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h i g h l i g h t s

• We applied the Kuhn–Munkres Algorithm to analyze ground state of bipartite matching problem.
• We settle down the quantity and distribution of blocking pairs in the ground state.
• The stability of ground state decreases exponentially with better connectivity in the network.
• The scope of application of the ground state is extended to a broader initial conditions.

Bipartite matching problems emerge in many human social phenomena. In this paper, we
study the ground state of the Gale–Shapley model, which is the most popular bipartite
matchingmodel.We apply theKuhn–Munkres algorithm to compute the numerical ground
state of themodel. For the first time,we obtain the number of blocking pairswhich is amea-
sure of the system instability. We also show that the number of blocking pairs formed by
each person follows a geometric distribution. Furthermore, we study how the connectivity
in the bipartite matching problems influences the instability of the ground state.

1. Introduction

Bipartite matching problems, appear in many social processes like the marriage problem between men and women,
college admission problem between students and universities, assignment between workers and jobs, and also the choice
making betweenbuyers and sellers. Due to its various applications in the realworld, not only economists but also the statistic
physicists are attracted by the bipartite matching problems.

Gale and Shapley first introduced the stable marriage problem, a one-to-one two side matching [1], which is the most
important bipartitematching problem. Bipartitematching problemswas rephrased to an optimization problemby assigning
agent i an energy term εi to represent his/her satisfaction. The so-called optimal matching has the minimum energy among
all the possible matchings under certain assumptions. And a matching is called stable only if there are no two agents man i
andwomanα, each ofwhomprefer the other to their spouse in x. Such a pair is said to be a blocking pair [2] with respect to x,
abbreviated as BP hereafter. Gale–Shapley algorithmproves the existence of a stable solution in thematching problemunder
any circumstance. By neglecting the stability of the state,Mézard and Parisi applied the replicamethod of spin glass theory to
study the global optimal solution of one-to-one two sidematching problem [3,4]. Afterward, Zhang et al. studied the scaling
behavior and partial information matching of the marriage problem [5–7]. Furthermore, Dzierzawa and Oméro introduced
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Table 1
Using of the variables in this paper.

Variable Description

n The number of male agents or female agents
M The set of male agents
W The set of female agents
x A matching x : M → W

Mi,α The energy of manmi if womanwα was matched to him
Wβ,j The energy of womanwβ if manmj was matched to her
Hi,α The mean energy of manmi and womanwα if manmi and womanwα were matched
EH (x) Average energy per person under a given matching x
EH (GS) Average energy per person for the ground state
〈EH (GS)〉 Mean value of EH (GS)
f (ε) Probability distribution function of individual energy in the ground state
Pk The probability that a man forms k BPs
NBP The number of BPs
Nbp The number of men/women who form BPs (note that a person may have more than one BP)
σ The fraction that the number of persons one can know in all the agents of the other sex
Sσ The probability of a person could not find a BP under the constraint of a person only knows nσ persons of the other sex.

the acceptance threshold and thus improved thematching result [8]. Recently, Zhou et al. studied the bidirectional selection
problems from a new perspective of social networks [9,10]. In this paper, we aim to compute the number of blocking pairs
in the global optimal solution and then analyze the properties of this solution.

The rest of this paper is organized as follows. In Section 2, we introduce the Gale–Shapley model. In Section 3, we use
Kuhn–Munkres algorithm to find the global optimal solution of the bipartite matching problem. In Section 4, we analyze
the blocking pairs in the ground state, with both numerical and analytical approaches. Then, we analyze the stability of the
ground state based on the number of blocking pairs.

2. Model

The Gale–Shapley model is a matching model in which there are two sets of participants, men and women. We denote
byM = {m1,m2, . . . ,mn} andW = {w1, w2, . . . , wn}, the set of men andwomen, respectively. Amatching is a one-to-one
mapping between the two disjoint sets, i.e., an invertible bijection x : M → W . A matching x can be denoted as:

x = [(m1, x(m1)), (m2, x(m2)), . . . , (mn, x(mn))],
where x(mi) = wα means the woman who matched with man mi, and x−1(wα) = mi means the man who matched with
wα [11].

Previous works [3,7,8] assumed a discrete uniform distribution for the energy term ε = 1, 2, . . . , n, but we hold that the
energy should be independent of the model size n. Therefore we suggest that the energy εi follows a continuous uniform
distribution on [0, 1], and result will be consistent with previous work [3,7] since the size of the model is large enough to
eliminate the difference between discrete and continuous distribution.

