hubbard bands are not eliminated properly.66,67

A consistent transformation scheme which allows one to remove all unphysical

terms and to derive the t/U -expansion up to any desired order has been formulated

by MacDonald et al.9 In their scheme, interaction terms which do not conserve

the number of local electron pairs are eliminated from the Hamiltonian order by

order in an iterative treatment, generating new interactions and thus improving

the accuracy of the transformation at each step. Later their approach has been

successfully employed to obtain effective spin Hamiltonians in the case of extended

versions of the Hubbard model on a square lattice with next-nearest- and next-

NNN hoppings.68,69

Another consistent scheme for construction of the effective spin Hamiltonian up

to any given order in powers of t/U has been developed by Stein,10 who utilized

Wegner’s method70 of continuous unitary transformations with subsequent solu-

tion of the corresponding flow equations for the half-filled Hubbard model. Later a

similar approach has been used to reveal an additional (hidden) symmetry of the

Hubbard model on any bipartite lattice.71

In this paper we apply the method developed by MacDonald et al. for the

standard Hubbard model9 to the Hamiltonian H = T + V , where

T =
∑
〈n,m〉

∑
α

tαc
†
nαcmα , (17)

V =
Δ

2

∑
n,α

(−1)nρ̂nα + Uo

∑
n

ρ̂2n+1,↑ρ̂2n+1,↓ + Ue

∑
n

ρ̂2n,↑ρ̂2n,↓ , (18)

and brackets in the sum 〈n,m〉 signify that n and m are labels for neighboring sites.

The on-site couplings Uo = U(1− δ) and Ue = U(1 + δ) are supposed to be strong,

Ue ≥ Uo � |t↑|, |t↓|, Δ, implying that the parameters δ = (Ue−Uo)/(Ue+Uo) and

λ = δ +Δ/U satisfy the conditions 0 ≤ δ < 1, 0 ≤ λ < 1.

In the large-U limit of the standard Hubbard model (δ = Δ = 0) the many-

electron states are grouped according to the number of doubly occupied sites (dou-

blons) Nd. In the present case with δ, Δ > 0 these Hubbard subbands are split into

groups of states classified by two numbers, Nde and Ndo, representing the numbers

of doubly occupied sites on even and odd sublattices, respectively. The hopping

operator T mixes the states of these subbands. The “unmixing” can be achieved

by introducing suitable linear combinations of the uncorrelated basis states. The

S-matrix for this transformation, and the transformed Hamiltonian,

H′ = eiSHe−iS , (19)

are generated by an iterative procedure, which results in an expansion in powers of

the hopping amplitudes t↑ and/or t↓ divided by the on-site energies Ue and/or Uo.
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This expansion is based on the separation of the kinetic part of the Hamiltonian

into three terms:

T = T0 + T1 + T−1 , (20)

where T0 leaves the number of doubly occupied sites unchanged, and T1 (T−1)

increases (decreases) this number by one. In the present case of broken translational

symmetry each of these contributions is further split into several different terms,

depending on whether the electron hops from an even to an odd site or vice versa.

In particular, the T0 term is split into four separate processes:

T0 = T pe
0 + T po

0 + T de
0 + T do

0 . (21)

Here,

T pe
0 =

∑
〈2n,m〉

∑
α

tα(1− ρ̂2n,α)c
†
2n,αcmα(1− ρ̂mα) (22)

and

T po
0 =

∑
〈2n+1,m〉

∑
α

tα(1− ρ̂2n+1,α)c
†
2n+1,αcmα(1− ρ̂mα) (23)

correspond respectively to hopping processes where an electron with spin α hops

from a singly occupied odd (even) site to an empty neighboring even (odd) site,

while

T de
0 =

∑
〈2n,m〉

∑
α

tαρ̂2n,αc
†
2n,αcmαρ̂mα (24)

and

T do
0 =

∑
〈2n+1,m〉

∑
α

tαρ̂2n+1,αc
†
2n+1,αcmαρ̂mα (25)

represent hopping processes where an electron with spin α hops from a doubly

occupied odd (even) site to a neighboring even (odd) site which is already occupied

by another electron with the opposite spin α.

In a similar fashion, the operators T±1, which change the number of doublons

by one, are also separated into even and odd parts T±1 = T e
±1 + T o

±1, where

T e
1 =

∑
〈2n,m〉

∑
α

tαρ̂2n,αc
†
2n,αcmα(1− ρ̂mα) (26)

and

T o
1 =

∑
〈2n+1,m〉

∑
α

tαρ̂2n+1,αc
†
2n+1,αcmα(1− ρ̂mα) (27)

increase the number of doublons on the sublattice of even (odd) sites, while

T e
−1 =

∑
〈n,2m〉

∑
α

tα(1− ρ̂nα)c
†
nαc2m,αρ̂2m,α (28)
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and

T o
−1 =

∑
〈n,2m+1〉

∑
α

tα(1− ρ̂nα)c
†
nαc2m+1,αρ̂2m+1,α , (29)

respectively decrease the number of doublons on the even and odd sublattices.

One can easily check the following commutation relations:

[V, T s
μ] = (μ+ δμ,0)ΛsT

s
μ , (30)

where μ = 0, ±1 and

Λs =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ, s = pe ,

−Δ, s = po ,

(Ue − Uo) + Δ, s = de ,

−(Ue − Uo)−Δ, s = do ,

Ue +Δ, s = e ,

Uo −Δ, s = o .

(31)

The relations (30) reflect the fact that the energy of the system changes by (μ +

δμ,0)Λs as a result of the hopping process T s
μ.

3. Effective Hamiltonian in the Case of a Half-filled Band

Let us now search for the unitary transformation S which eliminates hops be-

tween states with different numbers of doubly occupied sites in the transformed

Hamiltonian

H′ = eiSHe−iS = H+ [iS,H] +
1

2
[iS, [iS,H]] + · · · . (32)

We follow a recursive scheme9 which allows to determine such a transformation to

any desired order in tα/U . The last two terms of the initial Hamiltonian

H ≡ H′(1) = V + T0 + T1 + T−1 (33)

may be transformed away by choosing

iS ≡ iS(1) =
1

Uo −Δ
(T o

1 − T o
−1) +

1

Ue +Δ
(T e

1 − T e
−1) . (34)

Substituting (33) and (34) into the expansion (32) and applying (30), we obtain

H′(2) = V + T0 +
1

Uo −Δ
([T o

1 , T0] + [T0, T
o
−1] + [T o

1 , T
o
−1])

+
1

Ue +Δ
([T e

1 , T0] + [T0, T
e
−1] + [T e

1 , T
e
−1])

+
Ue + Uo

2(Ue +Δ)(Uo −Δ)
([T e

1 , T
o
−1] + [T o

1 , T
e
−1])

+
Uo − Ue − 2Δ

2(Ue +Δ)(Uo −Δ)
([T e

1 , T
o
1 ] + [T o

−1, T
e
−1]) +O(t3/U2) . (35)

9

ht
tp

://
do

c.
re

ro
.c

h



We focus on the case of a half-filled band, where in the large-U limit the lowest-

energy states |ΨL〉 have exactly one electron at each site. In this subspace no hops

are possible without increasing the number of doubly occupied sites. Therefore,

T e
−1|ΨL〉 = 0 , T o

−1|ΨL〉 = 0 , T0|ΨL〉 = 0 (36)

and the effective Hamiltonian (35) is reduced to

H′(2) = −
T o
−1T

o
1

Uo −Δ
−

T e
−1T

e
1

Ue +Δ
+O(t3/U2) . (37)

