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Flavonols are a group of secondary metabolites that affect

diverse cellular processes. They are considered putative nega-

tive regulators of the transport of the phytohormone auxin, by

which they influence auxin distribution and concomitantly take

part in the control of plant organ development. Flavonols are

accumulating in a large number of glycosidic forms. Whether

these have distinct functions and diverse cellular targets is not

well understood. The rol1-2 mutant of Arabidopsis thaliana is

characterized by amodified flavonol glycosylation profile that is

inducing changes in auxin transport and growth defects in shoot

tissues. To determine whether specific flavonol glycosides are

responsible for these phenotypes, a suppressor screen was per-

formedon the rol1-2mutant, resulting in the identificationof an

allelic series ofUGT89C1, a gene encoding a flavonol 7-O-rham-

nosyltransferase. A detailed analysis revealed that interfering

with flavonol rhamnosylation increases the concentration of

auxin precursors and auxin metabolites, whereas auxin trans-

port is not affected. This finding provides an additional level of

complexity to the possible ways by which flavonols influence

auxin distribution and suggests that flavonol glycosides play an

important role in regulating plant development.

Flavonoids are secondary metabolites produced via the phe-

nylpropanoid pathway (1), and they serve different functions

such as protection from UV irradiation (2), plant-microbe

interaction (3), regulation of levels of reactive oxygen species

(4), inhibition of cell cycle, and control of cell growth (5, 6). In

addition, they are also thought to influence transcriptional and

signaling processes (7–9). Amajor role of flavonols, a subgroup

of flavonoids, appears to be the modification of auxin-related

processes due to their property of modulating auxin transport

(10–14). In some tissues, auxin is transported fromcell to cell in

a polarized fashion, operated mainly via auxin transporters of

the ABCB, AUX1/LAX, and PIN families (15, 16). Flavonoids

bind to and inhibit the auxin transport proteins ABCB1 and

ABCB19 (17) and interfere with the interaction of these two

proteins with the immunophilin-like protein, FKBP42/

TWISTED DWARF1 (18). Recent data show that the pinoid

kinase, which influences polar localization of PIN proteins (19)

and ABCB transport activity, is a likely target of flavonol action

(20). The accumulation of flavonols is altered in the pin2

mutant, the agravitropic phenotype of which can be partially

complemented by exogenous flavonols due to their ability to

modify expression of PIN genes (21–23). Hence, flavonols and

auxin are able to mutually influence each other, confirming a

functional interdependence in their biological activity.

Flavonoid biosynthesis is well characterized, and a number of

mutants affected in the enzymes committed to the different

steps have been identified in Arabidopsis thaliana (1) (Fig. 1).

These lines frequently show a pale yellow seed coat due to the

absence of proanthocyanidins and were thus named transpar-

ent testa (tt) mutants (24). Flavonols are produced from dihy-

droflavonols via the activity of the flavonol synthase, and thus

represent a side branch of the flavonoid biosynthesis pathway.

In Arabidopsis, the flavonols kaempferol, quercetin, and isorh-

amnetin are glycosylated by one or several sugars, mainly Glc,

Rha, and rarely Ara, at the C3 and C7 position of the flavonol

backbone (25, 26) through the function of UDP-dependent gly-

cosyltransferases (UGTs),4 some of which have been identified

(8, 26–29). The biological relevance of flavonol glycosylation

remains controversial. In vitro experiments show activity of fla-

vonol aglycones, suggesting that these are the compounds

active in modulating polar auxin transport (10, 17, 18, 20).

However, the identification of mutant phenotypes induced by

changes in the flavonol glycosylation profile suggests function

for at least some flavonol glycosides (30, 31).

Of the major auxin (indole-3-acetic acid; IAA) produced by

plants, only a minor fraction of �1% exists in this active form.

Auxin can be conjugated to amino acids and/or sugars (mainly

Glc in Arabidopsis) for storage in an inactive form or as an

initial step for degradation (32, 33). Indole-3-acetyl-alanine

(IAA-Ala) and indole-3-acetyl-leucine (IAA-Leu) are readily

hydrolyzable, resulting in active free IAA, whereas indole-3-
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acetyl-aspartate (IAA-Asp) and indole-3-acetyl-glutamate

(IAA-Glu) remain largely stable, suggesting that the dynamics

of the reversible (de-)conjugation are decisive in regulating the

pool of active auxin. Auxin homeostasis can be affected by

mutations in loci involved in auxin (de-)conjugation, and mul-

tiple mutations in these loci can induce auxin-related pheno-

types ((Ref. 34) and references therein). In Arabidopsis, the

most abundant degradation products of auxin are produced via

oxidation, resulting predominantly in oxIAA (2-oxindole-3-

acetic acid) and oxIAA-Glc (2-oxindole-3-acetyl-glucose, glu-

cosyl-ester of oxIAA) (35, 36). This oxidation contributes to the

formation of auxin gradients (37) that are crucial for auxin-

driven organ development (38–41). oxIAA levels are increased

in the flavonoid-deficient tt4 mutant but decreased in the fla-

vonol over-accumulator tt3 (42). This correlation suggests that

the anti-oxidant activity of flavonols (4) influences auxin

degradation.

The rol1-2 (repressor of lrx1) mutant is affected in one of

three RHM genes, RHM1, encoding rhamnose synthase, which

converts UDP-Glc to UDP-Rha (43). The rol1-2 mutant was

identified in a screen for alterations in cell wall structures and

showsmodifications in theRha-rich cell wall component pectin

(43). In addition, rol1-2 also shows changes in the flavonol gly-

cosylation profile, mainly a reduction in the degree of rhamno-

sylation, whereas the overall quantity of flavonols is not affected

(30, 44). This confirms the importance of RHM1, which is co-

expressed with genes important for flavonol biosynthesis (26)

and for flavonol glycosylation. rol1-2 seedlings are character-

ized by shorter roots and root hairs than in the wild type. The

rol1-2 seedling shoot develops deformed trichomes and hypo-

nastic cotyledons with brick-shaped pavement cells, whereas

the wild type develops regular trichomes and epinastic cotyle-

dons with puzzle-shaped jigsaw-like pavement cells (30, 43).

