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The problem of link prediction has recently attracted considerable attention in various do-

mains, such as sociology, anthropology, information science, and computer science. In many

real world applications, we must predict similarity scores only between pairs of vertices in

which users are interested, rather than predicting the scores of all pairs of vertices in the

network. In this paper, we propose a fast similarity-based method to predict links related to

nodes of interest. In the method, we first construct a sub-graph centered at the node of inter-

est. By choosing the proper size for such a sub-graph, we can restrict the error of the estimated

similarities within a given threshold. Because the similarity score is computed within a small

sub-graph, the algorithm can greatly reduce computation time. The method is also extended

to predict potential links in the whole network to achieve high process speed and accuracy.

Experimental results on real networks demonstrate that our algorithm can obtain high accu-

racy results in less time than other methods can.

1. Introduction

Many social, biological, and information systems in the real world, from the nervous system to the ecosystem, from road

traffic to the Internet, from an ant colony structure to human social relationships, can be naturally described as networks in

which vertices represent entities and links denote relationships or interactions between vertices. As a topology approximation

of complex systems, due to limitations of time and space, or experimental conditions, it is inevitable that there will be some

errors or redundant links in constructing the complex network. At the same time, there will be some undetected potential links.

In addition, because of the dynamic evolution of complex network links over time, we must predict missing and potential links

according to known network information, which is the goal of the network link-prediction problem [27,32].

The link-prediction problem has a wide range of practical applications in various fields. For example, in biological networks,

such as protein-protein interaction networks, metabolic networks and diseases-gene networks [22,43], links existing between

nodes indicate that they have an interaction relationship. To mitigate the high costs of biological experimentation to reveal the

hidden interaction relationships in these networks, the results of link prediction can direct biological experiments designed

to reduce the cost and improve the success rate of the experiments. Predicting the loss and suspicious links of diseases-gene

networks can help to explore the mechanisms of diseases, and predict and evaluate their treatment. Furthermore, it can also find

new drug targets and open up new paths for drug development [12].
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In social network analysis, link prediction can also be used as a powerful supplementary tool to analyze accurately the social

network structure. Studies on online social network analysis have been developing very rapidly in recent years. In online social

networks, potential friendship of the users can be revealed by link prediction and can be recommended to the users [34]. By

analyzing social relationships, we can find potential interpersonal links [7,9,16,20,21]. Link prediction can also be used in the

academic network to predict the type and cooperators of an academic paper [38]. A link-prediction method can also be directly

used for information recommendations [25,42] such as a commodity recommendation to customers [24,39]. Marketers would

like to recommend products or services based on existing preferences or contacts. Social networking websites customize sug-

gestions for new friends and groups using link prediction. For monitoring e-mail communication, link prediction is applied to

detect anomalous e-mail [19]. Financial corporations must monitor transaction networks to detect fraudulent activity via link

prediction. In monitoring networks of criminals, link prediction is used to discover hidden connections between criminals to

prevent crime or terrorist activity.

Link prediction not only has a wide range of practical value but also has important theoretical significance. For example, link

prediction is helpful to understand the mechanism of the evolution of a complex network [23,28,33]. Because the magnitude

of the internal characteristics of a complex network structure is very large, it is difficult to compare the advantages and disad-

vantages of different mechanisms. Link prediction can provide a simple and unified platform for a fair comparison of network

evolution mechanisms to promote theoretical research on the complex-network evolution model.

In many real world network applications, we must detect the most-possible links connecting with a given vertex in the

network. We must answer queries such as, “Which are the K most-possible links connecting with vertex v in the network?”;

“Which five authors share the most-similar research interests with Professor Johnson?”; “Who are the ten customers with the

most-similar shopping habits with customer John Smith?”; “What are the closest ten proteins to a given myoglobin?”; and so on.

These are actually link-prediction problems on a given vertex. In fact, in many real world applications, we must predict similarity

scores only between pairs of vertexes that users are interested in rather than predicting the scores of all pairs of vertexes in the

network.

To answer precisely such a link prediction query for a given vertex v using global indices, it is not possible to independently

calculate the indices of links connecting with v. Due to the global nature of global indices calculations, we still must calculate

the indices of all the node pairs in the network, although we are only interested in the ones involving v. However, calculating the

indices of all the node pairs in the network requires a large amount of computation time.

In this paper, we propose a fast similarity-based method to predict links related to the nodes in which users are interested.

The method first constructs a sub-graph centered at the node of interest. For a given error bound ε, we can choose the size of
such a sub-graph to make the error of the estimated similarities be less than ε. Because the algorithm computes similarity scores

only within a small sub-graph, the computation time is greatly reduced. The method is also extended to predict potential links

in the whole network and to achieve high process speed and accuracy. Our experiment results on real networks show that the

algorithm can achieve higher speed and more accurate results than can other methods.

The rest of this paper is organized as follows. Section 2 reviews related work on link prediction in complex networks. Section

3 reviews methods based on local random walk. Section 4 defines the r-radius sub-graph of a node v in network G for a given

error bound ε. Section 5 presents the fast r-radius sub-graph-based algorithm Single_Node-LP to predict the links related to the

nodes in which the users are interested, and the sub-graph-based algorithm Node-LP to predict the links in the whole network.

Section 6 shows and analyzes the experimental results obtained by the algorithms Single_Node-LP and Node_LP and compares

their performance with other similar methods. Section 7 presents the conclusions.

2. Related works

In recent years, many methods of link prediction have been reported. Those methods can be classified into three categories:

similarity-based methods, machine-learning methods and probabilistic model-based methods.

The similarity-based method is the most commonly used method for link prediction. In the similarity-based method, each

node pair is assigned an index, which is defined as the similarity between the two nodes. All non-observed links are ranked

according to their similarities, and the non-observed links connecting nodes that are more similar are supposed to have higher

existence likelihoods. Node similarity can be defined by using the essential attributes of nodes: two nodes are considered similar

if they have many common features or correlated topological structures [1,15,26]. Many studies found that there are substantial

levels of topical similarity among individuals who are close to one another in the social network. For instance, Aiello et al. [2]

studied friendship prediction in social networks based on the presence of homology in three systems that combine tagging social

media with online social networks. Many works exploit topological features of network structures for link-prediction tasks. S.

