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Shifts in carbonate-producing biotic communities in the geological record provide evidence of past environmen-
tal changes in the neritic realm. The shallow-marine Calcare di Nago Formation exposed in the San Valentino sec-
tion (northern Italy) covers the Late Eocene and Earliest Oligocene. The succession is characterized by the
occurrence of light-dependent biota such as coralline algae and larger benthic foraminifera. In the uppermost
part of the section, however,\ the fossil association is dominated by bryozoans, which are filter-feeder organisms.
This ca. 12 m thick interval locally contains up to 86% bryozoans, while coralline algae as well as larger benthic
foraminifera are absent. Coralline algae and nummulitid foraminifera recover in the upper part of the bryozoan
beds, whereas orthophragminids do not recover. The gradual disappearance of larger foraminifera and coralline
algaewithin the bryozoan-dominateddeposits is coevalwith a pronounced positive shift in δ13C. Based on its bio-
stratigraphic position, this positive shift is interpreted to be linked to the positive shift in δ13C recognized in deep-
sea records shortly above the Eocene–Oligocene boundary, which in turn is associated to the positive shift in δ18O
leading to the Oi-1 (Oligocene isotope event 1) cooling phase. Total phosphorus content increases in the bryozo-
an beds, suggesting enhanced nutrient supply to the neritic ecosystem. This phosphorous peak is coeval with the
globally recognized increment in ocean productivity around the Oi-1 and δ13C positive shift. Thus, disappearance
of light-dependent biota and the dominance of bryozoans in the platform carbonates studied are interpreted to
result not necessarily from a deepening of the depositional environment but from the combination of lower sea-
surface temperatures and the deterioration of underwater light conditions on account of elevated turbidity in
surface waters, resulting from enhanced primary productivity. As bryozoan beds occur in several Italian localities
around the Eocene–Oligocene boundary, they are interpreted to represent the regional expression of neritic car-
bonate depositional systems to global environmental changes occurring at the dawn of an ice-house Earth.

1. Introduction

From the Middle Eocene to the Early Oligocene, the Earth experi-
enced a pronounced cooling, leading to the initiation of the Antarctic
glaciation and, consequently, to the beginning of the present ice-
house world. The isotopic events characterizing the Eocene–Oligocene
transition (EOT) are recorded as a two-stepped positive shift in both
oxygen and carbon stable isotopes that lasted about 500 kyr (overview
in Coxall and Pearson, 2007). The Oligocene isotope event 1 (Oi-1;
Zachos et al., 1996; Katz et al., 2008; Miller et al., 2008, 2009), occurring
at around 33.55 Ma, is characterized in deep-sea deposits by an up
to 1‰ positive shift in δ18O. Despite advances made in recent years
(Katz et al., 2008; Miller et al., 2008, 2009; Coxall and Wilson, 2011),
little is known about the effect of the cooling associated to the Oi-1 in
shallow-marine environments. On one hand, shallow-marine sedimen-
tary records are incomplete in nature due to hiatuses and erosive

processes. On the other hand, the correlation of shallow benthic
biozones with stable isotope-, magneto-, and calcareous plankton stra-
tigraphy in pelagic sections remains poorly constrained. Thus, the po-
tential of environmentally sensitive shallow-marine deposits for
interpreting this climate transition remains largely unexplored.

In the Cenozoic, light-dependent marine carbonate-producing
organisms mainly correspond to zooxanthellate corals, symbiont-
bearing larger foraminifera, red algae and green algae, while heterotro-
phic biota are dominated by bryozoans, molluscs, echinoderms and
small benthic foraminifera. Based on biostratigraphic and chemo-
stratigraphic data, Jaramillo-Vogel et al. (2013) correlated Eocene–
Oligocene shallow-marine carbonate deposits belonging to the Calcare
di Nago Formation from northern Italy with the shallow-water succes-
sion from Priabona (northern Italy) and deep-marine records of the
Massignano section (central Italy), ODP Site 744 (southern Indian
Ocean), and the Tanzania Drilling Project (TDP) Sites 12 and 17. This
correlation highlights that the change from a shallow-marine photo-
trophic to a heterotrophic carbonate factory observed in several locali-
ties in northern Italy was related to the global cooling pulse occurring
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at the Oi-1. One of the rare sections where the EOT is recorded in
shallow-water facies is found close to San Valentino (northern Italy).
There, this biotic shift is characterized by a gradual disappearance of
coralline algae and larger benthic foraminifera, parallel to a progressive
increase in the percentage of bryozoan skeletons. In non-tropical
carbonates, bryozoans are commonly dominant skeletal components
(Collins, 1988; Nelson et al., 1988a,b; Bone and James, 1993; James
et al., 1997; Hageman et al., 2000, 2003). However, a rise of the sea-
surface temperature solely cannot trigger the disappearance from the
neritic zone of coralline algae. Red algae also thrive in cool oceanwaters
(Pedley and Carannante, 2006; Büdenbender et al., 2011; Reid et al.,
2011; Teichert et al., 2012). Therefore, additional environmental and/
or ecological changes might have acted in combination with global
cooling to induce the biofacies evolution recognized.