For each matched pair (mi, wα), we denote by Mi,α and Wα,i the energy of man i and woman α respectively. We
denote by M and W , the matrices composed of the energies Mi,α and Wα,i, respectively. For a given matching x =
[(m1, x(m1)), (m2, x(m2)), . . . , (mn, x(mn))], the average energy per person EH(x) is

EH(x) = 1

2n

[
n∑
i=1

Mi,x(mi) +
n∑
i=1

Wx(mi),i

]
= 1

n

n∑
i=1

Hi,x(mi), (1)

where we defined the mean energy of man i and woman α Hi,α = 1
2
(Mi,α + Wα,i). We denote by EH(GS) the energy of the

ground state xGS of the model, which is the matching xGS that minimizes the energy EH(x).
Table 1 summarizes the notations adopted in this paper for the variables of the model.

3. Energy analysis

We apply the Kuhn–Munkres algorithm [12,13] to find the ground state of the model. The Kuhn–Munkres algorithm is
described in Table 2. We study the properties of the ground state when changing the size n of the model.

Fig. 1 shows how the average energy 〈EH(GS)〉 of 100 realizations of ground state depends on the size n of the model.
Numerical simulation results were fitted with a power-law 〈EH(GS)〉 = An−β with the least square method. The estimated
exponent is β = 0.50, the expected average energy per person is 〈EH(GS)〉 = 0.808√

n , which is consistent with the result in

Ref. [7] as we expected.
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Table 2
Description of the Kuhn–Munkres algorithm.

Step 1. The elements inM andW are generated randomly. Compute the corresponding elements of the matrix H1.
Step 2. Subtract the smallest elements in each row from all the elements of its row, and subtract the smallest element in each column from

all the elements of its column. We denote the new matrix by H1.
Step 3. Draw lines through appropriate rows and columns so that all the zero elements of the energy matrix H1 are covered and the

minimum number of such lines is denoted by nk .
Step 4. If nk = n, then we will have n independent zeros, the corresponding n positions represent the optimal assignment.
Step 5. If nk < n, determine the smallest element not covered by any line. Subtract this element from each uncovered row, and then add it

to each covered column. Return to Step 3.

Fig. 1. The relationship between 〈EH (GS)〉 and the model size n. The dashed line indicates the fitted curve 〈EH (GS)〉 = 0.808√
n . The results are averaged over

100 independent realizations.

Fig. 2. The PDF of ε with n = 100 (black circles), 300 (red circles), 1000 (blue circles). The dashed lines are the corresponding fitting curves by Eq. (2). The
results are averaged over 100 independent realizations. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2 shows the distribution of individual energy ε. We find that the Probability Density Function (abbreviated as PDF)
f (ε) can be fitted by an exponential function that has a quadratic polynomial in ε as exponent:

f (ε)√
n

= C(a, b)e−a(√nε)2−b(√nε). (2)

The PDF f (ε) should be normalized to 1,

C(a, b) =
[
1

2

√
π

a
e
b2
4a erfc

(
b

2
√
a

)]−1

. (3)

Here erfc is the complementary error function, it is defined as

erfc(z) = 2√
π

∫ ∞

z
e−t2 dt. (4)
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Fig. 3. The result of BPs in the numerical simulation. (a) The number of BPsNBP (red circles) and (b) the number ofmenwho form BPsNbp (blue circles) versus
the model size n. The corresponding dashed lines are the linear fits of the data, slop shown in the figure. The results are averaged over 100 independent
realizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We fitted the numerical simulation result with f (ε)√
n using

√
nε as independent variable, obtaining a = 0.2287 and

b = 0.6411.

4. Blocking pairs

In this section, we start to consider the probability that a man cannot form a BP . For example, a man i has energy εi in a
given matching x, which means that there are nεi women who are better than the spouse of man i. If the man i cannot form
any BP , all of those nεi women have better spouses than man i, which implies the inequality:

Wα1,x−1(α1)
< Wα1,i,Wα2,x−1(α2)

< Wα2,i, . . . ,Wαnε,x−1(αnε) < Wαnε,i. (5)

Note that all the energy termsMi,α andWα,i are uniformly distributed on [0, 1], which implies that the probability that man
iwith energy εi does not form a BP withwoman α is P0(i, α) = (1−Wα,x−1(α)), thus, forman iwith energy εi, the probability
that he does not form any BPs satisfy the following equation:

P0(εi) =
nεi∏
i=1

(1 −Wαi,x−1(αi)
)