Gao et al. [11] defined the overall relationships between object pairs as a link pattern, which consists of an interaction pattern and

a connection structure in the network. The structural similarity indices can be classified into three categories: local indices, global

indices, and quasi-local indices. Local indices use only neighbor information of the nodes. Typical local indices include Common

Neighbors, the Salton Index, the Jaccard Index, the Sorensen Index, the HubDepressed Index, the Hub Promoted Index, the Leicht–

Holme–Newman Index, the Preferential Attachment Index, the Adamic–Adar Index and the Resource Allocation Index [32]. Global

indices require global topological information. The Katz Index, the Leicht–Holme–Newman Index and the Matrix Forest Index

[32] are typical global indices. Quasi-local indices do not require global topological information butmake use ofmore information

than do local indices. Such indices include the Local Path Index [31,45], Local RandomWalk, and Superposed RandomWalk [30].

Another similar group is based on the random walk. These include indices such as Average Commute Time, Cos+, RandomWalk
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with Restart, and SimRank [32]. Lü et al. [31] proposed two new local indices, Resource Allocation index and Local Path index.

Empirical results show that these two indices outperform all other local indices. In particular, the local path index, requiring

somewhat more information than the common neighbors’ index, provides competitively accurate predictions compared with

the global indexes. Wang [41] presented a method for predicting link directions using local directed path in a directed network.

Liu and Lü [30] studied the link prediction problem based on the Local Random Walk (LRW) and Superposed Random Walk

(SRW); they found that the limited step might obtain a better prediction than the result of global random walk. Because the

randomwalk-based methods such as LRW and SRW require O(n3) time for a network with n nodes, they are impractical in many

real applications.

Machine-learning strategies are also exploited in network link-prediction methods. Pujari et al. [36] presented a supervised

rank aggregation method for link prediction in complex networks. Vu et al. [40] introduced a continuous-time regression model

for network link prediction. The model can incorporate both time-dependent network statistics and time-varying regression

coefficients. Zeng et al. [44] presented a method incorporating semi-supervised learning into the link prediction task to use the

potential information in a large number of unlinked node pairs in networks. He et al. [14] proposed a link-prediction ensemble

algorithm based on an ordered weighted averaging operator. The algorithm assigns weights for nine local information-based

link prediction algorithms and then aggregates their results to obtain final prediction scores. Bao et al. [3] advanced a network

link predictor using principal component analysis to identify features that are important to link prediction. Bringmann et al. [6]

proposed an approach to link prediction in temporal networks based on the techniques of association rules mining and frequent-

pattern detecting. Using techniques of data mining and machine learning, the method can predict future co-participation of the

individuals in social events. To avoid a high computational cost of optimization in the machine-learning methods, some heuristic

methods are employed in link prediction. Sherkat et al. [37] introduces an unsupervised structural link prediction algorithm

based on the ant colony optimization. Bliss et al. [5] proposed an approach to predicting future links by applying the covariance

matrix-adaptation evolution strategy. Ding et al. [8] advanced a method based on multi-resolution community partitioning to

predict potential links in a network.

Some methods for link prediction for a network are based on probabilistic models. Popescul et al. [35] presented a statistical

relational learning-basedmethod for link prediction. Hanneke et al. [13] proposed a family of statistical models for social network

link prediction by extending the exponential random graph model. Liu et al. [29] presented a method for link prediction in

a user-object network. The method considers both time attenuation and diversion delay. S. Gao et al. [10] proposed a model

that exploits multiple information sources in the network to obtain link-occurrence probabilities. Barbieri et al. [4] proposed a

stochastic topic model for link prediction over directed and nodes-attributed graphs. The model not only predicts links but also

produces a different type of explanation for each link predicted. Hu et al. [18] presented a probabilistic model to detect human

motion in a social network, and advanced a method for labeling human motion using a constraint-based genetic algorithm to

optimize themodel. However, such a probabilistic model requires a predefined distribution of link appearances, which is difficult

to know in advance for a given network.

3. Local random walk

We consider the network represented by an undirected simple graph G = (V, E), where V is the set of nodes and E is the set

of links. Multiple links and self-connections are not considered in G. Let n = |V| be the number of nodes in G. We use U to denote

the universal set containing all n(n – 1)/2 possible links. The task of link prediction is to detect missing links (or links that will

appear in the future) in the set of non-existing links U-E.

In the similarity-based method, the purpose of link prediction is to assign a score, S(x, y), to each pair of nodes (x, y) ∈ U.

This score reflects the similarity between the two nodes. For a node pair (x, y) in U \ E, a larger S(x, y) is associated with a higher
probability that the link between nodes x and y exists.

Liu and Lü [30] studied the link-prediction problem based on the local random walk and found that the limited step may

obtain a better prediction than the result of global random walk.

(1) Local RandomWalk (LRW)

To measure the similarity between nodes x and y, a particle is initially placed on node x and then walks randomly on the

network. A sequence of n ∗ n matrixes π(t) (t = 0, 1, 2,…) is defined; its element πxy(t) is the probability of a particle from x

reaching y at time step t. The initial value of the matrix element is defined as

πxy(0) =
{
1 if x = y

0 otherwise
(1)

At time t, the particle randomly walks on the network according to transformation matrix P = [pxy], and generates a new

matrix π(t + 1). In transformation matrix P, element pxy indicates the probability that the particle at node xwill walk to y in the

next step and is defined as pxy = axy/dx , , where axy is the (x, y) element of the adjacent matrix, and dx denotes the degree of node

x. By the random walk of the particle, the matrix π(t) evolves as follows:

π(t + 1) = PTπ(t), t ≥ 0 (2)

The LRW index sLRWxy (t), which measures the similarity between nodes x and y at time step t, is thus defined as the following:

sLRWxy (t) = qx · πxy(t) + qy · πyx(t) (3)
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where qx and qy are the initial configuration functions. Liu and Lü [30] suggested a simple form to determine the value of qx by

using the degree node x, namely

qx = dx

2|E| (4)

where |E| is the number of existing links in the network.

(2) Superposed RandomWalk (SRW)

Based on the LRW, Liu and Lü [30] proposed the SRW index, in which the particles are continuously released at the starting

point, resulting in a higher similarity between the target node and the nodes nearby. Let SSRWxy (t) be the similarity measure
between nodes x and y at time step t; its mathematical expression is as follows:

sSRWxy (t) =
t∑

l=1
sLRWxy (l) = qx

t∑
l=1

πxy(l)+qy

t∑
l=1

πyx(l) (5)

In each iteration, the time required for calculating matrix π(t) is O(n3) using formula (2), and the time required to calculate
the SSRW scores for all pairs of nodes in the network is O(t.n3). To predict the links connecting a given node v using SRW indices,

we still need O(t.n3) time to calculate the SSRW scores due to the global nature of the SRW indices calculation. Therefore, it

is necessary to find a special approach for predicting the links connecting a given node v with less time cost. In this work,

we propose a fast similarity-based method to calculate the SRW indices of the links related to the nodes in which the users

are interested. Instead of calculating the SRW indices in the whole network, we estimate the SRW indices within a sub-graph

centered at the node of interest.