There is no obvious growth defect detectable in rol1-2 adult

plants, presumably due to the functional redundancy among

the three RHM genes (45).

The short root phenotype of the rol1-2mutant is most likely

induced by the changes in pectin structures (43). By contrast,

the aberrant shoot phenotype of the rol1-2mutant is connected

to the altered flavonol composition. Mutations affecting steps

in flavonoid biosynthesis (Fig. 1) upstream of flavonols such as

tt4 or tt6, mutations in the flavonol synthase (FLS1), or muta-

tions in a positive regulator of flavonol biosynthesis encoded by

MYB111 all suppress rol1-2, resulting in wild type-like shoot

development, whereas root development is comparable with

the rol1-2 single mutant (30, 44). A mutation in TT7, blocking

quercetin accumulation, or any step farther downstream in the

pathway has no effect on the rol1-2 shoot phenotype (30, 44).

Together, these findings suggest that the rol1-2 phenotype is

induced by the accumulation of flavonol glycosides that inter-

fere with proper plant development and that kaempferols are

sufficient to induce this defect. Yin et al. (31) have shown that

the dwarf growth phenotype of the flavonoid 3-O-glucosyl-

transferase mutant ugt78d2 correlates with the over-accumu-

lation of 3-O-7-O-rhamnosylated kaempferol (K-R-3-R-7), and

interfering with K-R-3-R-7 biosynthesis suppresses the growth

defect of the ugt78d2mutant. By contrast, the flavonol species

inducing the rol1-2 phenotype is most likely not K-R-3-R-7,

because this compound is present in lower amounts than in the

wild type. Thus, it is likely that several flavonol glycosides can

have an effect on plant development. Both rol1-2 and ugt78d2

show changes in auxin concentration or transport activity. For

rol1-2, it was shown that auxin transport is reverted to wild-

type levels when blocking flavonol accumulation (44), thus

indicating that flavonols do interfere with auxin distribution.

Aiming at the identification of flavonol glycosides that

induce the rol1-2 phenotype, EMS-induced suppressor

mutants of rol1-2were selected for specific changes in flavonol

glycosylation. Several alleles of the 7-O-rhamnosyltransferase

locusUGT89C1were identified. The auxin transport activity in

rol1-2 is not changed by a ugt89c1 mutation, but the levels of

auxin conjugates and catabolites are strongly increased in the

ugt89c1 mutant background. This indicates that flavonols

affect not only auxin transport but also auxin turnover, and in

this way modify auxin homeostasis.

Experimental Procedures

Plant Material, Growth Conditions, EMS Mutagenesis, and

Mutant Screen—All lines described in this study are in the

Col-0 genetic background. The rol1-2 allele and fls1-3 allele

used in this study are described elsewhere (43, 44). For all anal-

yses described, the ugt89c1-3 nonsense allele was used. Seeds

were surface-sterilized with 1% sodium hypochlorite, 0.03%

Triton X-100, plated on half-strength Murashige and Skoog

medium containing 0.6% Phytagel, 2% sucrose, 100�g/mlmyo-

inositol, stratified for 4 days at 4 °C, and grown in a vertical

orientation in a 16-h light, 8-h dark cycle at 22 °C. For propa-

gation and crossings, 10-day-old plants were transferred to soil,

grown in a 16-h light, 8-h dark cycle at 22 °C, and irradiated

with white light (Biolux, Osram). The EMS screen was per-

formed as described (44), and 75,000 M2 seedlings were

screened for a suppressed rol1-2 mutant phenotype. All

ugt89c1 alleles were backcrossed at least three times to Col-0

and rol1-2 prior to analysis. Plant transformation was done as

FIGURE 1. Overview of flavonoid biosynthesis. The phenylpropanoid path-
way leads to the synthesis of flavonoids. These encompass a number of dif-
ferent compounds, not all of which are indicated in this scheme. Enzymes
leading to the synthesis of flavonols (kaempferol, quercetin, isorhamnetin)
are indicated. TT (transparent testa) proteins were identified based on the
pale brown phenotype of seeds of corresponding mutant lines. FLS1: flavonol
synthase 1, the predominant FLS protein in Arabidopsis. UGTs: UDP-depen-
dent glycosyltransferases needed for the glycosylation of flavonols.
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described (43), and transgenic plants were selected with

BASTA (10 �g/ml).

DNA Constructs, Plant Transformation, and Molecular

Markers—For the UGT89C1 complementation construct, the

UGT89C1 genomic clone was PCR-amplified with the primers

F7RT_PC 5�-GGCGCGCCAGACTACAGTTTGGCTAAC-

CAG-3� and F7RT_R3C 5�-TGAACCGCGTGTGTAATGT-

ATC-3�, encompassing 1.5-kb promoter, 1.3-kb coding

sequence, and 0.35-kb terminator sequence. The resulting

fragment (UGT89C1:UGT89C1) was cloned into pGEM-T

Easy (Promega) for sequencing. For theGFP fusion construct, a

BamHI site was introduced intoUGT89C1:UGT89C1 clone by

PCR 3� of the ATG (N-terminal fusion). PCR was performed

with the primers F7RT_R4_NGFP 5�-GGATCCCATGATTG-
ATGTTTTTTTCTTTC-3� and F7RT_F6_NGFP 5�-GGATC-
CACAACAACAACAACGAAGAAGC-3�. A previously pro-

duced GFP construct flanked by BamHI sites (46) was cloned

into this BamHI site, resulting in UGT89C1:GFP-UGT89C1.

This construct was cloned into the binary vector pBART (47) by

NotI.