To better understand the mechanisms that produced this biotic
change, a detailed microfacies analysis of the EOT interval was per-
formed in the San Valentino section. Additionally, the total phosphorus
content of the rock was measured in order to constrain the role of
nutrients affecting the carbonate-producing organisms. The results are
of significance in that they provide the shallow-water sedimentary
expression of global environmental changes interpreted from deep-
marine records, and, thus, may be compared with coeval shallow-
water biofacies records from other basins worldwide.

2. Palaeogeographic and stratigraphic setting

The section outcropping near San Valentino village (Figs. 1, 2) be-
longs to the Calcare di Nago Formation (Castellarin and Cita, 1969a),
whichwas deposited on thewesternmargin of the Lessini Shelf, a Ceno-
zoic carbonate platform superimposed on the Jurassic Trento platform
(Bosellini, 1989; Luciani, 1989).

During the Late Eocene, the Lessini shelf was locatedwithin the sub-
tropical belt at around 36° to 38°N (Meulenkamp and Sissingh, 2003).
The San Valentino section has been previously interpreted by means
of larger foraminifera as being of Priabonian (Late Eocene) age, based
on the recognition of the Nummulites fabianii and Nummulites retriatus

zones (Castellarin and Cita, 1969a). However, the uppermost part of
the section (Fig. 2), which is difficult to access, was not examined in
this latter publication.

TheCalcare di Nago Formation is overlain by theMarnedi Bolognano
Formation. The base of this latter formation is Early Oligocene in
age (Luciani, 1989), belonging to the P18 zone of Blow (1979) and
Berggren et al. (1995). The transition between the Calcare di Nago and
the Marne di Bolognano formations is not exposed near the section
logged. It is however, responsible for the topographic step observed
on Fig. 2A above the massive carbonates of the Calcare di Nago Forma-
tion (Luciani, 1989).

The carbonates analysed are mainly composed of open-marine
phototrophic biota such as symbiont-bearing larger foraminifera and
coralline algae (Luciani, 1989), with exception of the deposits outcrop-
ping in the uppermost part of San Valentino (above metre 110; Fig. 3),
which are dominated by bryozoans, i.e., by heterotrophic organisms.

Bryozoan marls and limestones have long been known to develop
around the Eocene–Oligocene boundary in south-central Europe
(Braga, 1963, 1965, 1980; Braga and Barbin, 1987; Castellarin and Cita,
1969b; Setiawan, 1983; Barbin, 1988; Trevisani, 1997; Ungaro, 1978;
Zágoršek, 1992, 1993, 1994, 1996, 2003; Braga et al., 1994; Zágoršek
and Kázmér, 1999; Zágoršek and Darga, 2004; Nebelsick et al., 2005).
In three sections outcropping about 40 km to the south-east of San
Valentino (the Priabonian type locality Priabona, Buco della Rana, and
Bressana), Setiawan (1983) reported the last occurrence of Discocyclina
and Asterocyclina at the transition from larger foraminifera- to
bryozoan-dominated deposits. This extinction is followed by an interval
dominated by bryozoans (up to 100%). Above, Operculina and
Nummulites re-occur. Similar to the observations made in the Priabona
area (Setiawan, 1983), Castellarin and Cita (1969b) report broken
discocyclinids at the base of a bryozoan limestone corresponding to
the transition between the Calcare di Nago and theMarne di Bolognano
formations at Val D'Ir (15 km north of San Valentino), which then
completely disappear. Exactly the same evolution is observed in San
Valentino, which suggests that the bryozoan beds were contemporane-
ous and had at least a regional extension (Fig. 4). This implies that, at
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Fig. 1.A)Map of northern Italy showing the situation of the study area (red square). B)Magnification of the areamarkedwith a red square inA displaying the environs ofMonti Lessini and
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least regionally, the extinction of Discocyclina and Asterocyclina occur-
ring together with the establishment of bryozoan beds as observed in
San Valentino can be used for correlation.

By means of dinoflagellate cyst stratigraphy, Brinkhuis (1994) and
Brinkhuis and Visscher (1995) were able to correlate the shallow-
marine deposits of the Priabonian type locality (eastern Lessini Shelf,
Fig. 1B) with pelagic sections of central Italy, including Massignano
(Fig. 4). Following their correlation, the Eocene–Oligocene boundary
as defined in Massignano occurs in the middle of the Priabonian type
section. According to this correlation, the bryozoan beds occur about
10 m above the transposed Eocene–Oligocene boundary in the upper
part of the Gse and the lower part of the Adi dinoflagellate cyst zones
(Brinkhuis, 1994). This implies that the bryozoan beds and the extinc-
tion of discocyclinids in the Priabonian type locality occurred within
the Early Oligocene.

3. Methods

The lower part of the San Valentino section (Figs. 2A, 3) was mea-
sured along the forest road SP3 (Strada Provinciale N. 3) to the west of
the village of San Valentino (Fig. 1C; 45°47′8.16″N/10°53′57.12″E).
From metre 88 upwards the section was measured along a gully in
the cliff (Fig. 2A–B), directly before a tunnel (45°47′4.35″N/10°53′
37.80″E). The lower part of the section is marly, tectonized, and partly
covered. Therefore, only the upper part where the change in carbonate

factory is recorded was sampled at a higher resolution. The outcrop
ends at 123 metres and is overlain by a soil-covered depression. Addi-
tional accessible sections along the steep cliff (see Fig. 2A) formed by
the Calcare di Nago Formation in the San Valentino area were not
found. Therefore, unfortunately, the lateral facies evolution and a depo-
sitionalmodel of the Calcare di Nago Formation in the study area cannot
be reconstructed.