4. Sub-graph of the relevant vertices

In our method, we estimate the SRW indices in a sub-graph centered at the node of interest instead of calculating the SRW

indices in the whole network. First, we define the r-radius sub-graph of a given node v in network G.

Definition 1. Let G = (V, E) be the graph representing a network. Denote the shortest path between nodes y and z in G as

shortPath(y, z) and its length as |shortPath(y, z)|. Let r be a positive integer and x ∈ V be a node in G. Define the node set V ′ ⊂ V

as V ′ = {y|y ∈ V, |shortPath(x, y)| ≤ r}, which is the set of nodes connecting with x by the shortest path no longer than r. Define

the edge set E′ ⊂ E as E′ = {(y, z)|(y, z) ∈ E, y, z ∈ v′}. Then, subgraph Gx(r) = (V ′, E′) is called an r-radius sub-graph of node x in

network G.

Suppose we need only to predict the links connecting with node x in which the user is interested. To speed the calculation of

the similarity scores between x and the other vertexes, our method estimates the SRW indices in the r-radius sub-graph Gx(r).

Because only local topological information is used, errors might occur in the SRW indices calculation. However, we can restrict

such errors within a narrow limit by setting a proper radius r of sub-graph Gx(r).

Let ε be a given error bound and x ∈ V be a node in G;wemust construct an r-radius sub-graph Gx(r) such that for every node

y ∈ Gx(r), the SRW indices between y and xmust be greater than ε, whereas for all the nodes outside sub-graph Gx(r), their SRW

indices with node xmust be less than ε. Then, we can neglect the nodes outside sub-graph Gx(r). To construct such a sub-graph,
we first present the following theorem to show how to determine a proper radius r such that the nodes outside sub-graph Gx(r)

can be neglected in computing the SRW indices involving node x under a given threshold ε.

Theorem 1. Given a threshold ε > 0, a positive integer r and a node x ∈ V , if

r ≥
⌈
log2

qx + qmax

ε
+ 1

⌉
, (6)

then for all y ∈ G − Gx(r), SSRWxy (t) ≤ ε, (t = 1, 2, …). Here, qx is the initial configuration function defined in (4), and qmax = max
z∈V

qz.

Proof. Let πxy(t) be the probability of a particle from node x reaching node y at time step t.

Let y ∈ G − Gx(r) be a node outside sub-graph Gx(r). By the definition of Gx(r), we know that the length of the shortest path

from y to x is greater than r. Thus, the earliest time for the particle starting from node x to reach node y is r. Therefore, πxy(t) = 0

for t = 1, 2,…, r – 1.

Now, we investigate the value of πxy(t) for t ≥ r. Obviously, the path from x to y with the maximum possible probability is

path l as shown in Fig. 1:

Fig. 1 shows that the degrees of the nodes in path l are all equal to 2 except the two ends. Therefore, the probability of this

path is the following:

p(l) = 1

h

(
1

2

)t−1
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Fig. 1. The path with maximum probability from node x to y.

Here, h is the degree of node x. Let L(x, y) be the set of all paths from node x to y;we then have

πxy(t) =
∑

l∈L(x,y)
p(l) ≤ h · 1

h

(
1

2

)t−1
= 1

2t−1

Therefore,

πyx(t) ≤ 1

2t−1

Because πxy(k) = 0, for k = 1, 2,…, r – 1, we have the following:

t∑
k=1

πxy(k) =
t∑

k=r

πxy(k) ≤
t∑

k=r

1

2k−1
≤

(
1
2

)r
1− 1

2

=
(
1

2

)r−1
,

and

t∑
k=1

πyx(k) ≤
(
1

2

)r−1
.

By Eq. (5), SSRWxy (t) can be approximated as:

SSRWxy (t) ≤ qx

(
1

2

)r−1
+ qmax

(
1

2

)r−1
= (qx + qmax)

(
1

2

)r−1

To estimate the radius of sub-graph Gx(r) such that for every node y outside Gx(r), the SRW indices between y and xmust be

less than ε, we set SSRWxy (t) ≤ ε. Thus, we obtain (qx + qmax)(
1
2 )

r−1 ≤ ε; thus, ( 12 )
r−1 ≤ ε

qx+qmax
.

Therefore, we obtain

r ≥
⌈
log2

qx + qmax

ε
+ 1

⌉
.

�
From Theorem 1, we know that for a given threshold ε and a node x, if r satisfies (6), then indexes SSRWxy (t) of the nodes

outside Gx(r) are all less than threshold ε and can be ignored. Therefore, we can predict the links connecting with node x only in
sub-graph Gx(r) rather than calculating the SRW values between x and the other nodes in the entire network.

From (6) we can see that a smaller ε value leads to a greater radius r of sub-graph Gx(r) and a higher-quality result. However,

a smaller ε value generates a larger sub-graph for a given node, which requires a larger amount of computation time to process
it. In the extreme, if we set ε = 0, there is no error allowed in the results. In this case, the radius of the sub-graph is infinite, and

Gx(r) is identical to the whole network. Therefore, there is a trade-off between the quality of the results and computational time.

We should strike a good balance between them by setting a proper value of ε.

5. Framework of link-prediction algorithms

In this section, we present two link-prediction algorithms based on Theorem 1. One algorithm is for a link-prediction query

on the potential links connecting with a given node. The other algorithm predicts links in the whole network.

5.1. Vertex similarity querying algorithm

Given a network G = (V, E), a node x in V, and the error bound ε, our algorithm first computes the radius r of sub-graph Gx(r).

After sub-graph Gx(r) is constructed, the value of S
SWR
xy is calculated for xwith every node y in Gr(x).

The framework of our vertex similarity-querying algorithm Single_Node_LP (single node link prediction) is as follows.
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Fig. 2. USAir network and sub-graph Gx1(2).