The molecular markers for the rol1-2 and fls1-3 mutations

are described elsewhere (43, 44). For detection of ugt89c1-3, a

PCR was performed using the primers F7RT_F4 5�-TGATG-
CTTTCTCTATTAAGTCCAT-3� and F7RT_R5_CGFP 5�-
GGATCCCAAACACATCTCTGCAACGAG-3�. The PCR

product was cut by ApaI (cuts wild type) and run on a 1.5%

agarose gel. For detection of ugt89c1-11, PCR was performed

using the primers F7RT_F4 5�-TGATGCTTTCTCTATTAA-
GTCCAT-3� and F7RT_R5_CGFP 5�-GGATCCCAAACACA-
TCTCTGCAACGAG-3�. PCR was performed at 55 °C anneal-

ing temperature, 1.5 mM MgCl2, and 1 min of elongation time,

with 35 cycles. The PCR product was cut by BglII (cuts mutant)

and run on a 1.5% agarose gel. All other ugt89c1 alleles were

confirmed by sequencing.

Microscopic Analysis—Phenotypic screening for and analysis

of ugt89c1 rol1-2was performed using a binocular microscope.

GFP fluorescencewas photographedusing a LeicaDM6000 ste-

reomicroscope. Gel prints of epidermal cells were produced

following an established protocol (48) and observed by differ-

ential interference contrast microscopy using a Leica DMR

microscope.

Flavonol Content Analysis—The analysis of the flavonol

accumulation profile was done as described (44). Seedlings

were grown in a vertical orientation for 6 days as described.One

hundred intact seedlings were cut in the hypocotyl region, and

roots and shoots were pooled separately, frozen in liquid nitro-

gen, and lyophilized to determine the dry weight. The dried

material was incubated in 500 �l of 80% methanol overnight at

4 °C and subsequently macerated with a pestle, followed by vig-

orous vortexing. After pelleting the cell debris by centrifuga-

tion, the supernatant was transferred to a fresh tube and evap-

orated in a SpeedVac centrifuge, with the temperature being

limited to a maximum of 42 °C. After evaporation, the pellet

was resuspended in 100 �l of fresh 80% methanol and used for

analysis. HPLC-ESI-MS and MS/MS experiments were per-

formedon anACQUITYUPLC (Waters) connected to aBruker

maXis high-resolution quadrupole time-of-flight mass spec-

trometer (Bruker Daltonics). An ACQUITY BEH C18 HPLC

column (1.7 �m, 2.1 � 100 mm fitted with a 2 � 2-mm guard

column) was used with a gradient of solvent A (H2O, 0.1% (v/v)

HCOOH) and solvent B (CH3CN, 0.1% (v/v) HCOOH), at

0.45-ml flow rate and with a linear gradient from 5 to 95% B

within 30 min.

Themass spectrometer was operated in the negative electro-

spray ionization mode. MS acquisitions were performed in the

full scanmode in themass range fromm/z 50 to 2,000 at 25,000

resolution (full width at half-maximum) and two scans per sec-

ond. The MS instrument was optimized for maximum signal

intensities of quercitrine at m/z 447. Masses were calibrated

with a 2 mM solution of sodium formate between m/z 180 and

1,472 prior to analysis. The lock mass signal of hexakis

(1H,1H,2H-perfluoroethoxy)phosphazene at m/z 556.00195

was further used as lock mass during the HPLC run. Flavonols

were identified by the molecular mass determined by MS and

by interpretation of fragments obtained byMS/MS, by compar-

ison of both fragmentation patterns and retention times with

previous analyses (30), and by their absence in flavonol-less

rol1-2 fls1-3 mutants (44). Purification of each flavonol glyco-

side in sufficient quantities for producing standard curves was

not possible. Therefore, the content of each individual flavonol

was expressed as the peak area of the corresponding high-res-

olution extracted ion chromatogram. The total flavonol con-

tent was calculated by summing up all flavonol peak areas,

divided by the weight of plant material used for extraction.

Either the total or the individual flavonol contents were com-

pared between different experiments.

Auxin Transport Experiments and Quantification of De-

rivatives—Arabidopsismesophyll protoplasts were prepared as

described (49) from rosette leaves of plants grown on soil under

100 �M m�2 s�1 white light, 8-h light, 16-h dark cycle at 22 °C.

Intact protoplasts were isolated as described (50) and loaded by

incubation with 1-[4-3H]naphthalene acetic acid (25 Ci

mmol�1; American Radiolabeled Chemicals) on ice. External

radioactivity was removed by separating protoplasts using a

50–30-5% Percoll gradient. Samples were incubated at 25 °C,

and efflux was halted by silicon oil centrifugation. Effluxed

radioactivity was determined by scintillation counting of aque-

ous phases and is presented as the relative efflux of the initial

efflux (efflux prior to incubation), which was set to zero. Efflux

experiments were performed with 3–5 independent protoplast

preparations with four replicas for each time point. Basipetal

(shoot-ward) auxin transport was measured according to Ref.

51. Radioactive auxin ([3H]IAA) was applied to the root tips of

15 seedlings (n� 4), and 5–10-mmsegmentswere cut after 18 h

and counted. Segments in the wild-type Col were set as 100%,

and others were calculated accordingly.