Seventy-two thin-sections were prepared in order to determine
lithofacies. Point-countingwas performedon 26 thin-sections (covering
metres 91 to 124) in order to estimate the volume of the different par-
ticles in the interval containing the change in carbonate factory (Fig. 5).
At least 600 points were counted in each thin-section with a grid spac-
ing of 0.5mm. Due to the large size-heterogeneity of the particles, a grid
spacing had to be selected that is smaller than the size of the largest
particles. This may lead to a slight overestimation of large particles.
However, as coralline algae, larger foraminifera and bryozoan colonies
are within a similar size range, this overestimation does not influence
the relative abundance of these particles. All point-counting results
were contrasted with observations made on the polished slabs in
order to cross-check the representability of point-counting in the
studied thin-sections. Pores in bioclasts filled with sediment or cement
were counted as bioclasts (grain-bulk measurements sensu Jaanusson,
1972). Volume percent of bioclasts is given relative to the total of parti-
cles. Volume of cements and matrix is plotted separately. Fragments of
red algae and of bryozoan colonies observed in the thin-sections are

Fig. 2. A) Panoramic view of the Calcare di Nago Formation to the west of the village of San Valentino. The location of the bryozoan beds in the upper part of the San Valentino section is
indicatedwith a star.Width of image is ca. 1 km. B) Outcrop viewof the upper part of the San Valentino section logged along a gully in the cliff. Geologist= 1.78m. C)Outcrop photograph
of the bryozoan beds found in the upper part of the San Valentino section. Hammer encircled in yellow= 32 cm.
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too small to permit taxonomic determinations. Cuts through the
embryonic apparatus of larger foraminifera were not identified in
the thin-sections, and thus were not determined at species level.

The carbon- and oxygen-isotope composition of 59 bulk sam-
ples was analysed (Fig. 3). The measurements were made on a
FinniganMAT Delta Plus XL mass spectrometer equipped with an auto-
mated GasBench II at the Institute of Mineralogy and Geochemistry of
the University of Lausanne (Switzerland). All results are reported in ‰
relative to the VPDB standard. The analytical reproducibility for three
runs is better than ±0.1‰ for both δ13C and δ18O.

For measuring the total phosphorus content (Fig. 3), 54 samples of
the limestone beds were sawed and crushed to obtain powder. Around
100mg powderwasmixedwith 0.5mlMgNO3 anddried in the oven for
30 min at 100 °C for each sample. Samples were then heated at 550 °C
for 2.5 h. After cooling, 10 ml of 1 N HCl was added to each sample
and left shaking for 16 h. The solutions were filtered (0.45 μm) and di-
luted ten times to be analysed using the ascorbic acid method of Eaton
et al. (1995). The solution was mixed with ammonium molybdate and
potassium antimonyl tartrate, which, in an acid medium, reacts with
orthophosphate to form phosphomolybdic acid. This acid was then
reduced with ascorbic acid to produce a blue colour. The intensity of

the blue colour was determined with a photospectrometer (Perkin
Elmer UV/Vis Photospectrometer Lambda 25). The concentration of
PO4 inmg/l was obtained by calibrationwith a known standard solution
and converted to ppm. Individual samples/solutions were measured
three times and precisionwas better than 5%. Replicate analyses of sam-
ples had a precision better than 5%. Samples with known concentration
were measured and the precision was better than 10%.

4. Results

4.1. Facies evolution

The Calcare di Nago Formation is represented in the San Valentino
area (Fig. 2A) by a thick (ca. 200 m) limestone succession overlaying
volcanoclastic deposits. The basal interval (ca. 80 m, which was not
logged) is composed of bedded packstones and grainstones dominated
by geniculate and non-geniculate coralline algae andmiliolid foraminif-
era. The studied interval starts at the transition between these rocks and
lithofacies dominated by larger foraminifera and non-geniculate coral-
line algae (metre 5; Fig. 3). The facies described below are summarized
in Table 1.
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Themiddle part of the section (15 to 62.5m) is represented bymarly
intervals alternating with marly limestones and limestones. Around
metre 50, marls and marly limestones contain coralline algal
bindstones, which are the only autochthonous (non-reworked)

components identified in the rocks studied, and extremely flat
orthophragminids. From metre 62.5 upwards marly intervals decrease
and the succession is again dominated by limestones displaying differ-
ent proportions of larger foraminifera and coralline algae. At metre
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Table 1
Facies description and interpretation of depositional environments.

Facies Appearance in the field/fabric Main constituents Depositional environment

Miliolid- and acervulinid-
dominated grainstone

Massive limestones, fine-grained, with
rounded and well sorted grains

Small miliolids, Borelis, Orbitolites, asterigerinids, Gypsina
moussaviani, Chapmania, Halkyardia, Fabiania, geniculate
and non-geniculate coralline algal debris, phaceloid corals,
echinoderm debris, rare Nummulites and discocyclinids.