Algorithm 1 Single_Node_LP (x, ε);

Input: A: Adjacency matrix of network G = (V, E);

ε: The error bound;

x: The vertex being queried;

Output: The SRW indices between vertex x and the nodes in Gx(r) = (Vx, Ex);

Begin

1. For node x and error bound ε, calculate the radius r of sub-graph Gx(r) according to (6).

2. generate(x, r, 0); /∗Generating sub-graph Gx(r) = (Vx, Ex)∗/
3. For every node y in Vx do

Calculate the value of SSWR
xy in Gx(r);

4. Endfor.

5. Output the score SSWR of the sub-graph;

End

Line 2 of the algorithm generates node set Vx of the sub-graph Gx(r) by calling subroutine generate(x, r, 0). Using the depth-

first-search strategy, subroutine generate(x, r, 0) starts from vertex x and recursively searches all the vertices with a distance to x

less than r. Initially, all vertices are marked “unvisited”, and the set Vx = ϕ. The recursive algorithm generate(x, r, t) is as follows.

Algorithm 2 generate(x, r, t)

Input: x: The vertex being queried;

t: The maximum distance between vertex x and other vertices;

Output: Vx: The vertices set in sub-graph Gx(r);

Begin

Vx = �;

If (t < r) and (there exist unvisited neighbors of x) then

For each node w that is an unvisited neighbor of x do

Vx = Vx ∪ {w}; Mark w as “visited”;

generate(w, t + 1);

End for

End if

End

Let dx be the degree of node x; then there are at most r ∗ dx vertices in Gx(r). Therefore, the time complexity of algorithm
generate(x, r, t) is O(r ∗ dx). In algorithm Single_Node_LP, it takes O(r3.d3x ) time to calculate π(t) in Gx(r) by formula (2). In line 3

of Single_Node_LP, computing the SSWR
xy (r) values in Gx(r) requires O(r4 ∗ d3x ) computation time. Therefore, the time complexity

of algorithm Single_Node_LP is O(r4 ∗ d3x ).
To illustrate the procedure of link prediction in our algorithm, we use the US airport network (USAir) dataset as an example.

Example 1. The USAir network shown in Fig. 2(a) has 232 nodes representing the airports in the United States. There are 1635

edges in the network indicating the air routes between the airports. Let x1 be the vertex being queried, and set ε = 0.03.

First, the algorithm calculates radius r of sub-graph Gx1(r) according to (6) and obtains the result r = 2.
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Then, subgraph Gx1(2) is constructed as shown in Fig. 2(b). From the figure, we can see that subgraph Gx1(2) has only 28 nodes

and 71 edges. We predict the links connecting with node x1 only in the small sub-graph Gx1(2), instead of calculating the SRW

values between x1 and the other nodes in the entire network of 232 nodes and 1635 edges.

Next, the algorithm calculates the SRW values between x1 and the other 27 nodes x2, x3,…, x28 in sub-graph Gx1(2).

Finally, we obtain the SRW values S1,j between nodes x1 and xj (j = 2, …, 28). The largest SRW values are S1,8 = 0.8, S1,4 = 0.76,

S1,2 = 0.75, and S1,9 = 0.75.

5.2. Predicting the potential links in the whole network

We also extend the algorithm Single_Node_LP and present an algorithm named Node_LP(G, ε) to predict the potential links
in the whole G network. Algorithm Node_LP first computes radius rx of sub-graph Gx(rx) for each node x in network G. Then, it

constructs sub-graph Gx(rx) and computes the SWR index for xwith every node y in Gx(rx). Such an SWR score computed in sub-

graph Gx(rx) is denoted S
SWR

xy (rx). If a node y /∈ Gx(rx) and x /∈ Gy(ry), the value of S
SWR

xy (rx) is set as ε. The framework of algorithm
Node_LP(G, ε) is as follows.

Algorithm 3 Node_LP(G, ε);

Input: A: Adjacency matrix of network G = (V, E);

ε: The error bound;

Output: S
SWR

: matrix of similarity indices between all pairs of nodes in G;

/∗ Initial values of all the elements in S
SWR

are set as ε; ∗/
Begin

1. For every node x in G do

2. Calculate the radius r of sub-graph Gx(r) according to (6) and error bound ε;

3. generate(x, r, 0); /∗Generating sub-graph Gx(r) = (Vx, Ex)∗/
4. For every node y in Vx do

If S
SWR

xy = ε then

S
SWR

xy = SWR index of node pair (x, y) in Gx(r);

Endif

5. Endfor.

6. Output the similarity score matrix S
SWR

;

End

Let dx be the degree of node x; then, there are at most r ∗ dx vertices in Gx(r). Therefore, the time complexity of algorithm
generate(x, r, 0) is O(r ∗ dx). In line 4 of algorithm Node_LP, it takes O(r3.d3x ) time to calculate π(t) in Gx(r) by formula (2).

Therefore, computing the S
SWR

xy (r) values in Gx(r) requires O(r4d3x ) computation time. Let the number of nodes in the whole

network be n and time complexity for the link prediction for the whole network by algorithm Node_LP be O(nr4d3x ). Here, the
value of r depends only on error bound ε and can be treated as a constant for a given value of ε. Because dx ≤ max

v∈V
dv also can be

considered a constant for a given network, the time complexity of link prediction on the whole network by algorithm Node_LP

is O(n). Compared with the method for computing the SRW indices by (5), which requires O(n3) time, Node_LP consumes much

less time to obtain high-quality results.

For each node pair (x, y), if the shortest path between x and y is less than min(rx, ry), S
SWR

xy can be calculated either in Gx(rx)

or in Gy(ry). To avoid duplicate calculations of S
SWR

xy , the algorithm can construct and process sub-graph Gx(rx) in the order of the
clustering coefficient of node x. The clustering coefficient Cx of node x is defined as:

Cx = 2kx

dx(dx − 1)
(7)

Here, kx is the number of triangles connecting with x, and dx is the degree of x. If node x has a greater clustering coefficient, its

sub-graph Gx(rx) contains richer topological information. Therefore, to the degree that node x has a larger clustering coefficient,

Gx(rx) should be constructed and processed earlier. S
SWR

xy can be calculated in sub-graph Gx(rx) if the clustering coefficient of
node x is greater than that of node y.

5.3. Error of the estimated SRW value

In algorithm Node_LP, we use the similarity score S̄SRWxy (r) in Gx(r)to approximate SRW similarity SSRWxy (t) for node y ∈ Gx(r).

For node y outside Gx(r), we set the value of S
SWR

xy (r) as ε. The following theorem estimates the error of using S̄SRWxy (r) to approxi-

mate SSRWxy (t).