To proceed further, we define:

T (k)[{s}, {μ}] = T s1
μ1
T s2
μ2

. . . T sk
μk

. (38)

Using (30), we can write

[
V̂ , T (k)[{s}, {μ}]

]
=

k∑
i=1

Λsi(μi + δμi,0)T
(k)[{s}, {μ}] . (39)

H′(k) contains terms of order (tα)
k, denoted byH′[k], which couple states in different

subspaces. By definition [V, H′[k]] �= 0 and H′[k] can be expressed in the following

way:

H′[k] =
∑
{a}

∑
{μ}

C
(k)
{a}({μ})T

(k)[{a}, {μ}] ,

k∑
i=1

μi �= 0 . (40)

If at each kth order step we choose S(k) as

S(k) = S(k−1) + S [k] , (41)

where S [k] is the solution of the equation

[iS [k], V ] = −H′[k] (42)

and therefore equals

S [k] = −i
∑
{a}

∑
{μ}

C
(k)
{a}({μ})∑k

i=1 Λai
(μi + δμi,0)

T (k)[{a}, {μ}] ,

k∑
i=1

μi �= 0 , (43)

then the transformed Hamiltonian

H′(k+1) = eiS
(k)

He−iS(k)

(44)

contains terms up to the order of (tα)
k/Uk−1 which commute with the unperturbed

Hamiltonian V and mix states within each subspace only.

The conditions (36) can be generalized to higher orders

T (k)[{s}, {μ}] |ΨL〉 = 0 , (45)

if

Mk
p [{μ}] ≡

k∑
i=p

μi < 0 (46)
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for at least one value of p. Equation (45) can be used to eliminate many terms from

the expansion for H′ in the subspace of minimal 〈V 〉.

The final expression of the transformed Hamiltonian H′ up to the fourth order

reads:

H′(4) = −
T o
−1T

o
1

Uo −Δ
−

T e
−1T

e
1

Ue +Δ
−

T o
−1T

po
0 T pe

0 T o
1

Uo(Uo −Δ)2
−

T o
−1T

do
0 T de

0 T o
1

Ue(Uo −Δ)2
−

T e
−1T

de
0 T do

0 T e
1

Uo(Ue +Δ)2

−
T e
−1T

pe
0 T po

0 T e
1

Ue(Ue +Δ)2
−

T o
−1T

po
0 T do

0 T e
1

(Uo −Δ)Uo(Ue +Δ)
−

T e
−1T

de
0 T pe

0 T o
1

(Uo −Δ)Uo(Ue +Δ)

−
T o
−1T

do
0 T po

0 T e
1

(Uo −Δ)Ue(Ue +Δ)
−

T e
−1T

pe
0 T de

0 T o
1

(Uo −Δ)Ue(Ue +Δ)

−
T o
−1T

e
−1T

o
1 T

e
1

(Ue +Δ)(Uo −Δ)(Ue + Uo)
−

T e
−1T

o
−1T

e
1T

o
1

(Ue +Δ)(Uo −Δ)(Ue + Uo)

−
T e
−1T

o
−1T

o
1 T

e
1

(Ue +Δ)2(Ue + Uo)
−

T o
−1T

e
−1T

e
1T

o
1

(Uo −Δ)2(Ue + Uo)

−
T o
−1T

o
−1T

o
1 T

o
1

2(Uo −Δ)3
−

T e
−1T

e
−1T

e
1T

e
1

2(Ue +Δ)3
+

T o
−1T

o
1 T

o
−1T

o
1

(Uo −Δ)3
+

T e
−1T

e
1T

e
−1T

e
1

(Ue +Δ)3

+
Uo + Ue

2(Uo −Δ)2(Ue +Δ)2
[T o

−1T
o
1 T

e
−1T

e
1 + T e

−1T
e
1T

o
−1T

o
1 ] . (47)

4. Hubbard Operators

To handle the effects of strong interaction properly, it is important to know whether

at the beginning or at the end of a given hopping process a particular site is doubly

occupied or not. For this purpose, one introduces the so-called Hubbard operators72

Xab
n , which are defined at each site of the lattice and describe all possible transitions

between the local basis states |a〉, |b〉: unoccupied |0〉, singly occupied with an up-

spin |↑〉 or a down-spin |↓〉 electron, and doubly occupied |2〉. The original electron

creation (annihilation) operators can be expressed in terms of Hubbard operators

in the following way:

c†n,α = Xα0
n + η(α)X2α

n , cn,α = X0α
n + η(α)Xα2

n , (48)

where η(α) =
{

1 if α = ↑ ,
−1 if α = ↓ .

Conversely, in terms of creation (annihilation) operators the Hubbard operators

have the form:

Xα0
n = c†nα(1− ρ̂iα) , X2α

n = η(α)c†iαρ̂iα ,

Xαα
n = c†nαcnα , X20

n = η(α)c†nαc
†
nα ,

X00
n = (1− ρ̂n↑)(1 − ρ̂n↓), X22

n = ρ̂n↑ρ̂n↓ ,

Xαα
n = ρ̂nα(1− ρ̂nα) .

(49)
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The Hubbard operators containing an even (odd) number of electron

creation/annihilation operators are Bose-like (Fermi-like) operators. They obey the

following on-site multiplication rule:

Xpq
n Xrs

n = δqrX
ps
n (50)

and commutation relations

[Xpq
n , Xrs

m ]± = δnm(δqrX
ps
m ± δpsX

rq
m ) , (51)

where the upper sign stands for the case when both operators are Fermi-like, oth-

erwise the lower sign should be adopted.

It is straightforward to represent the hopping terms introduced in Sec. 2 by the

Hubbard operators:

T po
0 =

∑
〈2n+1,m〉

∑
α

tαX
α0
2n+1X

0α
m , T pe

0 =
∑

〈2n,m〉

∑
α

tαX
α0
2nX

0α
m ,

T do
0 =

∑
〈2n+1,m〉

∑
α

tαX
2α
2n+1X

α2
m , T de

0 =
∑

〈2n,m〉

∑
α

tαX
2α
2nX

α2
m ,

T o
1 =

∑
〈2n+1,m〉

∑
α

η(α)tαX
2α
2n+1X

0α
m , T e

1 =
∑

〈2n,m〉

∑
α

η(α)tαX
2α
2nX

0α
m ,

T o
−1 =

∑
〈n,2m+1〉

∑
α

η(α)tαX
α0
n Xα2

2m+1 , T e
−1 =

∑
〈n,2m〉

∑
α

η(α)tαX
α0
n Xα2

2m .

(52)

One also easily verifies that the X-operators describing the transitions between

singly occupied states can be rewritten in terms of spin S = 1/2 operators as

X↑↓
n = c†n↑cn↓ = S+

n , X↓↑
n = c†n↓cn↑ = S−

n ,

X↑↑
n =

1

2
+ Sz

n , X↓↓
n =

1

2
− Sz

n .
(53)

5. The Spin Hamiltonian

Using the relations (52) and (53), it is straightforward to rewrite the products of

T -terms in (47) via the Hubbard X and hence the spin S = 1/2 operators. We

first consider the simplest two-component T -terms at great length to elucidate the

procedure for more complicated contributions.