High energy, shallow
inner ramp

Crustose coralline algal
bindstone

Wavy-bedded limestones and marly
limestones: bindstone constructed by
an open framework of thin coralline
crusts

Thin coralline algal crusts (melobesioid-dominated association).
Packstone to wackestone matrix contains larger foraminifera
(Discocyclina, Asterocyclina, Assilina alpina, Spirocypeus) and
bryozoans. Facies associated to sub-ellipsoidal and sub-discoidal
rhodoliths (6 and 8 cm) with loosely packed laminar algal thalli
with a high percentage of constructional voids

Low energy, outer ramp

Coralline algal debris
grainstone

Massive limestone, highly bioturbated,
components are sub-rounded to rounded,
moderately- to well-sorted

Abraded non-geniculate red-algal debris and geniculate
coralline algae, asterigerinids, small rotaliids, lense shaped
Nummulites and Discocyclina. Less abundant are Spiroclypeus,
Heterostegina, Assilina alpina, Pellatispira maderazi and
Asterocyclina.

High energy, inner to
middle ramp

Coralline algal crust debris
and larger benthic
foraminiferal
packstone/grainstone

Massive limestone, highly bioturbated,
components are angular, moderately-
to very poorly-sorted

Thin red algal crust debris, rhodoliths, bryozoans, Discocyclina,
Asterocyclina, Pellatispira, Biplanispira, Heterostegina, Assilina
alpina, Spiroclypeus and Nummulites.

Moderate to low energy,
middle to outer ramp

Thin coralline algal crust
and larger benthic
foraminiferal
wackestone/floatstone

Wavy-bedded limestone with marly
intercalations, highly bioturbated, up
to 10 cm thick tempestite layers are
intercalated

Thin coralline crusts (melobesioid-dominated association),
orthophragminids (Discocyclina and Asterocyclina), bryozoans,
planktonic foraminifera. Nummulitid foraminifera (Spiroclypeus,
Heterostegina, Assilina alpina, Pellatispira maderazi) can be present.

Low energy, outer ramp

Bryozoan packstone/grainstone Massive limestone beds, highly
bioturbated, components are
moderately well sorted

Bryozoan debris (up to 90%), echinoderms, non-geniculate red
algae, agglutinated and planktonic foraminifera. In the lower
part of the bryozoan beds a few broken operculinid and
discocyclinid foraminifera filled with glauconite are present.
In the upper part Nummulites and Operculina reoccur.

High energy, middle to
outer ramp
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110.8 a major change in biota is observed (Fig. 5). Lithofacies predomi-
nantly composed of coralline algae and larger foraminifera (Fig. 6A) are
replaced by bryozoan-dominated limestones (Figs. 6B, 7).

Below metre 110.8, non-geniculate coralline algae clearly dominate
the deposits (between 45 and 71% of total particles) (Figs. 5, 6A). The
volume of orthophragminids (mainly Discocyclina and Asterocyclina)
ranges between 6 and 24% with an increase above metre 99 (Fig. 6A),
while nummulitids (Nummulites, Operculina, Heterostegina) make up
not more than 14%. Bryozoans are present in all samples and reach up
to 24%, while echinoderms just reach 9%. Planktonic foraminifera are
significant (up to 10%) only within wackestones deposited between
metres 95 and 100, where also small benthic foraminifera reach 6%. Ag-
glutinated foraminifera do not surpass 3%.

Abovemetre 110.8 the proportion of bryozoan bioclasts rapidly rises
(Figs. 5, 6B). The maximum concentration (up to 86%) is reached
between metres 116 and 118 (Fig. 7). Coralline algae and
orthophragminids, which dominate the deposits below, decrease rapid-
ly and coevally to values below 1% in the case of red algae (strongly
fragmented) and disappear completely in the case of orthophragminids.
The last recognizable debris of Asterocyclina and Discocyclina is found at
metre 114.8, indicating that orthophragminids disappeared somewhere
betweenmetres 110.8 and 114.8. The last occurrence of these larger fo-
raminifera in San Valentino is tentatively placed at 113.5 m where the
last moderately well preserved tests are found. At the base of the

bryozoan-dominated beds, nummulitids increase slightly (up to 12%),
together with echinoderms. However, nummulitids then decrease
to less than 1%. The interval between metres 116 and 118 is character-
ized by the strong dominance of bryozoans (Fig. 7), only accompanied
by small amounts of agglutinated foraminifera, small benthic fora-
minifera, planktonic foraminifera, and echinoderms. Nummulitids
(Operculina and Nummulites) re-occur at metre 118.5 and reach 8%
in the uppermost part of the section (Fig. 8). There, also red algae
recover (22%), although the deposits remain dominated by bryozoans
(Figs. 5, 8).

4.2. Stable isotopes (C and O) and phosphorus content

While the δ18O values fluctuate between−0.5 and−1.5‰ through-
out the studied section, the δ13C curve shows a gently positive trend
from ca. metre 20 to ca. metre 90 (Figs. 3, 4). Between metre 90 and
metre 100, the δ13C values display a negative spike of ~0.5‰. Above
metre 100, a pronounced positive shift of almost 2‰ in Ccarb-isotopic
values occurs (Figs. 3, 4).

