GRLMDFGNJGGRLMDFGGNJA

Real-time PCR for detection of plasmid-mediated polymyxin resistance (mcr-1) from cultured bacteria and stools

Séverine Bontron¹, Laurent Poirel^{1*} and Patrice Nordmann^{1,2}

¹Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; ²Hôpital Cantonal HFR, Fribourg, Switzerland

*Corresponding author. Tel: +41-26-300-9582; E-mail: laurent.poirel@unifr.ch

Received 19 January 2016; returned 8 March 2016; revised 16 March 2016; accepted 24 March 2016

Objectives: The aim of the study was to develop a simple assay for rapid detection of the mcr-1 gene, recently identified as a source of plasmid-mediated acquired resistance to polymyxins in Enterobacteriaceae.

Methods: A SYBR Green-based real-time PCR assay was designed for detection of the mcr-1 gene. This assay was applied to cultured bacteria and to spiked human and cattle stools.

Results: The mcr-1 gene could be detected with a lower limit of $10²$ cultured bacteria. This test was highly sensitive and specific, and generated no false-positive results. The assay was also conclusive when applied to stools spiked with mcr-1-positive Escherichia coli.

Conclusions: This simple, rapid, sensitive and specific assay will be useful for rapid screening of this resistance trait in both human medicine and veterinary medicine.

Introduction

Colistin is a polymyxin antibiotic widely used in animal production and currently increasingly prescribed for therapeutic usage in human medicine, as a consequence of the spread of MDR Gram-negatives. So far, acquired resistance to colistin has involved chromosomal mutations in genes encoding proteins involved in the lipopolysaccharide biosynthesis pathway.¹ Recently, the first plasmid-mediated colistin resistance determinant, MCR-1, has been identified in Enterobacteriaceae.² The mcr-1 gene, encoding a phosphoethanolamine transferase, was first identified among Chinese enterobacterial isolates of human and animal origin, and then worldwide, mainly in Escherichia coli.²⁻⁹ Here, a SYBR Green-based real-time PCR assay is proposed, for rapid, sensitive and specific detection of the mcr-1 gene from cultured bacteria and stools.

Materials and methods

Quantitative PCR

The SYBR Green quantitative PCR (qPCR) assay for detection of mcr-1 was performed with primers mcr-1-qF1 (5′ -ACACTTATGGCACGGTCTATG-3′) and mcr-1-qR1 (5′ -GCACACCCAAACCAATGATAC-3′) internal to the mcr-1 gene (designed using the PrimerQuest program, Integrated DNA Technologies) and with universal primers 27F (5′ -AGAGTTTGATCCTGGCTCAG-3′) and 338R (5′ -GCTGCCTCCCGTAGGAGT-3′) for the 16S rRNA gene used as a control. The product sizes of the amplicons were 120 and 350 bp, and the melting temperatures were 82.5 and 86.7°C, respectively. Similar results were obtained

for mcr-1 with primers mcr-1-qF2 (5′ -TGGCGTTCAGCAGTCATTAT-3′) and mcr-1-qR2 (5′ -AGCTTACCCACCGAGTAGAT-3′). This pair of primers may detect mcr-1 variants to which the mcr-1-qF1 and mcr-1-qR1 primers would not anneal. Standard control for the mcr-1 qPCR was a purified 1646 bp PCR product of the mcr-1 gene (1.8 pg of DNA corresponding to 10⁶ copies) generated with primers mcr-1-F (5′ -ATGATGCAGCATACTTCTGTGTG-3′) and mcr-1-R (5′ -TCAGCGGATGAATGCGGTGC-3′). Standard control for the 16S rRNA gene qPCR was E. coli TOP10 (Life Technologies, Carlsbad, CA, USA) total genomic DNA, with 5 ng corresponding to 7×10^6 16S rRNA copies or 10⁶ cells, the RNA operon being present at 7 copies per genome in E. coli.¹⁰ A total of 15 µL qPCRs were processed in a Rotor-Gene Q (Qiagen, Hilden, Germany) with a KAPA SYBR FAST qPCR Kit (Kapabiosystems, Wilmington, MA, USA), according to the manufacturer's instructions. Cycling conditions were 95°C for 2 min and 40 cycles of 95 \degree C for 3 s, 60 \degree C for 20 s and 72 \degree C for 7 s, followed by a ramp from 72° C to 95° C for melting analysis. The copy numbers of the 16S rRNA and mcr-1 genes were calculated according to the values obtained with the standard curves. For DNA extracted from spiked stools, qPCRs were performed with $1 \mu L$ of template with the same cycling protocol, except for spiked human stools, for which the annealing temperature was revised to 63° C.