5.1. The second-order terms

Let us start from the hopping term which corresponds to creation and subsequent

annihilation of a single doublon on an even 2nth site. Since the electron hopping is

restricted to nearest-neighbor sites, this process only includes electrons located on

two neighboring sites 2n± 1, and is given by:

T e
−1T

e
1 =

L/2∑
n=1

∑
q=±1

∑
α

[t2αX
α0
2n+qX

α2
2nX

2α
2nX

0α
2n+q − tαtαX

α0
2n+qX

α2
2nX

2α
2nX

0α
2n+q]
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=

L/2∑
n=1

∑
q=±1

∑
α

[t2αX
αα
2n+qX

αα
2n − tαtαX

αα
2n+qX

αα
2n ]

=

L/2∑
n=1

∑
q=±1

[t2↑X
↑↑
2n+qX

↓↓
2n + t2↓X

↓↓
2n+qX

↑↑
2n − t↑t↓(X

↑↓
2n+qX

↓↑
2n +X↓↑

2n+qX
↑↓
2n)]

=

L/2∑
n=1

∑
q=±1

[
t2↑

(
1

2
+ Sz

2n+q

)(
1

2
− Sz

2n

)
+ t2↓

(
1

2
− Sz

2n+q

)(
1

2
+ Sz

2n

)

− t↑t↓(S
+
2n+qS

−
2n + S−

2n+qS
+
2n)

]

=

L/2∑
n=1

∑
q=±1

[
(t2↑ + t2↓)

(
1

4
− Sz

2nS
z
2n+q

)
−

1

2
(t2↑ − t2↓)(S

z
2n − Sz

2n+q)

− 2t↑t↓(S
x
2nS

x
2n+q + Sy

2nS
y
2n+q)

]

=
L∑

n=1

[
− 2t↑t↓(S

x
nS

x
n+1 + Sy

nS
y
n+1)− (t2↑ + t2↓)

(
Sz
nS

z
n+1 −

1

4

)

− (−1)n(t2↑ − t2↓)S
z
n

]
. (54)

As to the second term T o
−1T

o
1 , which describes creation and annihilation of a pair

on an odd site, the calculation is essentially the same, with the only difference being

that one needs to make a replacement 2n ↔ 2n + 1. Below this shift is absorbed

in q:

T o
−1T

o
1 =

L/2∑
n=1

∑
q=0,2

∑
α

[t2αX
α0
2n+qX

α2
2n+1X

2α
2n+1X

0α
2n+q

− tαtαX
α0
2n+qX

α2
2n+1X

2α
2n+1X

0α
2n+q]

=

L/2∑
n=1

∑
q=0,2

[
t2↑

(
1

2
+ Sz

2n+q

)(
1

2
− Sz

2n+1

)
+ t2↓

(
1

2
− Sz

2n+q

)(
1

2
+ Sz

2n+1

)

− t↑t↓(S
+
2n+qS

−
2n+1 + S−

2n+qS
+
2n+1)

]

=

L/2∑
n=1

∑
q=0,2

[
(t2↑ + t2↓)

(
1

4
− Sz

2n+qS
z
2n+1

)
+

1

2
(t2↑ − t2↓)(S

z
2n+q − Sz

2n+1)

− 2t↑t↓(S
x
2n+qS

x
2n+1 + Sy

2n+qS
y
2n+1)

]
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=

L∑
n=1

[
− 2t↑t↓(S

x
nS

x
n+1 + Sy

nS
y
n+1)− (t2↑ + t2↓)

(
Sz
nS

z
n+1 −

1

4

)

+ (−1)n(t2↑ − t2↓)S
z
n

]
. (55)

The combination of these two processes yields the second-order effective spin

Hamiltonian:

H
(2)
eff = −

1

Uo −Δ
T o
−1T

o
1 −

1

Ue +Δ
T e
−1T

e
1

= J
∑
n

[
Sx
nS

x
n+1 + Sy

nS
y
n+1 + γ

(
Sz
nS

z
n+1 −

1

4

)]
− h

∑
n

(−1)nSz
n , (56)

where

J =
4t↑t↓

U(1− λ2)
, γ =

t2↑ + t2↓
2t↑t↓

, h =
2λ(t2↑ − t2↓)

U(1− λ2)
. (57)

As we see, the second-order effective Hamiltonian, which describes the spin degrees

of freedom of the initial lattice fermion model, is the Hamiltonian of spin S = 1/2

frustratedXXZ Heisenberg chain in the presence of a staggered magnetic field. The

amplitude of this field is proportional to the product of the parameter λ quantifying

the broken translational symmetry of the underlying fermion model, and the spin-

dependent hopping asymmetry parameter t↑ − t↓. Thus, in contrast with the spin-

isotropic case (t↑ = t↓), the infrared properties of the spin-asymmetric model are

described by a Hamiltonian with an explicitly broken translational symmetry.

It is instructive to check several limiting cases. In the case of spin-symmetric

electron hopping (t↑ = t↓ = t), the effective Hamiltonian (56) reduces to the Hamil-

tonian of the isotropic (SU(2)-invariant) Heisenberg chain

H
(2)
eff = J

∑
n

Sn · Sn+1 , (58)

with a uniform exchange constant J = 4t2/U(1−λ2). Thus, even if the translational

symmetry of the underlying fermion model is broken (λ �= 0), the second-order

effective spin Hamiltonian remains translationally invariant.

In the complementary case of the Hubbard model with spin-dependent hopping

(λ = 0, t↑ �= t↓), the second-order effective Hamiltonian properly reflects the broken

spin symmetry and is given by the Hamiltonian of anisotropic (U(1)-invariant)

Heisenberg chain

H
(2)
eff = J

∑
n

(Sx
nS

x
n+1 + Sy

nS
y
n+1 + γSz

nS
z
n+1) , (59)

with the anistropy parameter γ = (t2↑ + t2↓)/2t↑t↓ > 1.22

Finally, in the limiting case of the Falicov–Kimball model (t↓ = 0), the second-

order effective spin Hamiltonian reduces to the Ising model in a staggered magnetic
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field:

H
(2)
eff =

∑
n

(J‖S
z
nS

z
n+1 − (−1)nhSz

n) , (60)

where

J‖ =
2t2↑

U(1− λ2)
, h =

2λt2↑
U(1− λ2)

. (61)

The physical mechanism responsible for the appearance of the staggered mag-

netic field in the effective spin Hamiltonian (56) can easily be traced in the ultimate

limit of the Falicov–Kimball model, however, the argument remains valid also for

arbitrary t↑ > t↓ > 0. Due to the doubling of the lattice unit cell, energetically it

is preferable to locate all immobile fermions on odd sites, while the mobile up-spin

fermions will dominantly occupy even sites. In this limit, the process of creation

and annihilation of a doublon takes place only on odd sites and gives rise to the

following Ising-type spin exchange parameter J
(1)
‖ = 2t2↑/(Uo − Δ), while in the

opposite case, where all immobile spins are located on even sites, the same pro-

cess yields the exchange constant J
(2)
‖ = 2t2↑/(Ue +Δ). The difference between the

exchange energies for these two patterns equals

J
(1)
‖ − J

(2)
‖ =

4λt2↑
U(1− λ2)

= 2h . (62)

5.2. The fourth-order terms

The same technique as the one employed in the previous section can be used to

rewrite the products of four T -terms in the effective Hamiltonian (47) via the spin

S = 1/2 operators. There are 18 terms of this type. It is convenient to unite them in

groups characterized by the similarity of the hopping processes and by the number

of created doublons at the intermediate steps.