The total phosphorus contents of the limestone beds in the lower
and middle part of the logged San Valentino section range between
62 and 141 ppm (Fig. 3). Mean values slightly increase from the lower
part (~80 ppm) to the middle part (~100 ppm). In the upper part of
the section, at around metre 100 (10 meters below the bryozoan

Fig. 6. Photomicrographs showing two different microfacies found between metre 107 and metre 116 in the upper part of the San Valentino section (Fig. 5). A) Packstone dominated by
larger symbiont-bearing foraminifera (mainly orthophragminids but also nummulitids) and coralline algae (sample X9). B) Packstone corresponding to the lower part of the bryozoan
beds. Note the presence of fragments of bryozoan colonies and red algae, as well as of orhtophragminid and nummulitid tests (sample X15). o = orthophragminid, n = nummulitid,
br = bryozoan colony, ra = red alga.
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beds), total P contents increase rapidly and reach maximal values
(300 ppm) within the bryozoan beds. Values start to decrease again
around metre 118, in the upper part of the bryozoan beds.

5. Discussion

5.1. Change in carbonate factory

Themajority of the rocks exposed in SanValentino are dominated by
coralline algae and larger benthic foraminifera (Fig. 3). This is also the
case for the 150 m thick shallow-marine succession outcropping in
the Nago area (10 km north of San Valentino; Fig. 1B; Luciani, 1989;
Jaramillo-Vogel et al., 2013;), which was deposited coevally with the
middle and lower part of the San Valentino section. There, additionally
to the coralline algae and larger foraminifera, hermatypic corals also
occur (Bosellini, 1998).

Functional morphological studies of orthophragminids point to a
general adaptation of these foraminifera to symbiosis with unicellular
photosynthetic algae, as in nummulitid foraminifera (Ferràndez-
Cañadell and Serra-Kiel, 1992; Ferràndez-Cañadell, 1998; Romero
et al., 2002; Less and Özcan, 2008; Less et al., 2008). Most of the living
symbiont-bearing larger foraminifera needmean annual water temper-
atures higher than 18 °C to support reproduction (Murray, 1973; Adams
et al., 1986; Wilson and Vecsei, 2005). Furthermore, the majority of
species of larger foraminifera are found in waters with mean summer
temperatures above 25 °C (Wright and Murray, 1972) and are,

therefore, confined to the tropical–subtropical belt (Adams et al.,
1990). The majority of larger foraminifera species thrive in oligotrophic
environments (Langer and Hottinger, 2000), although examples of
slightly mesotrophic larger foraminifera-dominated facies have been
described from modern carbonate platforms in the humid tropical belt
or in tropical areas associated with nutrient upwelling (Wilson and
Vecsei, 2005, and references therein).

The bryozoan beds in San Valentino are composed to a large part
(and locally entirely) of light-independent organisms.While in modern
environments phototrophs such as scleractinian corals and larger fora-
minifera are found in waters with winter surface temperatures above
20 °C (James, 1997), bryozoan-bearing heterotrophic communities
dominate in cool waters (b20 °C) or in warm settings below the photic
zone. Besides water temperature and light penetration, nutrients have
an important influence on biotic carbonate production (Hallock and
Schlager, 1986; Hallock, 2001; Pomar, 2001; Brandano and Corda,
2002; Mutti and Hallock, 2003; Halfar et al., 2004). While phototrophs,
with the exception of red algae, need oligotrophic to slightly mesotro-
phic conditions to thrive, heterotrophic carbonate producers dominate
in nutrient-rich settings (Hallock and Schlager, 1986; Hallock, 2001;
Mutti and Hallock, 2003; Halfar et al., 2004, 2006; Wilson and Vecsei,
2005; Westphal et al., 2010).

Modern bryozoan-dominated deposits are common in the neritic
zone of shelf and upper-slope settings in mid and high latitudes
(Bader, 2001). As these organisms are light-independent, their deposits
can form at depths of up to 1000m (Henrich et al., 1992), although they

Fig. 7. Photomicrographs showing the bryozoan facies found between metre 116 and metre 118 in the upper part of the San Valentino section (Fig. 5). A) and B) Packstone textures con-
taining more than 80% of bryozoans in the absence of larger benthic foraminifera and coralline algae (samples X18 and X19, respectively).
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are generally found at depths between 40 and 250 m (Halfar et al.,
2006). They thrive in settings with an average annual temperature be-
tween 7 and 16 °C (Halfar et al., 2006, and references therein).

One explanation for the absence of light-dependent organisms
and the deposition of bryozoan-dominated sediments would be a
sudden deepening of the environment. However, the fact that this
change in carbonate factory occurred coevally at different localities
in northern Italy, which at the time of deposition were located at differ-
ent palaeodepths (Setiawan, 1983), does not provide evidence for a
depth-relation. Along these lines, an increased content in planktonic fo-
raminifera would be expected in the bryozoan beds due to deepening.
However, the facies in the uppermost part of the sedimentary record
studied do not indicate such a rise inwater depth (Fig. 5). Planktonic fo-
raminifera exhibit their highest abundances belowmeter 100 of the sec-
tion. Furthermore, facies analysis of the Calcare di Nago Formation in
the San Valentino and Nago sections (Luciani, 1989; Jaramillo-Vogel
et al., 2013) gives evidence for repetitive relative sea-level fluctuations
recordedwithin these successions. The deepest facies recognizedwithin
the San Valentino section are located frommetre 47.5 tometre 62.5 and
are characterized by marls and limestones containing thin coralline
algal crusts, thin larger foraminifera and planktonic foraminifera
(Fig. 3 and Table 1). Bryozoan-dominated deposits occur neither within
the entire Nago section (150m) studied by Jaramillo-Vogel et al. (2013)
nor in the middle and lower parts of the San Valentino succession