Measuring the concentration of auxin, auxin conjugates, and

auxin degradation products was done as follows. The determi-

nation of IAA and its metabolites included extraction and

purification (according to Ref. 52) followed by quantitation

using LC-MS/MS (as described in Ref. 53). Briefly, a sample

(about 100 mg of fresh weight) was homogenized in liquid

nitrogen. The homogenate was supplied with 500 �l of cold
extraction buffer (methanol/water/formic acid, 15/10/5, v/v/v,

�20 °C) and with a mixture of stable isotope-labeled internal

standards: [13C6]IAA (Cambridge Isotope Laboratories) and
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[2H5-
15N1]IAA-Asp, [2H5-

15N1]IAA-Glu, and [2H2]OxIAA

(OlChemIm, Olomouc, Czech Republic); 10 pmol each. After

incubation for 30 min at �20 °C, the extract was centrifuged at

28,000� g (centrifuge Eppendorf 5430 R, Eppendorf AG,Ham-

burg, Germany), and pellet was re-extracted once. Pooled

supernatants were evaporated in vacuum concentrator (Alpha

RVC, Martin Christ, Osterode am Harz, Germany), and then a

sample residue was dissolved into 0.1 M formic acid and applied

to mixed mode reversed phase-cation exchange SPE column

(Oasis-MCX, Waters). Auxin and its metabolites were eluted

with methanol. Eluate was evaporated to dryness in a vacuum

concentrator and dissolved into 30 �l of 15% acetonitrile. An

aliquot was analyzed on anHPLC (Ultimate 3000, Dionex) cou-

pled to a hybrid triple quadrupole/linear ion trap mass spec-

trometer (3200 Q TRAP, Applied Biosystems) set in selected

reaction monitoring mode. Quantification of hormones was

done using the isotope dilutionmethodwithmultilevel calibra-

tion curves (r2 � 0.99). Data processing was carried out with

Analyst 1.5 software (Applied Biosystems).

Accession Numbers—Sequence data from this article can be

found in the Arabidopsis Genome Initiative or GenBankTM/

European Molecular Biology Laboratory (EMBL) databases

under the following accession numbers: FLS1, At5g08640;

ROL1/RHM1, At1g78570; UGT89C1, At1g06000.

Results

Altered Flavonol Glycosylation Suppresses the rol1-2 Shoot

GrowthDefect—The rol1-2 shoot phenotype is characterized by

hyponastic cotyledons, brick-shaped adaxial pavement cells of

cotyledons, and deformed trichomes (Fig. 2A). Mutations in a

glycosyltransferase involved in producing the rol1-2 pheno-

type-inducing flavonol(s) would be expected to revert the

rol1-2 phenotype and act as suppressor(s) of the rol1-2 pheno-

type. Thus, to identify possible rol1-2 phenotype-inducing fla-

vonols, rol1-2 seeds were mutagenized with ethyl methanesul-

fonate. After mutagenesis, the seeds were propagated, and

seedlings of the M2 generation were screened for a wild-type

shoot phenotype that is characterized by epinastic cotyledons

with puzzle-shaped pavement cells and upright, branched

trichomes (Fig. 2A). The identified lines were propagated and

confirmed in the M3 generation. Positive lines were back-

crossed with rol1-2, and only those with an F2 segregation pat-

tern indicating recessive suppressor mutations were further

analyzed. Several lines were identified that suppressed the

rol1-2 phenotype, yet showed accumulation of flavonols to lev-

els comparable with the wild type. Among these lines, only one

group exhibited the lack of one specific type of flavonols,

namely those rhamnosylated at the C7 position. Based on this

finding, the previously identified flavonol 7-rhamnosyltrans-

ferase gene UGT89C1 (29) was identified as a potential candi-

date suppressor gene, and sequencing of the UGT89C1 locus

At1g06000 indeed led to the identification of a mutation in this

gene in all thesemutants. In total, nine different ugt89c1-alleles

were identified. Because two T-DNA insertion alleles of

ugt89c1 were already described, the newly identified EMS

alleles were numbered ugt89c1-3 to ugt89c1-11. In total, six

missense and three nonsense mutations were identified (Table

1). The ugt89c1-3 and ugt89c1-6 alleles are affected in the same

codon, but the resulting nonsense mutations originate from

two different mutation events. Hence, the ugt89c1-3 and

ugt89c1-6 lines represent two independent alleles with the

same effect at the protein level. All mutant ugt89c1 alleles iden-

tified in this study lead to a comparable suppression of the

rol1-2 shoot phenotype, resulting in seedlings with epinastic

cotyledons, jigsaw puzzle-shaped pavement cells, and wild

type-like trichomes (Fig. 2A).

ugt89c1 Mutants Specifically Lack 7-Rhamnosylated Fla-

vonols—A detailed analysis of the flavonol content of rol1-2

ugt89c1 mutants was performed by HPLC-MS. Individual fla-

vonols were identified by comparing the data with previous

studies where flavonols were identified by HPLC-MS/MS, cor-

relation with reference compounds, and the absence in a flavo-

nol-deficient flavonol synthase1 (fls1) mutant background (30,

44). For these and all subsequent analyses, the ugt89c1-3 non-

sense allele was used. The quantification of flavonol accumula-

tion using the sum of areas of all identified flavonol-peaks in

HPLC-MS analyses confirmed that the overall flavonol content

of the rol1-2 ugt89c1-3 line is comparable with the wild type or

the rol1-2 mutant (Fig. 3A). As a negative control, the rol1-2

fls1-3 double mutant was included that shows a strongly

reduced flavonol content due to a lesion in the flavonol synthase

1 gene (44). The quantification of individual flavonol peaks con-

firmed the absence of all identifiable 7-O-rhamnosylated fla-

vonols in rol1-2 ugt89c1 mutants. Other flavonol glycoside

derivatives were still present, some at levels higher than in the

wild type or rol1-2 single mutant, as shown for the kaempferol-

3-O-glucoside (Fig. 3B). Flavonols of root and shoot tissue are

FIGURE 2. The rol1-2 mutant shoot cell growth phenotype is suppressed
by mutations in UGT89C1. A, the rol1-2 mutant shows hyponastic bending
of cotyledons, distorted trichomes, and brick-shaped adaxial pavement cells,
whereas the wild type (Col) shows epinastic bending of cotyledons, normal
shaped trichomes, and a jigsaw puzzle-like structure of adaxial pavement
cells. All ugt89c1 alleles identified in this study suppress the rol1-2 shoot phe-
notype, i.e. rol1-2 ugt89c1 double mutants develop comparable with the wild
type. Pictures of the rol1-2 ugt89c1-3 line are shown that are representative
for all other ugt89c1 lines. B, the UGT89C1:GFP-UGT89C1 construct comple-
ments the ugt89c1 mutation, and hence encodes a functional UGT89C1 pro-
tein, resulting in a rol1-2 mutant phenotype. Bars � 1 mm for shoot (A, upper
panels, and B); 0.2 mm for trichomes (A, middle panels); and 40 �m for pave-
ment cells (A, lower panels).
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affected, confirming the ubiquitous importance of UGT89C1