5.2.1. Group A: Four-T product terms of the form T−1T0T0T1

There are eight terms of this type in the effective Hamiltonian (47). In these pro-

cesses the number of created doubly occupied sites is one. Four terms correspond to

processes where the doublon is created and eventually annihilated on the same site,

while the other four terms describe processes where the doublon is created on an

odd (even) site and annihilated on the neighboring even (odd) site. The calculations

are straightforward and one obtains the following expressions for the operators (the

details can be found in the Appendix):

T o
−1T

po
0 T pe

0 T o
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

+
t4↑ − t4↓

2
(−1)nSz

n − 2(t4↑ − t4↓)

(
Sz
2n−1S

z
2n −

1

4

)
Sz
2n+1
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− (t2↑ − t2↓)
2

(
Sz
2n−1S

z
2n+1 −

1

4

)
− 2t↑t↓(t

2
↑ − t2↓)[(S

x
2n−1S

x
2n

+ Sy
2n−1S

y
2n)S

z
2n+1 + Sz

2n−1(S
x
2nS

x
2n+1 + Sy

2nS
y
2n+1)]

}
, (63)

T o
−1T

do
0 T de

0 T o
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

+
t4↑ − t4↓

2
(−1)nSz

n + 2(t4↑ − t4↓)

(
Sz
2nS

z
2n+1 −

1

4

)
Sz
2n+2

− (t2↑ − t2↓)
2

(
Sz
2nS

z
2n+2 −

1

4

)
+ 2t↑t↓(t

2
↑ − t2↓)[(S

x
2nS

x
2n+1

+ Sy
2nS

y
2n+1)S

z
2n+2 + Sz

2n(S
x
2n+1S

x
2n+2 + Sy

2n+1S
y
2n+2)]

}
, (64)

T e
−1T

pe
0 T po

0 T e
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

−
t4↑ − t4↓

2
(−1)nSz

n − 2(t4↑ − t4↓)

(
Sz
2nS

z
2n+1 −

1

4

)
Sz
2n+2

− (t2↑ − t2↓)
2

(
Sz
2nS

z
2n+2 −

1

4

)
− 2t↑t↓(t

2
↑ − t2↓)[(S

x
2nS

x
2n+1

+ Sy
2nS

y
2n+1)S

z
2n+2 + Sz

2n(S
x
2n+1S

x
2n+2 + Sy

2n+1S
y
2n+2)]

}
, (65)

T e
−1T

de
0 T do

0 T e
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

−
t4↑ − t4↓

2
(−1)nSz

n + 2(t4↑ − t4↓)

(
Sz
2n−1S

z
2n −

1

4

)
Sz
2n+1

− (t2↑ − t2↓)
2

(
Sz
2n−1S

z
2n+1 −

1

4

)
+ 2t↑t↓(t

2
↑ − t2↓)[(S

x
2n−1S

x
2n

+ Sy
2n−1S

y
2n)S

z
2n+1 + Sz

2n−1(S
x
2nS

x
2n+1 + Sy

2nS
y
2n+1)]

}
, (66)

T e
−1T

de
0 T pe

0 T o
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

+ it↑t↓(t
2
↑ − t2↓)[(S

x
2n−1S

y
2n − Sy

2n−1S
x
2n)

− (Sx
2nS

y
2n+1 − Sy

2nS
x
2n+1)] + 2t2↑t

2
↓

(
S2n−1 · S2n+1 −

1

4

)}
, (67)
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T e
−1T

pe
0 T de

0 T o
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

− it↑t↓(t
2
↑ − t2↓)[(S

x
2nS

y
2n+1 − Sy

2nS
x
2n+1)

− (Sx
2n+1S

y
2n+2 − Sy

2n+1S
x
2n+2)] + 2t2↑t

2
↓

(
S2n · S2n+2 −

1

4

)}
,

(68)

T o
−1T

do
0 T po

0 T e
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

+ it↑t↓(t
2
↑ − t2↓)[(S

x
2nS

y
2n+1 − Sy

2nS
x
2n+1)

− (Sx
2n+1S

y
2n+2 − Sy

2n+1S
x
2n+2)] + 2t2↑t

2
↓

(
S2n · S2n+2 −

1

4

)}
,

(69)

T o
−1T

po
0 T do

0 T e
1 =

∑
n

{
− t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 2t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

− it↑t↓(t
2
↑ − t2↓)[(S

x
2n−1S

y
2n − Sy

2n−1S
x
2n)

− (Sx
2nS

y
2n+1 − Sy

2nS
x
2n+1)] + 2t2↑t

2
↓

(
S2n−1 · S2n+1 −

1

4

)}
. (70)

5.2.2. Group B1: Four-T product terms of the form T a
−1T

b
−1T

a
1 T

b
1 and

T b
−1T

a
−1T

b
1T

a
1 (a �= b)

There are four terms of this type in the effective Hamiltonian (47). These terms

correspond to processes where two doublons are created on even and odd sites and

then consecutively annihilated. If the first pair is created on site �, the hopping

processes leading to the creation of the second pair are restricted by the existence

of an empty site adjacent to �. Consequently, using the relations (52) and (53) one

obtains a restricted double summation of the form

T o
−1T

e
−1T

o
1 T

e
1 =

∑
n,m 	=n,n±1

[
− 2t↑t↓(S

x
mSx

m+1+Sy
mSy

m+1)−(t2↑+t2↓)

(
Sz
mSz

m+1−
1

4

)

+
t2↑−t2↓

2
(−1)m(Sz

m−Sz
m+1)

]
·

[
− 2t↑t↓(S

x
nS

x
n+1+Sy

nS
y
n+1)

− (t2↑+t2↓)

(
Sz
nS

z
n+1−

1

4

)
−
t2↑−t2↓

2
(−1)n(Sz

n−Sz
n+1)

]

≡ (T o
−1T

o
1 ) ∗ (T

e
−1T

e
1 ) . (71)
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Here, we have introduced the notation ∗ to denote multiplication of infinite sums

over the indices n and m with the restrictive condition m �= n, n± 1.

For the other terms of the same group, we analogously obtain

T e
−1T

o
−1T

o
1 T

e
1 = (T o

−1T
o
1 ) ∗ (T

e
−1T

e
1 ) , (72)

T e
−1T

o
−1T

e
1T

o
1 = T o

−1T
e
−1T

e
1T

o
1 = (T e

−1T
e
1 ) ∗ (T

o
−1T

o
1 ) . (73)

However, since all the hopping processes in these products take place on disjoint

pairs of sites (n, n + 1) and (m,m + 1), one can freely commute the S-operators

past each other, so that the order of the multiplicands becomes irrelevant:

(T o
−1T

o
1 ) ∗ (T

e
−1T

e
1 ) = (T e

−1T
e
1 ) ∗ (T

o
−1T

o
1 )

=
1

2
[(T o

−1T
o
1 ) ∗ (T

e
−1T

e
1 ) + (T e

−1T
e
1 ) ∗ (T

o
−1T

o
1 )] . (74)

5.2.3. Group B2: Four-T product terms of the form T a
−1T

a
−1T

a
1 T

a
1

There are two terms of this type in the effective Hamiltonian (47). These terms

correspond to processes where two doubly occupied sites are created either on

even or on odd sites and then consecutively annihilated. As before, the creation

of the first pair puts limitations on the processes responsible for the creation of the

second pair. In addition, since there are two different ways how one can get the

same configuration corresponding to the pair of doublons located on two odd or

two even sites, an extra factor of 2 appears in the expressions for these terms:

T o
−1T

o
−1T

o
1 T

o
1 =2

∑
n,m 	=n,n±1

[
− 2t↑t↓(S

x
mSx

m+1+Sy
mSy

m+1)−(t2↑+t2↓)

(
Sz
mSz

m+1−
1

4

)

+
t2↑−t2↓

2
(−1)m(Sz

m − Sz
m+1)] · [−2t↑t↓(S

x
nS

x
n+1+Sy

nS
y
n+1)