Boiled-lysate DNA extraction

Both mcr-1-positive and mcr-1-negative strains of human and animal origins were collected in France, Switzerland and South Africa (see Table 2). DNA was extracted from cultured bacteria with the boiled-lysate protocol, with one 1 μ L loop of bacteria (corresponding to 1×10^8 to 2×10^8 bacteria or $0.2 - 0.4$ OD₆₀₀) being resuspended in 20 μ L of 10 mM Tris-EDTA pH8 buffer, and incubated for 10 min at 95°C. After centrifugation for 2 min at 20000 g , 20 μ L of supernatant was added to 80 μ L of H₂O.

Isolate mcr-1^a Template dilution^b qPCR: mcr-1 copies^c qPCR: 16S rRNA copies^c mcr-1 copy number^d Ec1 + 1 $\frac{1}{2}$ 3600000 8400000 8400000 3.0 Ec1 + 10^{-2} 40000 98000 2.9 Ec1 $+$ 10⁻⁴ 350 980 2.5 KRI + 1 1 2200000 9800000 1.6 KRI + 10^{-2} 26000 126000 126000 1.4 KRI + 10^{-4} 270 980 1.9 Ec8 $-$ 1 0 0 5200000 0 0 Ec8 10^{-4} 0 630 0 TOP10 – 1 1 0 0 7700000 0 0 $\begin{array}{ccccccc} \text{TOP10} & & & & & \text{---} & & & \text{---} & & \text{$

Table 1. Quantitative detection of the mcr-1 gene in E. coli

^aIsolates were previously characterized for the presence of the mcr-1 gene by conventional PCR and sequencing.

^aIsolates were previously characterized for the presence of the *mcr-1* gene by conventional PCR and sequencing.
^bGenomic DNA was extracted from 1×10⁸ to 2×10⁸ bacteria, resuspended in 100 μL. qPCRs were performed indicated dilution.

 $\frac{c_{\text{mcr-1}}}{c_{\text{f}}}\text{ or }16S$ rRNA copies detected in the qPCR.

^dEstimate of the mcr-1 copy number per bacterium, obtained by dividing number of mcr-1 copies by the number of 16S rRNA copies multiplied by 7 (the RNA operon being present at 7 copies per genome in E. coli).

Table 2. Specificity of the qPCR assay for detection of the mcr-1 gene

^aIsolates were previously characterized for the presence of the mcr-1 gene by conventional PCR and sequencing.
Pmcr-1 copies detected in the aPCP performed with 1 ul of genemic DNA.

 b mcr-1 copies detected in the qPCR performed with 1 μ L of genomic DNA.

Estimate of the mcr-1 copy number per bacterium, obtained by dividing number of mcr-1 copies by the number of 16S rRNA copies (not shown here) multiplied by 7 (the RNA operon being present at 7 copies per genome in E. coli).

^dIsolate resistant to colistin, unknown mechanism.

^eIsolate resistant to colistin, disruption of the mgrB gene.¹¹

Spiked stools and DNA extraction

An amount of 10^8 bacteria (corresponding to 0.2 OD $_{600}$) or dilution was resuspended in 50 µL of 0.85% NaCl and spiked in 200 µL of human or cattle faecal suspension (75 mg of fresh faeces per 200 μ L). DNA was extracted from spiked stool samples with a DNA extraction ZR Fecal DNA MiniPrep (Zymo Research, Freiburg im Breisgau, Germany) according to the manufacturer's instructions. The samples were lysed with a mixer mill (MM 400, Rentsch, Haan, Germany) for 3 min at a frequency of 30 Hz. DNA was

http://doc.rero.chattp://doc.rero.ch

Table 3. Detection of the mcr-1 gene in spiked human and cattle stools

Isolate	$mcr-1^{\circ}$	Bacteria/75 mg of faeces	Faeces	qPCR: mcr-1 copiesb
Ec1	$^{+}$	10^8	cattle	970000
Ec1	$^{+}$	10 ⁷	cattle	84000
Ec1	$^{+}$	10^{6}	cattle	12000
Ec1	$^{+}$	10 ⁵	cattle	1700
Ec1	$^{+}$	10^{4}	cattle	170
Ec1	$^{+}$	10^{3}	cattle	30
KRI	$^{+}$	10 ⁷	cattle	19000
Ec8		10 ⁷	cattle	0
TOP10		10^{7}	cattle	0
Ec1	$^{+}$	10^8	human	950000
Ec1	$^{+}$	10 ⁷	human	120000
Ec1	$^{+}$	10^{6}	human	5700
Ec1	$^{+}$	10^{5}	human	990
Ec1	$^{+}$	10^{4}	human	80
Ec1	$^{+}$	10^{3}	human	10
KRI	$^{+}$	10 ⁷	human	8100
Ec8		10^{7}	human	Ω
TOP10		10^{7}	human	0

^aIsolates were previously characterized for the presence of the mcr-1 gene by conventional PCR and sequencing.