for flavonol 7-O-rhamnosylation. These data indicate a lack of

genetic redundancy in Arabidopsis with respect to 7-O-rham-

nosylation of flavonols. Hence, UGT89C1 appears to be the

only enzyme that is capable of catalyzing this reaction to a sig-

nificant extent. The lack of 7-O-rhamnosylated flavonols in

rol1-2 ugt89c1-3 suggests an important role of these com-

pounds in the induction of the rol1-2 shoot phenotype.

Different Protein Domains Are Affected in the ugt89c1

Alleles—Analysis of the UGT89C1 protein sequence was cho-

sen as a strategy to elucidate the effect of the different muta-

tions on the secondary and tertiary protein structure.

UGT89C1 was compared with the flavonol-specific UGTs

VvGT1 fromVitis vinifera andMt71G1 ofMedicago truncatula

whose secondary and tertiary structures are known (54, 55).

VvGT1 and Mt71G1 accept flavonols as donor substrates and

therefore were selected for sequence and structural compari-

son. Previous analysis of four plant UDP-dependent glycosyl-

transferases revealed a low overall conservation on the protein

sequence level, but a high conservation on the level of second-

ary and tertiary protein structure (56). The alignment (Fig. 4)

shows only one short region of 45 amino acids, the PSPG

domain that is relativelywell conserved and important for bind-

ing of the UDP-sugar substrate. All three nonsense alleles and

the missense allele ugt89c1-9, introducing an D356N substitu-

tion, affect residues in this PSPG domain. Mutational analysis

has shown that theAsp residue affected inugt89c1-9 is essential

for function of VvGT1 (55). Of the remaining five alleles, four

alter the N1- or C1-loops (ugt89c1-5, -10, and ugt89c1-7, -11,

respectively) that are involved in forming the sugar donor bind-

ing pocket (56). Altogether, protein sequence analysis revealed

that a vast majority of mutations that revert the rol1-2 pheno-

type are directly related to sugar donor binding on the

UGT89C1 enzyme.

UGT89C1 Expression Profile—The rol1-2 cell growth pheno-

type in cotyledons is characterized by brick-shaped pavement

cells on the adaxial side. Previous studies revealed that the fla-

vonol synthase FLS1 is expressed asymmetrically on the adaxial

side (44), providing an explanation for the limitation of the

flavonol-related cell growthdefect to this side of the cotyledons.

To investigate the localization of UGT89C1, a GFP-UGT89C1

construct under the control of the UGT89C1 promoter was

produced and transformed into Arabidopsis. Complementa-

tion of the rol1-2 ugt89c1-3 mutant was used to assess the

impact of GFP on UGT89C1 protein activity. In the T2 gener-

ation, transgenic plants developed the typical rol1-2 shoot

growth phenotype (Fig. 2B), confirming complementation and

thus activity of the GPF-UGT89C1 fusion protein. To assess

protein localization, the UGT89C1:GFP-UGT89C1 construct

was transformed into wild-type Arabidopsis and GFP fluores-

TABLE 1
List of ugt89c1 alleles identified in this screen

Allele name Mutation

ugt89c1-3 Stop 314a

ugt89c1-4 G123R
ugt89c1-5 S19F
ugt89c1-6 Stop 314a

ugt89c1-7 G249V
ugt89c1-8 Stop335
ugt89c1-9 D356N
ugt89c1-10 T4I
ugt89c1-11 R253W

a The mutations producing the stop codon are not identical.

FIGURE 3. Content of total flavonols and of 7-O-rhamnosylated flavonols.
A, total flavonol accumulation is comparable in the wild type, rol1-2, and
rol1-2 ugt89c1-3. Values of rol1-2 fls1-3, which fail to accumulate flavonols,
serve as negative control. DW, dry weight. B, the rol1-2 ugt89c1-3 line shows a
loss of 7-rhamnosylated flavonols, whereas e.g. 3-O-glucosylated flavonols
are still present and accumulate both in the shoot (upper graph) and in the
root (lower graph). Only a sub-selection of flavonols is shown. For quantifica-
tion, the area under each peak of the HPLC elution profile was used as an
arbitrary unit. K-G-3, kaempferol-3-O-glucoside; K-R-7, kaempferol-7-O-rham-
noside; K-G-3-R-7, kaempferol-3-O-glucoside-7-O-rhamnoside; Q-R-3-R-7,
quercetin-3-O-7-O-rhamnoside; I-G-3-R-7, isorhamnetin-3-O-glucoside-7-O-
rhamnoside; K-neoh-3-R-7, kaempferol-3-O-neohesperidoside-7-O-rhamno-
side. Error bars indicate mean � S.E.
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cence was analyzed in seedlings of the T2 generation of several

independent transgenic lines. GFP fluorescence could be

detected on the adaxial side of cotyledons and emerging leaves

(Fig. 5A, C), comparable with the previously reported pattern

observed in FLS1:GFP-FLS1 (Fig. 5B) and RHM1:RHM1-GFP

(RHM1 is identical to ROL1) transgenic lines (44). Trichomes

also showed a strong GFP fluorescence (Fig. 5G). In roots, GFP

fluorescence was predominant in columella cells and in the late

elongation/early differentiation zone, correlating with zones of

high auxin concentrations. Subcellularly, GFP-UGT89C1

localizes to the cytoplasm and the nucleus (Fig. 5, D–F). The

expression pattern of GFP-UGT89C1 is similar to FLS1 (44)

confirming the previous finding thatUGT89C1 is co-expressed

with other genes coding for enzymes of the flavonoid biosyn-

thesis pathway (29).