− (t2↑+t2↓)

(
Sz
nS

z
n+1−

1

4

)
+
t2↑−t2↓

2
(−1)n(Sz

n − Sz
n+1)]

≡2(T o
−1T

o
1 ) ∗ (T

o
−1T

o
1 ) , (75)

T e
−1T

e
−1T

e
1T

e
1 =2

∑
n,m 	=n,n±1

[
− 2t↑t↓(S

x
mSx

m+1+Sy
mSy

m+1)−(t2↑+t2↓)

(
Sz
mSz

m+1−
1

4

)

−
t2↑−t2↓

2
(−1)m(Sz

m − Sz
m+1)] · [−2t↑t↓(S

x
nS

x
n+1+Sy

nS
y
n+1)

− (t2↑+t2↓)

(
Sz
nS

z
n+1−

1

4

)
−
t2↑−t2↓

2
(−1)n(Sz

n−Sz
n+1)

]

≡2(T e
−1T

e
1 ) ∗ (T

e
−1T

e
1 ) . (76)
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5.2.4. Group C: Four-T product terms of the form T−1T1T−1T1

There are four terms of this type in the effective Hamiltonian (47). These terms

correspond to processes where a doublon is created and immediately annihilated on

a site � and then another doublon is created and annihilated on an arbitrary site

�′. Using (52) and (53), we obtain

T o
−1T

o
1 T

o
−1T

o
1 =

∑
n,m

[
− 2t↑t↓(S

x
mSx

m+1 + Sy
mSy

m+1)− (t2↑ + t2↓)

(
Sz
mSz

m+1 −
1

4

)

+
t2↑ − t2↓

2
(−1)m(Sz

m − Sz
m+1)] · [−2t↑t↓(S

x
nS

x
n+1 + Sy

nS
y
n+1)

− (t2↑ + t2↓)

(
Sz
nS

z
n+1 −

1

4

)
+

t2↑ − t2↓
2

(−1)n(Sz
n − Sz

n+1)

]
≡ (T o

−1T
o
1 ) · (T

o
−1T

o
1 ) , (77)

T e
−1T

e
1T

e
−1T

e
1 =

∑
n,m

[
− 2t↑t↓(S

x
mSx

m+1 + Sy
mSy

m+1)− (t2↑ + t2↓)

(
Sz
mSz

m+1 −
1

4

)

−
t2↑ − t2↓

2
(−1)m(Sz

m − Sz
m+1)

]
·

[
− 2t↑t↓(S

x
nS

x
n+1 + Sy

nS
y
n+1)

− (t2↑ + t2↓)

(
Sz
nS

z
n+1 −

1

4

)
−

t2↑ − t2↓
2

(−1)n(Sz
n − Sz

n+1)

]
≡ (T e

−1T
e
1 ) · (T

e
−1T

e
1 ) (78)

and

T o
−1T

o
1 T

e
−1T

e
1 = (T o

−1T
o
1 ) · (T

e
−1T

e
1 ) , T e

−1T
e
1T

o
−1T

o
1 = (T e

−1T
e
1 ) · (T

o
−1T

o
1 ) . (79)

As we observe, in marked contrast with the first eight terms (63)–(70) which only

couple spins located on neighboring sites, the remaining 10 terms given by (71)–(79)

contain a countless number of all possible two-spin Sz
nS

z
m, three-spin Sp

nS
p
n+1S

z
m

and four-spin Sp
nS

p
n+1S

q
mSq

m+1 combinations, where p, q = x, y, z. The situation

is rescued by the fact that after combining identical terms in the Hamiltonian

(47), each term of the type (T a
−1T

a
1 ) ∗ (T b

−1T
b
1 ) will have its counterpart of the

type (T a
−1T

a
1 ) · (T

b
−1T

b
1 ) with just the opposite coefficient. As a result, all terms

corresponding to distant spin–spin interaction are canceled:

(T o
−1T

o
1 ) · (T

o
−1T

o
1 )−(T o

−1T
o
1 ) ∗ (T

o
−1T

o
1 )

=
∑

n,m=n,n±1

[
− 2t↑t↓(S

x
mSx

m+1+Sy
mSy

m+1)−(t2↑+t2↓)

(
Sz
mSz

m+1−
1

4

)

+
t2↑−t2↓

2
(−1)m(Sz

m−Sz
m+1)

]
·

[
− 2t↑t↓(S

x
nS

x
n+1+Sy

nS
y
n+1)

− (t2↑+t2↓)

(
Sz
nS

z
n+1−

1

4

)
+

t2↑ − t2↓
2

(−1)n(Sz
n − Sz

n+1)

]
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=
∑
n

{[
− 4t↑t↓(t

2
↑+t2↓)(S

x
nS

x
n+1+Sy

nS
y
n+1)−(3t4↑+2t2↑t

2
↓+3t4↓)

(
Sz
nS

z
n+1−

1

4

)

+ 2t2↑t
2
↓(S

x
nS

x
n+2+Sy

nS
y
n+2)+(t4↑ + t4↓)

(
Sz
nS

z
n+2−

1

4

)]

+ (−1)n
[
t4↑−t4↓

2
(4Sz

n−1S
z
nS

z
n+1+5Sz

n)

+ 2t↑t↓(t
2
↑−t2↓)[S

z
n−1(S

x
nS

x
n+1+Sy

nS
y
n+1)+(Sx

n−1S
x
n+Sy

n−1S
y
n)S

z
n+1]

]}
,

(80)

(T e
−1T

e
1 ) · (T

e
−1T

e
1 )−(T e

−1T
e
1 ) ∗ (T

e
−1T

e
1 )

=
∑

n,m=n,n±1

[
− 2t↑t↓(S

x
mSx

m+1+Sy
mSy

m+1)−(t2↑+t2↓)

(
Sz
mSz

m+1−
1

4

)

−
t2↑−t2↓

2
(−1)m(Sz

m−Sz
m+1)

]
·

[
− 2t↑t↓(S

x
nS

x
n+1+Sy

nS
y
n+1)

− (t2↑+t2↓)

(
Sz
nS

z
n+1−

1

4

)
−
t2↑−t2↓

2
(−1)n(Sz

n−Sz
n+1)

]

=
∑
n

{[
− 4t↑t↓(t

2
↑+t2↓)(S

x
nS

x
n+1+Sy

nS
y
n+1)−(3t4↑+2t2↑t

2
↓+3t4↓)

(
Sz
nS

z
n+1−

1

4

)

+ 2t2↑t
2
↓(S

x
nS

x
n+2+Sy

nS
y
n+2)+(t4↑+t4↓)

(
Sz
nS

z
n+2−

1

4

)]

− (−1)n
[
t4↑−t4↓

2
(4Sz

n−1S
z
nS

z
n+1+5Sz

n)

+ 2t↑t↓(t
2
↑−t2↓)[S

z
n−1(S

x
nS

x
n+1+Sy

nS
y
n+1)+(Sx

n−1S
x
n+Sy

n−1S
y
n)S

z
n+1]

]}
(81)

and

1

2
[(T o

−1T
o
1 ) · (T

e
−1T

e
1 )− (T o

−1T
o
1 ) ∗ (T

e
−1T

e
1 )]

+
1

2
[(T e

−1T
e
1 ) · (T

o
−1T

o
1 )− (T e

−1T
e
1 ) ∗ (T

o
−1T

o
1 )]

=
∑
n

[
− 4t↑t↓(t

2
↑ + t2↓)(S

x
nS

x
n+1 + Sy

nS
y
n+1)− 8t2↑t

2
↓

(
Sz
nS

z
n+1 −

1

4

)