(Fig. 3). Additionally, the disappearance of Discocyclina and
Asterocyclina, which thrived in the lower part of the photic zone in
outer platform settings (Romero et al., 2002; Beavington-Penney and
Racey, 2004), within the bryozoan beds (Fig. 4) suggests a major envi-
ronmental perturbation rather than a simple deepening of the deposi-
tional environment (see Cotton et al., 2014).

Conclusive evidence for a seawater temperature-related biotic
change would require a taxonomic analysis at species level of the
bryozoan colonies (e.g., Moisette, 2000) to discriminate between cool
water, temperate and sub/tropical species. Such an analysis was not
possible in the thin-sections examined due to the indurated nature of
the calcareousmaterial and the fragmented appearance of the bryozoan
colonies preserved. However, based on observations in themodern Gulf
of California, Halfar et al. (2004) concluded that heterozoan-dominated
carbonates deposited in high-nutrient and high-temperature environ-
ments can be differentiated from heterozoan carbonates deposited in
low-temperature settings because they contain 1 to 20%photozoan con-
stituents, while true cold-water heterozoan associations contain less
than 1% of photozoan organisms, irrespective of nutrient concentration.
The middle part of the bryozoan beds in San Valentino consists of 100%
heterotrophic organisms with up to 86% bryozoans (Figs. 5, 7),
accompaniedmainly by agglutinated and other small benthic foraminif-
era and echinoderms. Some levels of the bryozoan beds in Priabona
(Figs. 1B, 4, 9) contain nearly 100% bryozoans (Setiawan, 1983). In

Fig. 8. Photomicrographs showing two different microfacies found above metre 118 in the upper part of the bryozoan beds (Fig. 5). A) Bryozoan-dominated packstone with few
nummulitid foraminifera and coralline algae (sample X21). B) Packstone containing mainly nummulitid tests and fragments of bryozoan colonies and coralline algae (sample X23).
n = nummulitid, br = bryozoan colony, ra = red alga.
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accordance with Halfar et al. (2004), the bryozoan beds recorded in
northern Italy would thus correspond to a cold-water heterozoan asso-
ciation (sensu James, 1997).

Coralline algae can thrive in tropical to polar waters (Adey and
Macintyre, 1973; Pedley and Carannante, 2006; Büdenbender et al.,
2011; Reid et al., 2011; Teichert et al., 2012). The fact that red algae,
which dominate in the 110 m long section underlying the bryozoan
beds in San Valentino (Figs. 5, 6A), are virtually missing in the middle
part of the bryozoan beds (max. 1% of fine red-algal debris) suggests
that a further mechanism acted together with the cooling of ocean
water, limiting coralline algal development during the deposition of
the bryozoan beds.

5.2. Change in nutrient supply

Phosphorus represents an essential nutrient for living organisms.
The distribution of phosphorus in sedimentary rocks has, therefore,
been used as a proxy to estimate nutrient levels in ancient oceans
(Föllmi, 1995, 1996; Van de Schootbrugge et al., 2003; Bodin et al.,
2006; Mort et al., 2007; Godet et al., 2010). The flux of dissolved, bio-
available P into the oceans is mainly controlled by continental runoff
and atmospheric transport (Föllmi, 1996; Delaney, 1998). The oceanic
pathways of dissolved reactive P are dominated by primary

productivity, export (sinking down) from the ocean surface, regenera-
tion in the water column, and upwelling (Delaney, 1998).

There are no sedimentological evidences (e.g., hardgrounds, con-
densed intervals) to suggest that the increased P concentrations in the
upper part of the section are the result of a lower sedimentation rate
compared to the rest of the succession, whichwould have led to enrich-
ment in P. The rise in phosphorus is gradual through the entire section
and shows a more rapid increment at around metre 100, shortly
below the bryozoan-dominated interval. The maximum values are
reached within themiddle part of the bryozoan beds, before decreasing
again in the uppermost part of the section, still within the bryozoan fa-
cies (Fig. 3). Consequently, the higher P concentrations in the bryozoan
beds are interpreted as resulting mainly from an increase in P accumu-
lation rate.

A decrease in temperature could easily explain the absence of larger
foraminifera within the bryozoan beds, but not the absence of coralline
algae. Halfar et al. (2006) noted that in the Gulf of California, regardless
of substrate type and temperature, two different carbonate factories
develop: one dominated by coralline red algae with bryozoans being
subordinate, and one dominated by bryozoans and molluscs. The coral-
line red algae-dominated association is supported by lower chlorophyll-
α concentrations, lower amounts of dissolved inorganic nutrients, and a
deeper euphotic zone. This suggests that the development of a bryomol
assemblage versus a rhodalgal assemblage in the Gulf of California is
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determined by nutrients rather than by temperature (Halfar et al.,
2006). Also, in the Gulf of California, the coralline algal factories have
lower P concentration in the water column compared to the bryomol
factory (Halfar et al., 2006). Increased nutrient input into shallow wa-
ters causes plankton blooms and thus a shallowing of the photic zone
due to increased turbidity, which could also have been responsible for
the decline of coralline algae within the bryozoan beds. Therefore, it is
well possible that, besides the temperature decrease, the shallowing of
the photic zone also was an important factor leading to the decline of
the symbiont-bearing orthophragminids.