Auxin Distribution but Not Auxin Transport Is Modified by

the ugt89c1 Mutations—Flavonols have been shown to modify

auxin-related processes (13, 14). rol1-2 mutant seedlings

FIGURE 4. Structural alignment of primary sequences of different UGTs with UGT89C1. The crystal structure of VvGT1 (V. vinifera (Vv)) and Mt71G1
(Medicago truncatula (Mt)) was already solved, and different domains are marked with colors. �-Helices are highlighted in blue, and �-strands are in light green.
The structurally important loops are labeled. Nonsense mutations identified in this screen are marked in beige, and missense mutations are in dark green. The
dashed line indicates the PSPG motif important for UDP-sugar donor specificity. Residues reported to be involved in acceptor pocket formation are highlighted
in gray. Asterisks mark identity, colons mark high similarities, single dots mark lower similarities, and blank positions indicate no similarities between the amino
acids in the compared sequences. Adopted from Ref. 56.
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indeed show an altered auxin distribution and transport activ-

ity, as determined by auxin concentration measurements and

transport assays (30, 44). To determine whether ugt89c1 func-

tions as a suppressor of rol1-2 by influencing auxin distribution,

auxin export was measured in the wild type, rol1-2, and rol1-2

ugt89c1mutant lines. Due to the strong growth defect of rol1-2

mutant seedlings, which might interfere with interpretation of

auxin transport in a whole-seedling assay, rosette leaf meso-

phyll protoplasts were used following an established protocol

(44). In a first step, flavonols were extracted from wild-type,

rol1-2, and rol1-2 ugt89c1protoplasts to confirm that themuta-

tions have an effect on flavonol accumulation in this cell type.

Comparable with flavonols of seedlings, flavonols of rol1-2 pro-

toplasts revealed a glycosylation profile that is distinct from

wild-type protoplasts in that they accumulate fewer rhamnosy-

lated and more glucosylated flavonols (Fig. 6A) (30). rol1-2

ugt89c1 protoplasts did not accumulate 7-O-rhamnosylated

flavonols. Hence, protoplasts of the different genotypes showed

the expected flavonol glycosylation profile, making them suita-

ble to investigate the effect of the twomutations on auxin trans-

port. Auxin export rates were determined in protoplasts using

the synthetic auxin, 1-NAA, and revealed that the rol1-2

mutant shows amodified transport efficiency as comparedwith

the wild type. rol1-2 ugt89c1-3 double mutant protoplasts,

however, show a transport rate that is not different from the

one of rol1-2 (Fig. 6B). Hence, mutations in ugt89c1 suppress

the rol1-2 phenotype by an auxin transport-independent man-

ner. This is particularly interesting because the flavonol-less

rol1-2 fls1 mutant suppresses rol1-2 by changing auxin trans-

port back to wild-type levels (44). Hence, the mode of action of

fls1 and ugt89c1 is different. To sustain cellular auxin transport

data and to back up measurements performed with synthetic

auxin 1-NAA, we measured basipetal (shoot-ward) IAA trans-

port in roots. Comparable with 1-NAA transport in proto-

plasts, root basipetal transport of IAA was revealed to be

changed in rol1-2 as compared with the wild type. The rol1-2

ugt89c1 double mutant shows transport activity similar to

rol1-2, again indicating that ugt89c1 does not modify the rol1-

2-induced alteration in auxin transport (Fig. 6C). To investigate

whether ugt89c1 changes auxin levels in a different way, con-

centrations of free auxin and auxin-related metabolites were

determined in wild type, rol1-2, and rol1-2 ugt89c1 mutant

seedlings. Here, two additional lines were included: the ugt89c1

single mutant to confirm effects found for rol1-2 ugt89c1; and

the rol1-2 fls1-3doublemutant to obtain indications ofwhether

ugt89c1 and fls1-3 indeed suppress rol1-2 by different means.

The levels of the prevailing auxin ofArabidopsis, IAA, was sub-

ject to variation between several biologically independent

experiments. As a consequence, the increase in auxin concen-

tration in rol1-2 as compared with the wild type was not as

pronounced as reported previously (30) and did not fulfill the

criteria of statistical significance (t test, p 	 0.05). The reason

for the observed variation is not clear at this point. Quantifica-

tion of the auxin precursor indole-3-acetonitrile (IAN) and

auxin conjugates and degradation products, on the other hand,

gave very consistent results: ugt89c1 shows increased accumu-

lation of IAN as well as of auxin conjugates and degradation

intermediates such as IAA-Glc or oxIAA-Glc (Fig. 7). This

effect ofugt89c1 is observed not only in the context of the rol1-2

mutation that causes aberrant accumulation of flavonols, but

also in the ugt89c1 single mutant as compared with the wild

type, suggesting that the accumulation of auxin precursor and

derivatives is genuinely affected by flavonol glycosides.

Discussion

Flavonoids are a group of phenylpropanoic secondary

metabolites known to influence cellular processes. They are of

interest as nutrition additives due to their health-promoting

effect (57). However, the knowledge of the effects of flavonoids

on cellular processes in either animals or plants is still limited.

The Arabidopsis rol1-2 shoot phenotype, characterized by

defects in cell growth and development, is induced by flavonols,

a subgroup of flavonoids (30, 44), and thus represents a model

to characterize the active flavonol(s) and their mode of action.