Theorem 2. Given an error threshold ε and a node x in G(V, E), if radius r of sub-graph Gx(r) satisfies r ≥ 	log2 qx+qmax
ε + 1
, then∣∣∣SSWR

xy (t) − S
SWR

xy (r)
∣∣∣ ≤ ε.
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Proof.

(1) Case 1: y ∈ Gx(r).

We prove that if y ∈ Gx(r), then (a) SSRWxy (t) − S̄SRWxy (r) = 0 if t ≤ r; and (b) SSRWxy (t) − S̄SRWxy (r) ≤ ε if t > r.

(a) If t ≤ r, SSRWxy (t) can be calculated in sub-graph Gx(r) directly; it is obvious that SSRWxy (t) = S̄SRWxy (t), and SSRWxy (t) − S̄SRWxy (r) =
0.

(b) If t > r, because SSRWxy (t) = qx
t∑

l=1
πxy(l) + qy

t∑
l=1

πyx(l) and S̄SRWxy (r) = qx
r∑

l=1
πxy(l) + qy

r∑
l=1

πyx(l), we have the following:

SSRWxy (t) − S̄SRWxy (r) = qx

t∑
l=r+1

πxy(l)+qy

r−1∑
l=r+1

πyx(l).

From the proof of Theorem 1, we know that
t∑

l=1
πxy(l) ≤( 12 )

r−1. Therefore

t∑
l=r

πxy(l) ≤
t∑

i=1
πxy(l) ≤

(
1

2

)r−1

and

SSRWxy (t) − S̄SRWxy (r) ≤ qx

(
1

2

)r−1
+ qmax

(
1

2

)r−1
= (qx + qmax)

(
1

2

)r−1
.

Because

r ≥
⌈
log2

qx + qmax

ε
+ 1

⌉
,

we have

SSRWxy (t) − S̄SRWxy (r) ≤ (qx + qmax)
ε

qx + qmax
= ε.

(1) Case 2: y /∈ Gx(r).

In this case, the value of S
SWR

xy (r) is set as ε. Because y /∈ Gx(r), by Theorem 1, we know that SSRWxy (t) ≤ ε. Let SSRWxy (t) = ε − δ,
here 0 ≤ δ ≤ ε. Therefore, we obtain∣∣∣SSWR

xy (t) − S
SWR

xy (r)
∣∣∣ = |ε − δ − ε| = δ ≤ ε.

�
By Theorem 2, we can see that algorithm Node_LP can restrict the error of similarity score S̄SRWxy (r) to be less than threshold ε.

Although similarity score S̄SRWxy (r) estimated by Node_LP might have an error within the bound ε, it cannot affect the quality of
the results because link prediction only depends on the relative ranking of the similarity scores of node pairs rather than their

absolute score values.

6. Experimental results

In this section, we empirically demonstrate the effectiveness of proposed algorithms Node_LP and Single_Node_LP on real

world networks. We also compare their performance against other similarity-based link-prediction algorithms. We focus on

the accuracy of the results and the algorithms’ computing time. All experiments were conducted on the Microsoft Windows 7

operating system, and the results were visualized on Matlab 6.0.

6.1. Datasets

In the experiments, we consider six benchmark datasets [17] representing networks drawn from disparate fields: a protein-

protein interaction network (PPI), a co-authorship network between scientists (NS), the electrical power grid of the western US

(Grid), a network of US political blogs (PB), the Internet (INT), and a US airport network (USAir). For each dataset, we test its

largest connected component. Table 1 summarizes the topological features of the largest components of those networks. In the

table, N andM are the total number of nodes and links, respectively. NC is the number of connected components in the network

and the size of the largest one. For example, 1222/2 means that this network has 2 connected components and that the largest

one contains 1222 nodes. In the table, e is the efficiency of the network, and C and a are clustering coefficient and assortative

coefficient, respectively.
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Table 1

Topological features of the giant components in the six networks tested.

Networks N M Nc e C a

USAir 232 1635 232/1 0.440 0.749 –0.228

PB 1224 19090 1222/2 0.397 0.360 –0.221

NS 1461 2742 379/268 0.016 0.798 –0.082

PPI 2617 11855 2375/92 0.180 0.388 0.454

Grid 4941 6594 4941/1 0.056 0.107 0.003

INT 5022 6258 5022/1 0.167 0.033 –0.138

6.2. AUC score

We use AUC (Area Under Curve) scores to evaluate the quality of the results from the algorithms tested. AUC is an impor-

tant performance measure that has been widely used in many tasks such as cost-sensitive learning, class-imbalance learning,

learning to rank, and information retrieval. It can be used in datasets for which traditional criteria such as accuracy and recall

are inadequate because AUC is blind to class distribution. AUC also can be used as a measurement to evaluate the accuracy of

link-prediction results. The similarity-based link-prediction methods assign a score to each existing and non-existing edge in the

network. The AUC value is only the area under the ROC (receiver operating characteristic) curve. In general, a larger AUC value

indicates higher performance; hence, the AUC value of the perfect result is 1.0, whereas the AUC of a result by a random predictor

is 0.5.

Suppose there are n1 existing links and n2 non-existing links in the network, and n = n1 + n2. Let {e1, e2, . . . , en1} and
{en1+1, en1+2, . . . , en} be the sets of existing and non-existing links, respectively, and si be the score assigned to ei, (i = 1,2, . . . ,n).
The ROC curve for the link-prediction result can be drawn as follows:

(1) Sort the links in descending order of their scores. Let the sorted sequence of the edges be e′
1, e

′
2, . . . , e

′
n.

(2) Create an ROC coordinate system in which the abscissa represents the non-existing edges and the ordinate represents the

existing edges. The abscissa consists of n2 steps, and the length of each step is 1/n2. The ordinate consists of n1 steps, and

the length of each step is 1/n2. Therefore, the ROC coordinate system forms a square with unit side length.

(3) The ROC curve starts at the origin of the coordinate system and then moves upwards and rightwards towards the upper-

right corner of the square. The direction of the movement in each step depends on the sorted sequence e′
1
, e′
2
, . . . , e′n. In

the ith step, if e′
i
is an existing edge, then the curve moves upwards one step. If e′

i
is a non-existing edge, e′

i+1 is an existing
edge and s′

i
= s′

i+1. Then, the curve moves one step along the diagonal; otherwise it moves rightwards one step. When the

curve reaches the upper-right corner of the square after n steps, it forms the ROC curve.