+ 2t2↑t
2
↓(S

x
nS

x
n+2 + Sy

nS
y
n+2) + 2t2↑t

2
↓

(
Sz
nS

z
n+2 −

1

4

)]
. (82)

For the last two terms we have taken their combination to avoid calculation of extra

terms which cancel each other in the sum.
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Inserting finally the relations (63)–(82) into (47), we obtain that up to the

fourth order the strong-coupling effective spin Hamiltonian for the spin-asymmetric

alternating-U IHM is given by

H
(4)
eff = −

T o
−1T

o
1

Uo −Δ
−

T e
−1T

e
1

Ue +Δ
−

1

Uo

[
T o
−1T

po
0 T pe

0 T o
1

(Uo −Δ)2
+

T e
−1T

de
0 T do

0 T e
1

(Ue +Δ)2

]

−
1

Ue

[
T o
−1T

do
0 T de

0 T o
1

(Uo −Δ)2
+

T e
−1T

pe
0 T po

0 T e
1

(Ue +Δ)2

]

−
1

(Uo −Δ)Uo(Ue +Δ)

[
T o
−1T

po
0 T do

0 T e
1 + T e

−1T
de
0 T pe

0 T o
1

]

−
1

(Uo −Δ)Ue(Ue +Δ)

[
T o
−1T

do
0 T po

0 T e
1 + T e

−1T
pe
0 T de

0 T o
1

]

+
1

(Uo −Δ)3
[
(T o

−1T
o
1 ) · (T

o
−1T

o
1 )− (T o

−1T
o
1 ) ∗ (T

o
−1T

o
1 )
]

+
1

(Ue +Δ)3
[
(T e

−1T
e
1 ) · (T

e
−1T

e
1 )− (T e

−1T
e
1 ) ∗ (T

e
−1T

e
1 )
]

+
Uo + Ue

(Uo −Δ)2(Ue +Δ)2

{
1

2

[
(T o

−1T
o
1 ) · (T

e
−1T

e
1 )− (T o

−1T
o
1 ) ∗ (T

e
−1T

e
1 )
]

+
1

2

[
(T e

−1T
e
1 ) · (T

o
−1T

o
1 )− (T e

−1T
e
1 ) ∗ (T

o
−1T

o
1 )
]}

=
∑
n

{
J⊥(S

x
nS

x
n+1 + Sy

nS
y
n+1) + J‖

(
Sz
nS

z
n+1 −

1

4

)

+ J ′
⊥(n)(S

x
nS

x
n+2 + Sy

nS
y
n+2) + J ′

‖(n)

(
Sz
nS

z
n+2 −

1

4

)

+W⊥(n)[(S
x
n−1S

x
n + Sy

n−1S
y
n)S

z
n+1 + Sz

n−1(S
x
nS

x
n+1 + Sy

nS
y
n+1)]

+W‖(n)S
z
n−1S

z
nS

z
n+1 − h(n)Sz

n

}
, (83)

where

J⊥ = 2t↑t↓

[
1

Uo −Δ
+

1

Ue +Δ

]

+ t↑t↓(t
2
↑ + t2↓)

Uo + Ue

UoUe

[
1

(Uo −Δ)2
+

1

(Ue +Δ)2
+

2

(Uo −Δ)(Ue +Δ)

]

− 4t↑t↓(t
2
↑ + t2↓)

[
1

(Uo −Δ)3
+

1

(Ue +Δ)3
+

Uo + Ue

(Uo −Δ)2(Ue +Δ)2

]

=
4t↑t↓
U

1

1− λ2
+

t↑t↓(t
2
↑ + t2↓)

U3

2

(1 − δ2)

4

(1− λ2)2
−

4t↑t↓(t
2
↑ + t2↓)

U3

4(1 + λ2)

(1− λ2)3
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=
4t↑t↓

U(1− λ2)

[
1−

2(t2↑ + t2↓)

U2(1− λ2)2

(
2 + 2λ2 −

1− λ2

1− δ2

)]
, (84)

J‖ = (t2↑ + t2↓)

[
1

Uo −Δ
+

1

Ue +Δ

]
− 3(t4↑ + t4↓)

[
1

(Uo −Δ)3
+

1

(Ue +Δ)3

]

+ 2t2↑t
2
↓

Uo + Ue

UoUe

[
1

(Uo −Δ)2
+

1

(Ue +Δ)2
+

2

(Uo −Δ)(Ue +Δ)

]

− 2t2↑t
2
↓

[
1

(Uo −Δ)3
+

1

(Ue +Δ)3
+

4(Uo + Ue)

(Uo −Δ)2(Ue +Δ)2

]

=
2(t2↑ + t2↓)

U(1− λ2)
−

6(t4↑ + t4↓)

U3(1− λ2)3
(1 + 3λ2)−

4t2↑t
2
↓

U3(1 − λ2)3

(
5− λ2 −

4(1− λ2)

1− δ2

)
,

(85)

J ′
⊥(n) = −2t2↑t

2
↓

4

[(Ue + Uo) + (−1)n(Ue − Uo)](Uo −Δ)(Ue +Δ)

+ 2t2↑t
2
↓

[
1

(Uo −Δ)3
+

1

(Ue +Δ)3
+

Ue + Uo

(Uo −Δ)2(Ue +Δ)2

]

=
4t2↑t

2
↓

U3(1− λ2)3

[
2 + 2λ2 −

(1− λ2)2

1− δ2

]
+ (−1)n

4δt2↑t
2
↓

U3(1− λ2)(1 − δ2)
, (86)

J ′
‖(n) = (t2↑ − t2↓)

2 2

(Ue + Uo) + (−1)n(Ue − Uo)

[
1

(Uo −Δ)2
+

1

(Ue +Δ)2

]

− 2t2↑t
2
↓

4

[(Ue + Uo) + (−1)n(Ue − Uo)](Uo −Δ)(Ue +Δ)

+ (t4↑ + t4↓)

[
1

(Uo −Δ)3
+

1

(Ue +Δ)3

]
+ 2t2↑t

2
↓

Ue + Uo

(Uo −Δ)2(Ue +Δ)2

= −
4t2↑t

2
↓(1 + δ2)

U3(1− λ2)2(1− δ2)
+

2(t4↑ + t4↓)

U3(1− λ2)3

[
1 + 3λ2 +

1− λ4

1− δ2

]

+ (−1)n
2δ

U3(1 − λ2)2(1− δ2)
[4t2↑t

2
↓ − (t4↑ + t4↓)(1 + λ2)] , (87)

W⊥(n) = (−1)n
{
2t↑t↓(t

2
↑ − t2↓)

2

(Ue + Uo)− (−1)n(Ue − Uo)

[
1

(Uo −Δ)2

−
1

(Ue +Δ)2

]
+ 2t↑t↓(t

2
↑ − t2↓)

[
1

(Uo −Δ)3
−

1

(Ue +Δ)3

]}

=
4λt↑t↓(t

2
↑ − t2↓)

U3(1− λ2)2

{
2δ

1− δ2
+ (−1)n

[
3 + λ2

1− λ2
+

2

1− δ2

]}
, (88)
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W‖(n) = (−1)n
{
2(t4↑ − t4↓)

2

(Ue + Uo)− (−1)n(Ue − Uo)

[
1

(Uo −Δ)2

−
1

(Ue +Δ)2

]
+ 2(t4↑ − t4↓)

[
1

(Uo −Δ)3
−

1

(Ue +Δ)3

]}

=
4λ(t4↑ − t4↓)