FlavonolGlycosides Influence PlantDevelopment—The study

presented here identifies 7-O-rhamnosylated flavonols as being

important for inducing the growth defects in rol1-2. The

enzyme UGT89C1, conjugating rhamnose onto flavonols (29),

is encoded by a single gene in Arabidopsis, and mutations in

UGT89C1 were identified as suppressors of the rol1-2 pheno-

FIGURE 5. Localization of GFP-UGT89C1. A and B, in cotyledon of 6-day-old seedlings, fluorescence induced by UGT89C1:GFP-UGT89C1 (A) is restricted to the
adaxial side, very similar to seedlings containing FLS1:FLS1-GFP (B). C, bright field image of a cotyledon corresponding to those shown in A and B. In roots,
fluorescence of GFP-UGT89C1 was observed in the cortex and vascular cell layers of the differentiation zone. D, on the subcellular level, a fraction of the fusion
protein localizes to the nucleus (arrow). E, in root tips, fluorescence occurred around the meristematic and later elongation zone. F, detailed analysis of root tips
revealed GFP-UGT89C1 expression in columella and lateral root cap cells. G, GFP-UGT89C1 induced fluorescence in trichomes. Bars � 1 mm (A–C); 15 �m (D and
F); 30 �m (E); and 100 �m (G).
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type. In seedling shoots, UGT89C1 expression is limited to the

adaxial side of cotyledons, emerging leaves, and trichomes. The

same protein accumulation pattern has been found for ROL1/

RHM1 and FLS1 (44), which explains the asymmetry in the

flavonol-induced growth phenotype that is limited in cotyle-

dons to the adaxial side. The co-localization is also in line with

previous findings that genes involved in flavonoid biosynthesis

(including FLS1, RHM1, and UGT89C1) are co-regulated (26).

The data suggest that flavonol glycosides are the active flavonol

species and that 7-O-rhamnosylated flavonols are involved in

inducing the rol1-2 phenotype. Evidence for an active role of

glycosylated flavonols in plant development was also provided

by the analysis of the 3-O-glucosyltransferase mutant ugt78d2,

which shows a dwarfed growth phenotype. This mutant con-

tains increased levels of 3-O-7-O-rhamnosylated flavonols, and

mutating either the 3-O-rhamnosyltransferases or the 7-O-

rhamnosyltransferases ugt78d1 or ugt89c1, respectively, sup-

presses the dwarfed phenotype of ugt78d2. Hence, 3-O-7-O-

rhamnosylated flavonols appear to induce the growth defects

developed by the ugt78d2 mutant (31). Both the ugt78d2 and

the rol1-2 mutant phenotypes are also found in combination

with the tt7 mutation (30, 31) that prevents synthesis of quer-

cetin and causes over-accumulation of kaempferol (Fig. 1).

Thus, accumulation of the flavonol kaempferol appears to be

sufficient to interferewith proper plant development. Similarly,

the tt7 single mutant was reported to have increased inhibition

of auxin transport, again suggesting that kaempferol and its

glycosylated forms are particularly active flavonols (13). The

mechanismof flavonol-induced growth defects, however, is not

the same in rol1-2 and ugt72d2. First, in contrast to ugt78d2,

there is a reduction of 3-O-7-O-rhamnosylated flavonols in

rol1-2 as compared with the wild type (30). Second, although

introducing the ugt89c1mutation suppresses both ugt78d2 and

rol1-2, the introduction of the 3-O-rhamnosyl transferase

mutation ugt78d1 only suppresses ugt72d2 but not rol1-2 (30,

31). This raises the question as to how suppression of the

ugt78d2 and rol1-2 mutant phenotypes is induced. Although

the mechanism of suppression of the ugt78d2 mutant by

ugt78d1 and ugt89c1 has not yet been investigated (31), the

FIGURE 6. Auxin transport in rol1-2 plants is not affected by ugt89c1. A,
flavonol content analysis of protoplasts revealed the same effects of rol1-2
and ugt89c1 mutations as in intact plants. The area under each peak of the
HPLC elution profile was used to determine flavonol content. K-G-3-R-7,
kaempferol-3-O-glucoside-7-O-rhamnoside; K-R-3, kaempferol-3-O-rhamno-
side. B, auxin (1-NAA) export from protoplasts is affected in rol1-2 as com-
pared with the wild type (Col) but not altered by the ugt89c1 mutation. C, as
compared with the wild type (Col), rol1-2 and rol1-2 ugt89c1 show similar,
reduced basipetal IAA transport in roots. Asterisks indicate statistically signif-
icant differences (t test, p 	 0.05). Error bars indicate mean � S.E.

FIGURE 7. ugt89c1 affects levels of auxin precursor and metabolites.
Quantification of the auxin conjugates IAA-Glc and IAA-Glu, the auxin precur-
sor IAN, and the degradation products oxIAA and oxIAA-Glc is shown for wild
type (Col), rol1-2, and ugt89c1 single mutants, and for rol1-2 ugt89c1 and
rol1-2 fls1-3 double mutants. FW, fresh weight. Statistically significant differ-
ences (t test) with p 	 0.05 and p 	 0.01 are indicated with one and two
asterisks, respectively. Error bars indicate mean � S.E.
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work presented here suggests that ugt89c1 suppresses the

rol1-2 phenotype by modulating levels of the auxin precursor

IAN and auxin metabolites rather than auxin transport.