(4) The area of the part in the square under the ROC is just the AUC value of the link prediction result.

We illustrate the procedure of creating an ROC curve using the following example.

Example 2. Suppose there are 7 links named a, b, c, d, e, f, g in the network, and a, b, c, d are existing links, whereas e, f, g are

the non-existing ones. A predicting result assigns scores sa, sb, sc, sd, se, s f , sg to the corresponding links; sa > se = sb > s f > sc >

sd > sg. To create the ROC curve for this result, we first sort the links in descending order of their scores and obtain the sorted

sequence a, e, b, f, c, d, g. Then, an ROC coordinate system is formed as shown in Fig. 3, in which the abscissa consists of 3 steps,

and the ordinate consists of 4 steps. Starting at the origin of the coordinate system, the curve initially moves upwards one step

because the first link in the sequence is a, which already exists. Then, the curve moves one step along the diagonal because the

next two links in the sequence are non-existing link e and existing link b; se = sb. The next link in the sequence is f, which is a

non-existing one; thus, the curve moves one step rightwards. Repeating such movement until reaching the upper-right corner of

the square, the ROC curve is completed as shown in Fig. 3. The area of the shaded part under the curve is the AUC of the result.

From the figure, we can see that the AUC is 7.5/12 = 0.625.

In fact, we need not draw the ROC curve to calculate the AUC value of a result. The AUC value can be interpreted as the

probability that a randomly chosen existing link is given a higher score than is a randomly chosen non-existing link. We can

randomly pick an existing link and a non-existing one to compare their similarity scores. If, among n independent comparisons,

there are n′ times the existing link having a higher score and n′′ times they have the same score, the AUC value is

AUC =
(
n′ + 0.5n′′)/n (8)

We use the following examples to illustrate the calculation of AUC according to (8).

Example 3. We estimate the AUC of the predicted results on the USAir dataset in Example 1. From Fig. 2(b), we can see that in

subgraph Gx1(2), node x1 only connects with nodes x2, x4 and x8. Therefore, there are 3 existing links, namely (x1, x2), (x1, x4)

and (x1, x8), and 24 nonexistent links. To compute the AUC of the results, we compare the similarity score of an existing link with

that of a non-existing one. Because there are 3× 24 = 72 pairs of existing and non-existing links, the number of comparisons is

n = 72. Because the 3 exiting links (x1, x2), (x1, x4) and (x1, x8) have the highest SRW values S18 = 0.8, S14 = 0.76, S12 = 0.75, their

SRW values are all greater than or equal to that of the non-existing one. Among 72 such comparisons, existing and non-existing
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Fig. 3. ROC curve of Example 2.

Table 2

Comparison of AUC scores by Node_LP with other methods (best values

in bold).

USAir PB NS PPI Grid INT

CN 0.939 0.926 0.987 0.916 0.638 0.650

Salton 0.926 0.878 0.975 0.923 0.612 0.647

Jaccard 0.899 0.865 0.980 0.920 0.622 0.657

Sorensen 0.917 0.885 0.985 0.917 0.633 0.642

HPI 0.840 0.861 0.983 0.910 0.635 0.651

HDI 0.890 0.876 0.980 0.921 0.632 0.652

LHN_I 0.727 0.754 0.972 0.910 0.626 0.650

PA 0.896 0.908 0.671 0.854 0.577 0.959

LP 0.932 0.929 0.985 0.966 0.696 0.942

Katz 0.934 0.942 0.989 0.969 0.956 0.974

Node_LP 0.947 0.995 0.991 0.986 0.961 0.981

links have equal SRW values only when the SRW value of (x1, x2) is compared with that of (x1, x9). Therefore, n
′ = 71, n′′ = 1, and

AUC = (71 + 0.5)/72 = 0.993.

Example 4. We estimate the AUC of the predicting results in Example 2. In this example, there are 4 existing links and 3 non-

existing ones; thus, scores of 3× 4 = 12 pairs of existing and non-existing links must be compared. Among the 12 pairs, the

existing link has a greater score than the non-existing one in 7 pairs: (a, e), (a, f), (a, g), (b, f), (b, g), (c, g) and (d, g). Only existing

link b has a score equal to that of a non-existing link, e. Therefore, n′ = 7, n′′ = 1 and AUC = (7 + 0.5)/12 = 0.625.

6.3. Test on the quality of the results by Node_LP

In the experiments for testing algorithm Node_LP, we divide the set of links in the network into training set and test set and

then construct the sub-graph of each vertex based on the training set. We use AUC scores to evaluate the quality of the results

from the algorithms tested.

To evaluate the accuracy of the results, a random 10-fold cross validation (CV) is used. In 10-fold cross validation, the original

links are randomly partitioned into 10 subsets. Of the 10 subsets, a single subset is retained as the validation data for testing

the algorithms, and the remaining 9 subsets are used as training data. The cross-validation process is then repeated 10 times.

The 10 results from the folds are averaged to produce a single estimation. We also compare the performance of Node_LP against

the other similarity-based link-prediction algorithms such as common neighbor (CN), Salton, Jaccard, Sorensen, Hub Promoted

Index (HPI), Hub Depressed Index (HDI), Leicht-Holme-Newman Index (LHN_I), Preferential Attachment (PA), Local Path (LP) and

Katz [32]. Table 2 presents the average AUC scores on 10-fold CV tests by different algorithms. In the table, the highest AUC scores

for the datasets by the 11 algorithms are emphasized in boldface.

As shown in Table 2, among all the 11 algorithms,Node_LP has the highest AUC scores on all of the datasets. For example, on the

dataset USAir, algorithm Node_LP obtains an AUC score of 0.947 after only 4 steps. This shows that algorithm Node_LP can achieve
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Fig. 4. AUC score in each step of Node_LP, LRW and SRW.

Table 3

AUC scores of the results under different ε (best values in bold).

USAir ε 0.03 0.04 0.05 0.06 0.07

AUC 0.957 0.795 0.627 0.542 0.500

PB ε 0.01 0.011 0.012 0.013 0.014

AUC 0.913 0.889 0.773 0.666 0.594

NS ε 0.01 0.02 0.03 0.04 0.05

AUC 0.994 0.921 0.539 0.502 0.500

PPI ε 0.002 0.004 0.006 0.008 0.010

AUC 0.976 0.923 0.755 0.599 0.503

Grid ε 0.00002 0.0001 0.0002 0.0004 0.0008

AUC 0.8850 0.855 0.795 0.715 0.680

INT ε 0.002 0.004 0.006 0.008 0.010

AUC 0.965 0.950 0.695 0.645 0.615

high-quality results. Comparing Tables 1 and 2 shows that the AUC scores by the algorithms are roughly proportional to the

clustering coefficients of the dataset tested. Generally, an algorithm can obtain better results on datasets with larger clustering

coefficients. However, algorithm Node_LP still achieves better results on the networks with lower clustering coefficients. This

shows that algorithm Node_LP can achieve strong robustness.