^bmcr-1 copies detected in the qPCR; total DNA was extracted from 75 mg of faeces spiked with the indicated cfu of bacteria and qPCRs were performed with 1/80th of the extracted DNA.

recovered in 80 μ L of elution buffer and gPCRs were performed with 1 μ L of DNA template.

Results and discussion

The SYBR Green-based real-time PCR assay could reproducibly and quantitatively detect 10⁶ to 10² copies of mcr-1 and 7×10^6 to 7×10^2 copies of 16S rRNA, corresponding to 10^6 – 10^2 E. coli bacteria. The r^2 value was $>$ 0.999, the amplification efficiency was $>$ 0.9 and the slope was between -3.59 and -3.40 . This assay could also detect the mcr-1 and 16S rRNA genes at higher concentrations, but not in the linear range of the qPCR. This assay was applied to two mcr-1-positive E. coli isolates of human origin, Ec1 and KRI, with Ec8 and TOP10 as negative controls. For Ec1 and KIR, the mcr-1 gene was detected using 1 μ L of DNA template, corresponding to a starting amount of 1×10^6 to 2×10^6 bacteria, and with 10^{-2} and 10^{-4} dilutions of the DNA template. Normalization for amplification of the 16S rRNA gene showed that the mcr-1 gene was present in isolates Ec1 and KRI at \sim 3 and 1.5 copies per bacterium, respectively (Table 1).

In order to further validate the sensitivity and specificity of this test, it was applied to a larger set of isolates, i.e. eight mcr-1-positive and six mcr-1-negative E. coli, and six mcr-1-negative isolates of other species (Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter freundii and Klebsiella oxytoca). The assay was sensitive, as it allowed detection of the mcr-1 gene in all cases. It was also specific, as it did not generate any false-positive signal, in contrast to the previously published conventional PCR assay with the CLR5-F and CLR5-R primers, 2×1 which generated false-positive signals for two

strains. Normalization for the amplification of the 16S rRNA gene indicated that the mcr-1 gene was present at 1.3–3.3 copies per bacterial cell (Table 2).

Then, the real-time qPCR assay was applied to cattle and human stools spiked with different concentrations of mcr-1-positive bacteria, the rationale for detecting mcr-1 in stools being that this gene has been frequently identified in animal stools.² The mcr-1 gene was efficiently detected in human and cattle faeces (Table 3).

Overall, this SYBR Green-based real-time PCR assay is a rapid, sensitive and highly specific detection assay for the mcr-1 gene either from cultured bacteria or from cattle or human stools. It is easy to perform in any laboratory having at its disposal a qPCR machine. This rapid technique may be used for the evaluation of the prevalence of this resistance trait in humans and animals (surveillance studies). In addition, it will be a valuable tool for following up outbreaks in order to promptly isolate colonized patients and assign them to a cohort.

Funding

This work was supported by the University of Fribourg and by a grant of the ANIWHA ERA-NET project (No. 1.15.08) (Switzerland).

Transparency declarations

None to declare.

References

1 Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Updat 2010; 13: 132–8.

2 Liu YY, Wang Y, Walsh TR et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16: 161-8. 3 Nordmann P, Lienhard R, Kieffer N et al. Plasmid-mediated colistinresistant Escherichia coli in bacteremia in Switzerland. Clin Infect Dis 2016; doi:10.1093/cid/ciw124.

4 Hasman H, Hammerum AM, Hansen F et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 2015; 20: pii=30085.

5 Hu Y. Liu F. Lin IY et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 146–7.

6 Olaitan AO, Chabou S, Okdah L et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 147.

7 Poirel L, Kieffer N, Liassine N et al. Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli. Lancet Infect Dis 2016; 16: 281.

8 Zurfuh K, Poirel L, Nordmann P et al. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in ESBL-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob Agents Chemother 2016; 60: 2594 –5.

9 Webb HE, Granier SA, Marault M et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 144–5.

10 Stoddard SF, Smith BJ, Hein R et al. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 2015; 43: D593–8.

11 Kieffer N, Poirel L, Nordmann P et al. Emergence of colistin resistance in Klebsiella pneumoniae from veterinary medicine. J Antimicrob Chemother 2015; 70: 1265–7.