Flavonols Influence Auxin Homeostasis in Several Ways—

The suppression of rol1-2 by tt4, tt6, and fls1 (30, 44) fit the

picture of flavonols being negative regulators of auxin transport

(11). Indeed, interfering with flavonol biosynthesis in rol1-2 by

an fls1 mutation reverts the modified auxin transport to wild-

type levels and suppresses the rol1-2 phenotype. In contrast to

the fls1mutation, however, ugt89c1 does not seem to interfere

with auxin transport. As compared with the wild type, the

rol1-2 mutant shows an increase in auxin efflux in the proto-

plast assay but a decrease in auxin transport in the root basipe-

tal transport. This discrepancy can be explained by the very

different experimental setup in the assays. In the protoplast

assay, primarily auxin efflux is measured from a non-polarized,

cellular system after loadingwith radioactive auxin. In contrast,

the root basipetal transport assay is performed on the entire

root, so that the resulting value comes from the complex auxin

transport machinery present in the root tissues. However, and

importantly, the absence of any effect of the additional ugt89c1

mutation is found in both systems. This unexpected finding can

be explained by different flavonol species having different func-

tions in terms of regulating auxin levels. Although some inter-

fere with auxin transport, others seem to influence auxin

metabolism. Kaempferols are important for the development of

the ugt78d2 and rol1-2 phenotypes or for pollen development

in maize (6, 30, 31), whereas other studies point at quercetin as

an important flavonol (58, 59). In the rol1-2 fls1 doublemutant,

all flavonols are absent, resulting in wild type-like auxin trans-

port, whereas a defect in 7-O-rhamnosylation only interferes

with auxin metabolism but not transport. An indication for

multiple modes of action of flavonols was also obtained from

analyzing the rol1-2 shoot phenotype in more detail. In seed-

lings, a correlation between increased auxin levels and growth

defects was observed. However, phenocopying the increased

auxin levels in wild-type seedlings by exposing them to the

auxin efflux inhibitor 1-naphthylphthalamic acid resulted in

hyponastic cotyledons comparable with the rol1-2 shoot phe-

notype, whereas the defects in pavement cell shape and

trichome development were not observed (30). Hence, nega-

tively regulating auxin transport is likely not the only way by

which flavonols in the rol1-2mutant interfere with plant devel-

opment. The results presented here suggest that UGT89C1

influences the activity of auxin biosynthesis and its conjuga-

tion/degradation. Although oxIAA and oxIAA-Glc are irre-

versible degradation intermediates, IAA-amino acid deriva-

tives can mostly be converted back to active, free auxin (32–34,

60). Interfering with the activity of amidohydrolases that con-

vert IAA-amino acid conjugates to free IAA affects free auxin

levels and induces auxin-related phenotypes (61, 62). A muta-

tion inugt89c1 causes an increase in the level of auxin precursor

and auxin metabolites, the only exception being oxIAA accu-

mulation in rol1-2 ugt89c1 that is comparable with rol1-2. Both

low-abundant (such as IAA-Glu or IAA-Glc) as well as highly

abundant (such as the auxin precursor IAN or the auxin degra-

dation product oxIAA-Glc) auxin derivatives are affected to a

similar extent. However, the low-abundant IAA derivatives are

reversible conjugates that contribute to the pool of all IAA

metabolites only very little (	1%). The accumulation of the

precursor IAN in the ugt89c1 and ugt89c1 rol1-2mutants sug-

gests that conversion of this molecule to free IAA is inhibited.

On the other hand, according to the levels of oxIAA-Glc, irre-

versible oxidative degradation is increased in those mutants.

Thus, UGT89C1 seems to influence the production as well as

the degradation of auxin. Considering the large amount of the

precursor IAN in the entire pool of auxin-related metabolites,

the regulation of the last step of auxin biosynthesis appears to

be a main target process of the activity of UGT89C1. At this

point, it is not clear why these changes in the pool of auxin and

its derivatives are not reflected in a clear change in the level of

free auxin. Several repetitions of auxin measurements gave

somewhat varying results with an increase in rol1-2 as com-

pared with the wild type, whereas rol1-2 ugt89c1 reduced auxin

levels again. However, the differences were not severalfold, did

not fulfill the criteria of statistical significance, and therefore

cannot be considered in the interpretation. Such variationsmay

reflect fine-tuning of levels of free auxin as the only auxin-active

form in relation to subtle variations in developmental stages of

plantmaterialused toanalyzeauxincontent inbiologically inde-

pendent samples. It can be assumed that the level of free auxin

is under strict control and may be modified only temporarily

and locally by control mechanisms that are functional in the

absence of UGT89C1. Blocking flavonol biosynthesis in the

rol1-2 fls1-3mutant has comparatively little effect on the auxin

derivatives. In three out of five auxin-related compounds, the

changes induced by fls1-3 are the opposite of those induced by

ugt89c1, i.e. oxIAA-Glc is reduced in rol1-2 fls1-3 as compared

with rol1-2, but increased in rol1-2 ugt89c1. These data indicate

again that changes in the flavonol glycosylation pattern do not

have the same effect on auxin levels as blocking altogether fla-

vonol synthesis. Presumably, the balance between different gly-

cosylated forms of flavonols including 7-O-rhamnosylated fla-

vonols is critical for auxin homeostasis, and thus, for proper

plant development. The mechanism by which flavonols influ-

ence auxin conjugation and catabolism remains to be uncov-

ered. The level of oxIAA has been shown to be increased in the

flavonol-deficient tt4mutant and reduced in the flavonol over-

accumulator tt3, an observation that is attributed to the reac-

tive oxygen species-scavenging activity of flavonols (9, 42).

However, mutations in ugt89c1 do not affect the overall accu-

mulation of flavonols. This suggests that different flavonol

glycosides might have different reactive oxygen species-scav-

enging activities, possibly because of distinct subcellular local-

ization. Alternatively, ugt89c1 mutations might not influence

auxin oxidation via modulated reactive oxygen species-scav-

enging activity. It has been shown that changing flavonol glyco-

sylation affects gene expression (8), and thereby, genes involved

in auxin metabolismmight also be affected. Formally, it cannot

be excluded that UGT89C1 has another biochemical activity in

addition to its function as a rhamnosyltransferase. However,

UGT89C1 appears to recruit specifically Rha as the substrate

and flavonols as acceptor for the glycosyltransferase reaction,

and its gene expression is tightly linked with other genes

involved in flavonol biosynthesis (26, 29), making such a sce-

nario less likely.
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Together, the findings of this study reveal the effect of flavo-

nol glycosides on auxin metabolic turnover. In addition to the

known effect of flavonols on auxin transport, this represents a

new mechanism for flavonols to influence auxin homeostasis.
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formed experiments; L. B., E. Z., and C. R. designed experiments;
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