We also test the algorithm on six datasets and compare the AUC values in different steps of Node_LP with those of the LRW

and SRWmethods. The results are shown in Fig. 4.

Fig. 4 shows that all three algorithms can obtain a better result when the steps number more than 2. However, in most of

the datasets, algorithm Node_LP can achieve the best performance after 8 to 10 steps. It should be noticed that Node_LP detects

the potential links only in a small sub-graph around each node, whereas LRW and SRW perform a global detection in the whole

network. The reason for algorithm Node_LP achieving high-quality results is that it predicts the potential links within a sub-

graph in which the important topological features of the original network are well maintained and the nonessential features are

ignored. Although the similarity score by Node_LPmay have an error within a bound ε, it cannot affect the quality of the results
because link prediction only depends on the relative ranking of the similarity scores on node pairs rather than their absolute

values.

We also investigate the relationship between the AUC scores of the results and the values of error bound ε. We test algorithm

Node_LPwith different ε values on six datasets. The AUC scores on different datasets are shown in Table 3. In the table, the highest
AUC scores for the datasets by different ε values are emphasized in boldface.

From Table 3, we can see that the AUC score decreases when a greater error-bound ε is set. With a lower error-bound, al-

gorithm Node_LP generates a smaller sub-graph for each node and can reduce the computation time. We should strike a good

balance between the computation time and the quality of the result by setting a proper value of ε. However, such a proper value
of ε is problem dependent. It remains an open problem how to set a proper value of ε for a given dataset. In our experiments, we
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Fig. 5. The coverage, average search radius, node and edge percentage under different ε values.

set the value of ε for a given dataset by considering the size of the network. For a network of larger size, we set a smaller ε value
to obtain a greater radius r and cover more-global information. For instance, because network USAir has a smaller size than INT,

we set a greater ε value for USAir (0.03 to 0.07) and assign a smaller ε value for INT (0.002 to 0.01) in the experiments shown in
Table 3.

6.4. Test on quality of the results of Single_Node_LP

Next, we test the local link-prediction algorithm Single_Node_LP (x, ε, K), which detects the links connecting with a given
node x. In the experiment, we select 90% of the links as a training set denoted Etrain and the other 10% of the links as a test set

denoted Etest. We construct sub-graph Gx(r) = (Vx, Ex) for vertex x based on the training set. We define the nodes having direct

connection with x as the first-order neighbors of x. Let �r(x) be the set of all r-order neighbors of node x in the network, and

�1,r(x) = ∪r
i=1 �i(x). To measure the percentage that sub-graph Gx(r) = (Vx, Ex) covers the nodes in the original network G = (V,

E), we define the coverage of Gx(r) = (Vx, Ex) as coverage(x, r) = |Vx|
|�1,r(x)| and call it r-hop coverage. Obviously, a low value of

coverage(x, r) indicates that using Gx(r) can only predict a limited number of objects; thus, it has less significance to the target

users. In link prediction, coverage has great importance because only a high coverage could provide a sufficient number of objects

for the target user.

In the experiments, we test the coverage of algorithm Single_Node_LP(x, ε, K) under different ε values on five datasets. Fig. 5
shows the global coverage of algorithm Single_Node_LP(x, ε, K). The global coverage is defined as the average coverage of all the
vertexes tested. Fig. 5 also shows the average search radius and the average number of nodes and links in the sub-graphs under

different ε values. A smaller search radius and percentage of nodes and links indicate that algorithm Single_Node_LP(x, ε, K) can
obtain high-quality link-prediction results in a smaller scale of sub-graph.

Fig. 5 shows that all of the tested values present a downward trend with an increment of the ε value. For example, when
ε = 0.034, the coverage is 0.9312, the average search radius is 1.89, the percentage of nodes in the sub-graph is 47.4% and the

percentage of links is 43.8% in the dataset of USAir. Concerning the dataset of INT, when ε = 0.003, the coverage is 0.887, the

average search radius is 2.00, the percentage of nodes is 1.86% and the percentage of links is 2.23%. From the figure, we can see

that algorithm Single_Node_LP can obtain high coverage within small sub-graphs.

We also test the algorithm Single_Node_LPwith different coverage values. For an r-hop coverage δ, the sub-graph Gx = (Vx, Ex)

of a given node x can be constructed as follows. Let �1,r(x) be the set of the first- to the rth- order neighbors of x in the training

set. We randomly select δ.|�1,r(x)| nodes to form set Vx, and the links within Vx in the training set form set Ex.

We test the average numbers of the first- and second-order neighbors in the sub-graphs detected by algorithm Single_Node_LP

with different coverage values. The results are shown in Table 4. In the table, we also compare the average numbers of the first-

and second-order neighbors with those obtained for the whole network.

As shown in Table 4, we can see that the average numbers of the first- and second-order neighbors of each vertex in a sub-

graph are greater than those of the whole network when the coverage is greater than 0.9. This is because the non-observed links
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Table 4

Average numbers of the first- and second-order neighbors under different coverages.

first-order neighbors second-order neighbors

Coverage 0.9 0.8 0.7 whole network 0.9 0.8 0.7 whole network

USAir 16.718 16.131 15.558 14.095 108.851 112.455 113.503 116.060

PB 29.145 29.934 30.112 27.355 390.749 409.949 416.943 485.087

NS 4.284 4.281 4.270 4.823 18.296 18.127 17.876 21.016

PPI 12.161 13.303 14.746 9.847 71.580 76.492 68.600 66.149

Grid 2.415 2.415 2.409 2.669 7.187 7.360 7.399 8.046

INT 2.710 2.655 2.476 2.492 36.684 37.087 37.553 27.419

Table 5

Average topological features of the sub-graphs tested.