U3(1− λ2)2

{
2δ

1− δ2
+ (−1)n

[
3 + λ2

1− λ2
+

2

1− δ2

]}
(89)

h(n) = (−1)n
{
(t2↑ − t2↓)

[
1

Uo −Δ
−

1

Ue +Δ

]

+
(t4↑ − t4↓)

2

2

(Ue + Uo)− (−1)n(Ue − Uo)

[
1

(Uo −Δ)2
−

1

(Ue +Δ)2

]

−
5(t4↑ − t4↓)

2

[
1

(Uo −Δ)3
−

1

(Ue +Δ)3

]}

= (−1)n
{
2λ(t2↑ − t2↓)

U(1− λ2)
−

λ(t4↑ − t4↓)

U3(1− λ2)3

[
5(3 + λ2)−

2(1− λ2)

1− δ2

]}

+
2λδ(t4↑ − t4↓)

U3(1− λ2)2(1− δ2)
. (90)

It should be pointed out that the presented expressions (83)–(90) fully agree with

the known results in the limiting cases of the standard9 (t↑ = t↓ = t, Δ = δ = λ = 0)

and the alternating-U16 (t↑ = t↓ = t, Δ = 0, λ = δ �= 0) Hubbard models, but some

of the fourth-order coefficients do not coincide with the results obtained previously

for the ionic12 (t↑ = t↓ = t, δ = 0, λ = Δ/U = x) and the spin-asymmetric22

(t↑ �= t↓, Δ = δ = λ = 0) Hubbard models. More specifically, for the ionic Hubbard

chain we arrive at a different expression in the numerator of the nearest-neighbor

coupling J , whereas for the spin-asymmetric Hubbard model the disparities concern

the numerators of the coefficients J‖ and J ′
‖. We presume that these discrepancies

are due to the perturbative schemes adopted by the authors of Refs. 12 and 22,

as it is known that some of these procedures are not sufficiently well-controlled at

higher orders.66,67

6. Conclusion

We have derived the effective spin Hamiltonian for the low-energy sector of the one-

dimensional half-filled spin-asymmetric alternating-U IHM in the limit of strong on-

site repulsion. The obtained Hamiltonian is that of a frustrated Heisenberg chain

with alternating NNN exchange and three-spin coupling in the presence of a uni-

form and a staggered magnetic field. As expected, the NNN exchange is larger for

two spins separated by a site with low on-site repulsion than for spins separated by

a site with high on-site repulsion. The intensity of the three-spin coupling and the
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amplitudes of the magnetic fields are proportional to the product of the parameter

λ, which reflects the broken translational symmetry of the lattice, and the difference

between up- and down-spin electron hopping amplitudes t↑ − t↓. The most dom-

inant effect, however, comes from the staggered magnetic field, and therefore, in

marked contrast with the spin-isotropic case t↑ = t↓, the ground state properties of

the considered electron system are described by a spin-chain model with explicitly

broken translational symmetry.

We also remark that the general picture outlined above remains valid in the

case of a half-filled bipartite lattice of a higher dimension — to the lowest order

one again obtains the anisotropic nearest-neighbor spin exchange and the staggered

magnetic field which, as before, dominates any higher order terms arising from the

more complex lattice geometry.
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Appendix A. Derivation of the Effective Spin Exchange

Expressions for the Four-T Product Terms of the

Form T
−1T0T0T1

In order to rewrite the products of four T -operators in the language of spin S = 1/2

operators, once again we make use of the Hubbard X-operators defined in Sec. 4;

the procedure is in essence the same as the one employed in Sec. 5.1 for the terms

consisting of two T -operators.

Let us consider, for example, the term T o
−1T

po
0 T pe

0 T o
1 , which belongs to the group

of the processes where the electron pair is created and annihilated on the same site.

In the summations below, the square brackets around the lattice indices [n,m, k]

indicate that for an even site 2m its odd partners 2k + 1 and 2n + 1 represent

neighboring sites. Thus, for a fixed m we have two possible sets: k = m − 1 and

n = m, or k = m and n = m− 1.

T o
−1T

po
0 T pe

0 T o
1

=
∑

[n,m,k]

∑
σ

σtσX
σ0
2mXσ2

2k+1 ·
∑
β

t2βX
β0
2n+1X

0β
2mXβ0

2mX0β
2n+1 ·

∑
α

αtαX
2α
2k+1X

0α
2m

=
∑

[n,m,k]

∑
α,β,σ

ασtαtσt
2
βX

σα
2k+1X

σα
2mXββ

2n+1

=
∑

[n,m,k]

[t2↑X
↓↓
2k+1X

↑↑
2m + t2↓X

↑↑
2k+1X

↓↓
2m − t↑t↓(X

↑↓
2k+1X

↓↑
2m +X↓↑

2k+1X
↑↓
2m)]
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· [t2↑X
↑↑
2n+1 + t2↓X

↓↓
2n+1]

=
∑

[n,m,k]

[
(t2↑ + t2↓)

(
1

4
− Sz

2k+1S
z
2m

)
+

t2↑ − t2↓
2

(Sz
2m − Sz

2k+1)

− t↑t↓(S
+
2k+1S

−
2m + S−

2k+1S
+
2m)

]
·

[
t2↑ + t2↓

2
+ (t2↑ − t2↓)S

z
2n+1

]

=
∑

[n,m,k]

[
(t2↑ + t2↓)

2

2

(
1

4
− Sz

2k+1S
z
2m

)
+

(t2↑ − t2↓)
2

2

(
Sz
2mSz

2n+1 −
1

4

+
1

4
− Sz

2k+1S
z
2n+1

)
+ (t4↑ − t4↓)

(
1

4
− Sz

2k+1S
z
2m

)
Sz
2n+1

+
t4↑ − t4↓

4
(Sz

2m − Sz
2k+1)− t↑t↓(t

2
↑ + t2↓)(S

x
2k+1S

x
2m + Sy

2k+1S
y
2m)

− 2t↑t↓(t
2
↑ − t2↓)(S

x
2k+1S

x
2m + Sy

2k+1S
y
2m)Sz

2n+1

]

=
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

(t2↑ − t2↓)
2

(
1

4
− Sz

2m−1S
z
2m+1

)

+
∑
�

t4↑ − t4↓
2

(−1)�Sz
� +

∑
m

2(t4↑ − t4↓)

(
1

4
− Sz

2m−1S
z
2m

)
Sz
2m+1

−
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1)−

∑
m

2t↑t↓(t
2
↑ − t2↓)[(S

x
2m−1S

x
2m

+ Sy
2m−1S

y
2m)Sz

2m+1 + Sz
2m−1(S

x
2mSx

2m+1 + Sy
2mSy

2m+1)] . (A.1)

In a similar manner one can derive the expressions of the operators

T e
−1T

pe
0 T po

0 T e
1 , T

o
−1T

do
0 T de

0 T o
1 and T e

−1T
de
0 T do

0 T e
1 , belonging to the same group as

the operator considered above. However, it should be noted that one can obtain all

of these expressions directly from (A.1) by switching the roles of the odd and the

even sites and/or interchanging the hopping amplitudes t↑ ↔ t↓:

T e
−1T

pe
0 T po

0 T e
1

= T o
−1T

po
0 T pe

0 T o
1 (2k + 1, 2m, 2n+ 1 → 2k, 2m+ 1, 2n)

=
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

(t2↑ − t2↓)
2

(
1

4
− Sz

2mSz
2m+2

)

−
∑
�

t4↑ − t4↓
2

(−1)�Sz
� +

∑
m

2(t4↑ − t4↓)