≈ e
−

nεi∑
i=1

W
αi,x−1(αi)

≈ e−0.808
√
nεi . (6)

Here the first approximately equal sign is used due to 1−Wαi,x−1(αi)
	 1. Hence, the probability P0 that a man cannot form

a BP satisfies:

P0 =
∫ 1

0

f (ε)P0(ε) dε

≈
∫ 1

0

f (ε)e−0.808
√
nε dε

>

∫ 1

0

f (ε)(1 − 0.808
√
nε) dε

= 1 − 0.8082 = 0.35. (7)

As aforementioned in Ref. [7], the number of BPs is estimated to be (nε)2 ∼ 0.65n, which happens to be consistent with
Eq. (7). Furthermore, if we substitute Eq. (2) into Eq. (7),

P0 ≈
∫ 1

0

1.0034e−0.2287(
√
nε)2−0.6411(

√
nε)e−0.808

√
n dε

≈
∫ ∞

0

1.0034e−0.2287ε2−1.4491ε dε

= 0.59. (8)

The numerical simulation result in Fig. 3 shows that P0 = 0.758, which shows our estimation is closer to fact than the
estimation in Ref. [7]. The difference between our estimation and the numerical result is because the assumption that all
the events related to probabilities P0(i, α) are independent on each other is not valid.
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Fig. 4. Illustration of the probability that one person forms k BPs.

Fig. 5. The probability that a man/woman forms k BPs in models consist of 100 (black squares), 300 (red circles), and 1000 (blue triangles) men or women.
The red dashed line is the theoretical prediction by Eq. (9). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Next, we analyze the probability that a single person forms k BPs. From the numerical simulation, a man/woman has a
chance of 24.2% to form a BP in average. For those people who have already formed a BP , they still approximately have a
probability of 24.2% to form another BP if we neglect the slight change of the samples space as each of them has already
formed a BP , otherwise they will finally form only one BP . And of course this process can continue to the situation that one
forms k BPs. The process is illustrated in Fig. 4.

Thus, we conclude that the probability of the single person forms k BPs is given:

Pk = 0.758 × (1 − 0.758)k, k = 0, 1, 2, . . . . (9)

The result of Eq. (9) and the numerical simulation result of the probability of a man/woman forms k BPs are shown in Fig. 5.
The total number of BPs is then calculated with Eq. (9):

NBP =
∞∑
k=1

0.758 × 0.242k × k× n = 0.319n, (10)

Fig. 3 shows that our result is in good agreement with the outcome of the numerical simulation.
The results and discussions above are based on the perfect information assumption which means all the agents know

everybody of the other sex. In the following, we study the situation that aman iwho only knows a fraction σ (0 < σ 	 1) of
the nwomen in the model. A man/woman is satisfied only if he/she cannot form a BP . Under the assumption that everyone
has an equal possibility to form a BP , the probability that he/she is satisfied can be estimated as

Sσ =
(
1 − 0.326

n

)nσ

≈ 1 − 0.326σ . (11)

So probability that the ground state is stable is

Snσ ≈ (1 − 0.326σ)n ≈ 1

e

0.326nσ

≈ 0.72nσ , (12)

where nσ is the average number of women/men a man/woman knows.
Aswe can see fromEq. (12), the ground state stability decays exponentiallywhen increasingσ . That is reasonable because

in ourmodel which does not contain constrains likemoral standard and religion in real society, the BPswill matchwith their
BP partner than the assigned one in the ground state if the BPs know each other. Obviously, if one knowsmore people, he/she
has a larger possibility to know his/her BP partner, so the ground state of the model is more unstable.
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5. Conclusion

In this paper we find the ground state in bipartite matching problem by using Kuhn–Munkres algorithm. By combining
numerical and analytical method, we compute the number of blocking pairs in the ground state, and also study the
probability distribution of a person forms one or more blocking pairs. Furthermore, we discover that the ground state
stability decays exponentially with the growth of connectivity in the model. Our approach to analyze blocking pairs can
be also extend to study stability of other matching problems in the big data era [14].

Some problems still remain unsolved. For example, one of the problems will be the analytical result of the individual
energy distribution in the ground state.When the analytical result is available, it is possible for find the relationship between
individual energy distribution and the number of BPs. Furthermore, if we compare the different states of the model, for
example Gale–Shapley stable solution, optimal stable solution and the ground state, how many people will be harmed or
benefit for this change? How much they sacrifice or improve? We believe our result may provide some inspirations to find
the solution to the above questions.
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