In this regard, poorly illuminated shallow-water ecosystems with
bryozoans dominating carbonate production occur in modern seas. For
example, in Port Davey (south-west Tasmania), tannin mostly derived
from hinterland vegetation blocks light penetration, and bryozoans
dominate the sea bed as shallow as 10 m (Edgar et al., 2010; Shepherd
and Edgar, 2014).

5.3. Stratigraphic position of the bryozoan beds

Based on the dinocyst biostratigraphy developed by Brinkhuis
(1994) and Brinkhuis and Visscher (1995), the shallow-marine
Priabonian type-locality can be correlated with the hemipelagic
Massignano section where the GSSP for the Eocene–Oligocene bound-
ary is defined (Fig. 4). Furthermore, based on the extinction of the
orthophragminid foraminifera Discocyclina and Asterocyclina within
the bryozoan beds in San Valentino as well as in Priabona (Setiawan,
1983), it is possible to correlate these two sections (Fig. 4). In Priabona,
the bryozoan beds occur in the upper part of the Gse and the lower part
of the Adi dinoflagellate cyst zones (Brinkhuis, 1994), about 10m above
the transposed Eocene–Oligocene boundary, which corresponds in
Massignano to the interval around the base of magnetochron C13n. In
the southern IndianOcean, the positive δ18O shift leading to theOi-1 oc-
curs at the base of C13n, prior to a positive shift of carbon-isotope values
(Fig. 4).

Carbon-isotope values in San Valentino section show a pronounced
positive shift above metre 100, roughly coinciding with the develop-
ment of bryozoan dominated sediments. Although, it could be argued
that the isotopic shift is the result of changing calcifying communities,
the re-occurrence of larger foraminifera and coralline algae in the
upper part of the section does not revert the trend (Figs. 3, 5) and,
thus, an additional control must be invoked.

The use of carbon-isotope chemostratigraphy has become a power-
ful tool for chronostratigraphic correlations between platform and
pelagic sections (Jenkyns, 1995; Vahrenkamp, 1996; Ferreri et al.,
1997; Grötsch et al., 1998; Menegatti et al., 1998; Stoll and Schrag,
2000; Mutti et al., 2006; Parente et al., 2007; Burla et al., 2008; Huck
et al., 2011). Therefore, based on its stratigraphic location, the positive
δ13C shift occurring in the upper part of San Valentino (Figs. 3, 4) can
be interpreted to correspond to the positive shift around C13n in
deep-sea records. Although the δ18O values from San Valentino do not
show any clear trends that would translate a global signal, the correla-
tion of the positive δ13C shift implies that the climate shift leading to
the Oi-1 must correspond approximately to the base of the bryozoan
beds.

5.4. Regional shallow-marine response to a global change?

The sedimentary record on the New Jersey shelf spanning the Oi-1
exhibits evidence of a eustatic sea-level fall of around 55 m (Kominz
and Pekar, 2001; Miller et al., 2009). Based on microfacies, sedimento-
logical and biotic analysis, Houben et al. (2012) interpreted a sea-level
fall of 50 to 60 m at the end of deposition of the bryozoan beds in
Priabona. However, no physical evidence for an emersion surface that
would indicate a sea-level fall has been found in SanValentino (possibly
due to the fact that in the upper part of the studied interval some bed
limits are covered; Figs. 2B–C, 3). Miller et al. (2009) suggested that

this sea-level drop was accompanied by a drop in sea-surface
temperature of 1.5 to 2 °C. This is in agreement with a cooling of around
2 °C inferred by the Mg/Ca ratio of benthic foraminifera from St.
Stephens Quarry (Alabama, USA; Wade et al., 2012). However, Lear
et al. (2004, 2008) did not find evidence for a temperature drop at the
Oi-1 based on the Mg/Ca record of ODP Site 1218 in the Pacific Ocean,
which implies that there are contradictory data and interpretations
concerning the temperature change at the Oi-1.

A sea-surface temperature curve was produced based on dinocysts
in the Massicore, a core drilled around 100 m away from the
Massignano section (theGSSP locality for the Eocene–Oligocene bound-
ary; seeMontanari et al., 1994),which is around 300 km to the sourth of
San Valentino. Quantitative analyses of warm-oceanic vs. cool-oceanic
dinocyst distribution in the Massicore resulted in a qualitative sea-
surface temperature proxy for the EOT (Fig. 9; Houben et al., 2012).
This proxy suggests a cooling maximum within the upper part of
the Gse dinocyst zone, which coincides with the lower part of the bryo-
zoan beds in Priabona (Fig. 9; Brinkhuis, 1994) and, consequently, in
San Valentino (Fig. 4). This evolution is underlined by the appearance
of taxa formerly only recorded in boreal and polar regions: Lentina
serrata and Glaphyrocysta semitecta occur within the Aal dinocyst
zone and at the transition between Aal and Gse, respectively (Fig. 9).
Also, there is a regional disappearance of typical subtropical taxa like
Hemiplacophora semilunifera at the transition between the Gse and Adi
zones (Houben et al., 2012). According to our stratigraphic scheme
(Fig. 4), this corresponds to the interval of the Oi-1 and thus provides
evidence for a cooling of ocean surface waters during the Oi-1 in this
palaeogeographic region. The subsequent warming at the base of the
Adi zone could account for the partial recovery of the carbonate factory,
with the reappearance of nummulitid foraminifera in the upper part of
the bryozoan beds.