(
1

4
− Sz

2mSz
2m+1

)
Sz
2m+2

25

ht
tp

://
do

c.
re

ro
.c

h



−
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1)−

∑
m

2t↑t↓(t
2
↑ − t2↓)[(S

x
2mSx

2m+1

+ Sy
2mSy

2m+1)S
z
2m+2 + Sz

2m(Sx
2m+1S

x
2m+2 + Sy

2m+1S
y
2m+2)] , (A.2)

T o
−1T

do
0 T de

0 T o
1

= T o
−1T

po
0 T pe

0 T o
1 (2k + 1, 2m, 2n+ 1 → 2k, 2m+ 1, 2n and t↑ ↔ t↓)

=
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

(t2↑ − t2↓)
2

(
1

4
− Sz

2mSz
2m+2

)

+
∑
�

t4↑ − t4↓
2

(−1)�Sz
� −

∑
m

2(t4↑ − t4↓)

(
1

4
− Sz

2mSz
2m+1

)
Sz
2m+2

−
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1) +

∑
m

2t↑t↓
(
t2↑ − t2↓)[(S

x
2mSx

2m+1

+ Sy
2mSy

2m+1

)
Sz
2m+2 + Sz

2m(Sx
2m+1S

x
2m+2 + Sy

2m+1S
y
2m+2)] , (A.3)

T e
−1T

de
0 T do

0 T e
1

= T o
−1T

po
0 T pe

0 T o
1 (t↑ ↔ t↓)

=
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

(t2↑ − t2↓)
2

(
1

4
− Sz

2m−1S
z
2m+1

)

−
∑
�

t4↑ − t4↓
2

(−1)�Sz
� −

∑
m

2(t4↑ − t4↓)

(
1

4
− Sz

2m−1S
z
2m

)
Sz
2m+1

−
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1) +

∑
m

2t↑t↓(t
2
↑ − t2↓)[(S

x
2m−1S

x
2m

+ Sy
2m−1S

y
2m)Sz

2m+1 + Sz
2m−1(S

x
2mSx

2m+1 + Sy
2mSy

2m+1)] . (A.4)

The expressions for the remaining four operators, corresponding to the processes

where the pair is created on one site and annihilated on a neighboring one, can be

established in an analogous way (utilizing where necessary the freedom of renaming

the lattice indices k ↔ n to facilitate the calculation):

T e
−1T

de
0 T pe

0 T o
1

=
∑

[n,m,k]

∑
σ

σtσX
σ0
2n+1X

σ2
2m ·

∑
β

tβtβX
2β
2mXβ2

2k+1X
β0
2mX0β

2n+1 ·
∑
α

αtαX
2α
2k+1X

0α
2m

= −
∑

[n,m,k]

∑
α,β,σ

ασtαtσtβtβX
βα
2k+1X

σα
2mXσβ

2n+1
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=
∑

[n,m,k]

[−t3↑t↓(X
↑↓
2k+1X

↓↑
2mX↑↑

2n+1 +X↓↓
2k+1X

↓↑
2mX↑↓

2n+1)

− t↑t
3
↓(X

↑↑
2k+1X

↑↓
2mX↓↑

2n+1 +X↓↑
2k+1X

↑↓
2mX↓↓

2n+1)

+ t2↑t
2
↓(X

↓↑
2k+1X

↓↓
2mX↑↓

2n+1 +X↑↓
2k+1X

↑↑
2mX↓↑

2n+1

+X↓↓
2k+1X

↑↑
2mX↓↓

2n+1 +X↑↑
2k+1X

↓↓
2mX↑↑

2n+1)]

=
∑

[n,m,k]

[−t3↑t↓X
↑↓
2k+1X

↓↑
2m − t↑t

3
↓X

↓↑
2k+1X

↑↓
2m

+ t2↑t
2
↓(X

↑↓
2k+1X

↓↑
2n+1 +X↓↓

2k+1X
↑↑
2mX↓↓

2n+1 +X↑↑
2k+1X

↓↓
2mX↑↑

2n+1)]

=
∑

[n,m,k]

[
− t3↑t↓ S

+
2k+1S

−
2m − t↑t

3
↓S

−
2k+1S

+
2m + t2↑t

2
↓

[
S+
2k+1S

−
2n+1

+

(
1

2
− Sz

2k+1

)(
1

2
+ Sz

2m

)(
1

2
− Sz

2n+1

)

+

(
1

2
+ Sz

2k+1

)(
1

2
− Sz

2m

)(
1

2
+ Sz

2n+1

)]]

=
∑

[n,m,k]

[
− t↑t↓(t

2
↑ + t2↓)(S

x
2k+1S

x
2m + Sy

2k+1S
y
2m)

+ it↑t↓(t
2
↑ − t2↓)(S

x
2k+1S

y
2m − Sy

2k+1S
x
2m)

+ t2↑t
2
↓

[
S+
2k+1S

−
2n+1 +

(
1

4
− Sz

2k+1S
z
2m

)

+

(
1

4
− Sz

2mSz
2n+1

)
+

(
Sz
2k+1S

z
2n+1 −

1

4

)]]

= −
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1)

+
∑
m

it↑t↓(t
2
↑ − t2↓)[S

x
2m−1S

y
2m − Sy

2m−1S
x
2m − (Sx

2mSy
2m+1 − Sy

2mSx
2m+1)]

+
∑
m

2t2↑t
2
↓

(
Sx
2m−1S

x
2m+1 + Sy

2m−1S
y
2m+1) +

∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)

+
∑
m

2t2↑t
2
↓

(
Sz
2m−1S

z
2m+1 −

1

4

)
, (A.5)

T o
−1T

do
0 T po

0 T e
1

= T e
−1T

de
0 T pe

0 T o
1 (2k + 1, 2m, 2m+ 1 → 2k, 2m+ 1, 2n)
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= −
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1)

+
∑
m

it↑t↓(t
2
↑ − t2↓)[S

x
2mSy

2m+1 − Sy
2mSx

2m+1 − (Sx
2m+1S

y
2m+2 − Sy

2m+1S
x
2m+2)]

+
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

2t2↑t
2
↓

(
S2m · S2m+2 −

1

4

)
, (A.6)

T o
−1T

po
0 T do

0 T e
1

= T e
−1T

de
0 T pe

0 T o
1 (t↑ ↔ t↓)

= −
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1)

−
∑
m

it↑t↓(t
2
↑ − t2↓)[S

x
2m−1S

y
2m − Sy

2m−1S
x
2m − (Sx

2mSy
2m+1 − Sy

2mSx
2m+1)]

+
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

2t2↑t
2
↓

(
S2m−1 · S2m+1 −

1

4

)
, (A.7)

T e
−1T

pe
0 T de

0 T o
1

= T e
−1T

de
0 T pe

0 T o
1 (2k + 1, 2m, 2n+ 1 → 2k, 2m+ 1, 2n and t↑ ↔ t↓)

= −
∑
�

t↑t↓(t
2
↑ + t2↓)(S

x
� S

x
�+1 + Sy

� S
y
�+1)

−
∑
m

it↑t↓(t
2
↑ − t2↓)[S

x
2mSy

2m+1 − Sy
2mSx

2m+1 − (Sx
2m+1S

y
2m+2 − Sy

2m+1S
x
2m+2)]

+
∑
�

2t2↑t
2
↓

(
1

4
− Sz

�S
z
�+1

)
+
∑
m

2t2↑t
2
↓

(
S2m · S2m+2 −

1

4

)
. (A.8)
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