Networks ε N M e C a

USAir 0.033 96.700 808.317 0.581 0.670 −0.334
PB 0.010 448.588 6537.141 0.407 0.389 −0.222
NS 0.017 18.995 40.686 0.629 0.684 −0.394
PPI 0.002 273.732 1664.373 0.386 0.421 −0.037
Grid 0.000002 421.472 508.813 0.145 0.049 −0.239
INT 0.003 95.886 129.935 0.476 0.053 −0.718

Table 6

AUC scores of the results under different coverage values (best values in bold).

Coverage = 0.9 Coverage = 0.8 Coverage = 0.7 Coverage = 0.6 Coverage = 0.5

USAir 0.947 0.908 0.882 0.867 0.870

PB 0.995 0.926 0.907 0.869 0.832

NS 0.990 0.949 0.927 0.887 0.828

PPI 0.985 0.940 0.925 0.875 0.855

Grid 0.960 0.840 0.830 0.810 0.790

INT 0.980 0.926 0.870 0.805 0.755

with very low probability of occurrence are ignored by algorithm Single_Node_LP, and only the node pairs with rich topologi-

cal information can be retained. In other words, the potential links recommended by algorithm Single_Node_LP have a higher

possibility of existence than do those detected in the whole network, overall. Therefore, link-prediction results by algorithm

Single_Node_LP are reliable and accurate.

In another test, we fix the coverage at 0.9 and choose the optimal ε value of each dataset as indicated in Fig. 5. We then

calculate the topological properties of sub-graph Gx(r) generated by algorithm Single_Node_LP(x, ε, K). The topological features
of the generated sub-graphs are shown in Table 5.

Comparing the topological features of the original networks shown in Table 1, we can see from Table 5 that after narrowing

the range of each set of data, the generated sub-graph Gx(r) for each node x has a significant decrease in the average number

of vertices and edges; the efficiency e of the network is also significantly improved. The clustering coefficient C of the network

does not change significantly, the distribution coefficient of the network becomes smaller, and the average degree of the net-

work increases slightly, indicating that the sub-graphs built in the experiments by algorithm Single_Node_LP still maintain the

topological characteristics of the original network.

We also investigate the relationship between the AUC value and coverage; we test the AUC of the results with algorithm

Single_Node_LP by setting the coverage values as 0.9, 0.8, 0.7, 0.6 and 0.5. The experimental results are shown in Table 6. In the

table, the highest AUC score on each dataset by different coverage is emphasized in boldface.

From Table 6, we can see that the AUC score decreases when the coverage is reduced. When the coverage exceeds 0.8, Sin-

gle_Node_LP can obtain AUC scores greater than 0.9. However, the value of coverage strongly depends on error bound ε. From Fig.

5, we can observe that the coverage can be greater than 85% when we set the value of ε as 0.01. If we set the value of ε as 0.005,
then the coverage can exceed 90% in most of the datasets. Table 6 shows that if the coverage is greater than 90%, algorithm Sin-

gle_Node_LP can obtain high AUC values greater than 0.95. This indicates that algorithm Single_Node_LP can obtain high-quality

results, with a tolerable error less than ε.

6.5. Test on the time requirement of the algorithms

Computational complexity is another important concern in the designing of a link-prediction algorithm. In the experiments,

we compared the time complexity of algorithm Node_LP with those of algorithms based on indexes CN, Jaccard, Sorensen, HDI,

LHN_I, PA, LP, LRW, SRWand Katz. Fig. 6 shows the comparison of the average computation times required by different algorithms.

The figure shows that algorithm Node_LP consumes much less computational time than do the other algorithms.
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Fig. 6. Running time of the algorithms.

Fig. 7. Computational time required under different ε values.

Let n be the number of nodes in the network and k be the average degree of the nodes; then, time complexity for link

prediction in the network by the Node_LP algorithm is O(n). For local indexes such as CN, computing the common neighbors

for each node pair (vi, vj) takes O(k). Therefore, the time complexity for computing the CN index for all of the node pairs is

O(n2k). Other local indexes such as Jaccard, Sorensen, HDI, LHN_I and PA also have a similar time complexity of O(n2k). Because

all of those local similarity indexes use only the first-order neighbors of the nodes, their time complexities are O(n2). Obviously,

computing these indexes requires muchmore time than Node_LP. Because these local indexes use only topological information of

first-order neighbors, the quality of their prediction results are much lower than that of Node_LP. Similar to Node_LP, LP, LRW and

SRW are quasi-global randomwalk-based indexes. The time complexity to compute the LP index is O(nk3) if we treat the number

of steps as a constant. The LRW and SRW indices need O(n3) time to calculate matrix π(t) in LRW and O(t.n3) time to calculate

the SSRW scores. To compute a global topological path-based index such as Katz, the time complexity is O(n3). Compared with all

those similarity-based methods, the Node_LP algorithm can achieve high-quality prediction results in less computational time.

The reason for Node_LP consuming less computational time is that it considers structure information based on the local random

walk; thus, it can obtain a better prediction result in fewer time steps than can the global random walk and other local random

walk-based indexes.

We also test the computational time required by Node_LP under different ε values. Fig. 7 shows the results on different

datasets. From the figure, we can see that for each dataset, using a smaller ε value leads to increased computation time cost.
The reason is that a smaller ε value implies a higher accuracy requirement. To obtain more-precise results, the algorithm must

generate larger-sized sub-graphs, which consumes more computation time.
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7. Conclusions and further work

With the large amount of network data available in electric form today, link prediction has become a popular subarea in

data mining. We have presented a method for predicting links connected with a given node in which the user is interested.

The method first constructs a sub-graph centered at the node of interest. By choosing a proper size of such a sub-graph, we

can restrict the error of the estimated similarities within a given threshold. Because the similarity score is computed in a small

sub-graph, the algorithm greatly reduces the computation time. We also have extended the method to predict potential links in

the whole network to achieve high process speed and accuracy. Although the algorithm is based on a quasi-global random walk

approach, it requires O(n) time to obtain high quality results, whereas computing other quasi-global indexes requires O(n3) time.

Experimental results on real networks have shown that our algorithm can obtain higher-accuracy results in less time than other

methods can.

One limitation of our algorithm is that a proper ε value must be chosen to strike a good balance between the quality of

the results and the computational time. However, such a proper value of ε highly depends on the dataset and the application.
Generally, for a network of larger size, we set a smaller ε value to obtain a greater radius r and cover more-global information.
For applications requiring high processing speeds, ε should be assigned a larger value. For applications requiring high accuracy
of results, a smaller ε value should be set. In our future work, we intend to find an efficient method of obtaining the optimal
value of ε for a given dataset.
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