Deep-sea records suggest an increase in ocean surface
palaeoproductivity occurring coevally to the δ18O shift at the EOT, espe-
cially in the Southern Ocean but also in mid and low latitudes (Diester-
Haass, 1996; Diester-Haass and Zahn, 1996; Salamy and Zachos, 1999;
Diester-Haass and Zachos, 2003; Dunkley Jones et al., 2008; Wade and
Pearson, 2008; Coxall and Wilson, 2011; Plancq et al., 2014; Villa et al.,
2014). This change is characterized by an important increase in export
production shown by an increase in accumulation rate of benthic and
planktonic foraminifera, radiolarians, diatoms, fish debris, echinoderms,
and ostracodes (Coxall and Pearson, 2007, and references therein).
Records of the Southern Ocean suggest a several-fold increase in prima-
ry productivity in response to the Oi-1 (Baldauf and Barron, 1990;
Baldauf, 1992; Salamy and Zachos, 1999). In the eastern equatorial
Pacific, the Eocene–Oligocene climate change did not trigger a major
shift towards increased productivity, but there is evidence for a short-
lived rise in productivity and export production associated to the
onset of sustained Antarctic glaciation (Coxall and Wilson, 2011). The
increase in benthic foraminifera accumulation rate in the eastern
equatorial Pacific and coeval opal accumulation in the Southern Ocean
suggest that there is a link between both sites (Coxall and Wilson,
2011), such as an intensification of thermohaline circulation as
interpreted for the earliest Oligocene (Miller and Tucholke, 1983;
Wright and Miller, 1993; Thomas et al., 2008; Cramer et al., 2009;
Coxall and Wilson, 2011; Pusz et al., 2011).

The positive δ13C shift near the Oi-1 lags behind the shift in δ18O
(Fig. 4). Salamy and Zachos (1999) therefore suggest a cause-and-
effect relationship. The trend towards higher net productivity inter-
preted to be due to intensification and expansion of upwelling systems
may have elevated the export flux of Corg to sediments during the Early
Oligocene (Zachos et al., 1996), being responsible for the observed rise
in mean ocean δ13C (Salamy and Zachos, 1999).

The cause of worldwide increase in palaeoproductivity from the Late
Eocene to the Oligocene is interpreted to have been induced by ocean
mixing and circulation changes that increased the availability of nutri-
ents in surface waters, although the mechanism producing these
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changes is still matter of debate (Diester-Haass and Zahn, 1996; Salamy
and Zachos, 1999; Diester-Haass and Zachos, 2003; Coxall and Pearson,
2007).

Interestingly, the increase in phosphorus in San Valentino is associ-
ated to the earliest Oligocene positive shift in δ13C (Figs. 3, 4). This sug-
gests that there was a link between the rise in productivity as recorded
in deep-sea successions and the increase in phosphorus content, and
that this was reflected by the formation of the bryozoan beds in the
shallow-water realm of northern Italy.

6. Conclusions

Detailed facies analysis of the Calcare di Nago Formation in northern
Italy has revealed a drastic change in shallow-water carbonate factory
occurring at around the Eocene–Oligocene transition. In the San
Valentino section, red algae and larger benthic foraminifera dominate
in the lower part of the section, while its uppermost part is composed
of bryozoan-rich beds. This replacement of phototrophic by heterotro-
phic organisms implies a significant change in the environmental condi-
tions. The disappearance of Discocyclina and Asterocyclina occurring
togetherwith the establishment of bryozoan beds can be used for corre-
lation with the Priabonian section, which was correlated by means of
dinocyst biostratigraphy to deep-marine sections. Furthermore, there
is a significant positive shift in δ13C that starts just below the bryozoan
beds. This allows correlation with published deep-water records and
thus permits discussing the reasons for this change affecting the
carbonate-producing organisms.

Global cooling of sea-surface temperature linked to the earliest
Oligocene glaciation (Oi-1) was not the only mechanism triggering
the disappearance of larger foraminifera and coralline algae from the
neritic realm in northern Italy. The change in trophic resources around
the Oi-1, recognized in deep-sea records and indicated by a rise in
total phosphorus content in the platform carbonates investigated, is
interpreted to have played a part increasing primary productivity and,
thus, producing a shallowing of the photic zone. Decreased water trans-
parencywould have limited light-dependent biota and left bryozoans as
dominant benthic calcifying organisms. The coeval deposition of
bryozoan beds reported from several localities in northern Italy is
interpreted to represent the regional reaction of a carbonate platform
depositional system to global oceanographic changes related to the be-
ginning of the Antarctic glaciation.
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