Oecologia Electronic Supplemental Material


Title: Top predators affect the composition of naive protist communities, but only in their early-successional stage

Authors: Axel Zander, Dominique Gravel, Louis-Félix Bersier, Sarah M. Gray

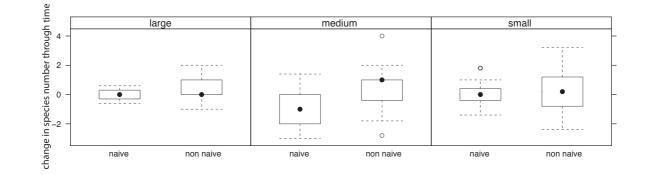
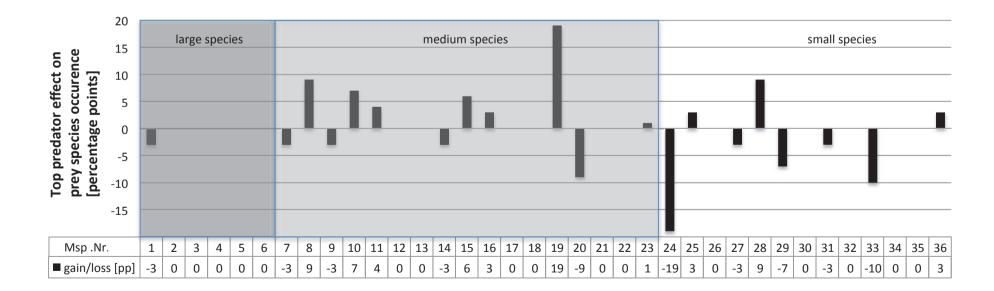

Supplemental Figure S1	Change in protist species number from the beginning to
	the end of the experiment.
Supplemental Figure S2	Effect of top predator on occurrence of the prey species in
	the three size classes.
Supplemental Figure S3	Protist Community composition at day 0 (start of
	experiment) according to presence/absence data.
Supplemental Figure S4	Results of community respiration.
Supplemental Table S1	Morpho-species (Msp.) list.
Supplemental Table S2	Results from the linear model for bacterial abundance
Supplemental Table S3	Results from the linear model for respiration
Supplemental Table S4	Results from the full linear model for respiration

Fig. S1 Change in protist species number from the beginning to the end of the experiment. a) the predator is present or absent, and b) in naive and nonnaive communities (as shown as change in protist size classes). The top predator did not change the size distribution of the protists. Instead, community origin was significantly important, but only for the medium-size class species (p-value <<0.001). For communities originating from Switzerland (naive), there was a net loss of medium-sized species during the experiment, while communities originating from Québec (non naive) gained medium-sized species during the experiment


http://doc.rero.ch

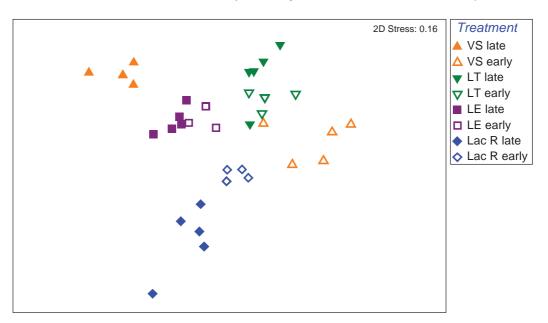


Fig. S2 Effect of top predator on occurrence of the prey species in the three size classes. X-axis: First line = morphospecies identity according to Msp. Nr in table S1; second line = gain or loss of occurrence on day 6 (in percentage points) when mosquitoes were present/absent. Most species were not affected (we considered gain/loss smaller than 5 percentage points as chance events). Morpho-species 20, 24, 29, and 33 were the most negatively affected by the presence of the top predator. In contrast, morpho-species 8, 10, 15, 19 and 28 were positively affected by mosquito presence. It is likely that these morpho-species profited from the predation on competing species (see also Kneitel 2012). Note that four of these benefitting species were medium-sized, while there is only one from the group of small-sized species. Additionally three (23%) small-sized species and only one (6%) medium-sized species were negatively affected, while the occurrence of large bodied species seemed not to be affected by the mosquitoes

Fig. S3 Protist Community composition at day 0 (start of experiment) according to presence/absence data.

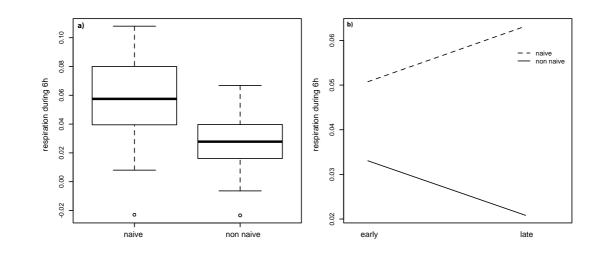

Each triangle represents one community in a 2D NMDS plot (sites: VS, orange triangle; LT, green inverted triangle; LE, purple square; Lac R, blue diamond). Symbols for late succession are filled and early succession are unfilled. Similarity was measured with Jaccard index. Nearby triangles have similar species composition. Note that predators were not yet added. Note that there was generally an equal number of small and medium-sized protists, but not of large protists, within early and late succession communities (data pooled for naive and non-naive communities): 1) For small-sized protists: a total of 8 and 9 morpho-species with an average per tube of 1.85 and 1.50 morpho-species in early and late succession communities, respectively; 2) for medium-sized protists: a total of 10 and 10 morpho-species with an average per tube of 2.95 and 2.95 morpho-species in early and late succession communities, respectively; 3) for large-sized protists: a total of 1 and 5 morpho-species with an average per tube of 0.10 and 1.15 morpho-species in early and late succession communities, respectively; 3) for large-sized protists: a total of 1 and 5 morpho-species with an average per tube of 0.10 and 1.15 morpho-species in early and late succession communities, respectively; 3) for large-sized protists: a total of 1 and 5

Fig. S4 Results of community respiration.

The Y-axis gives a measure of respiration during 6 hours at the end of the experiment. **a**) The respiration was significantly higher in naive than in non-naive communities (p = 0.038).

b) Interaction plot of respiration with respect to succession stage and naivety status. Respiration was higher in late than in early succession for naive communities, and the opposite for non-naive communities (interaction term: p-value = 0.041). The top predator had no statistically significant effect on community respiration

Table S1 Morpho-species (Msp) list. List of all protist detected in the *Sarracenia* samples of the four sites used in the experiment (LT, LE, VS, Lac R) and the total percentage of occurrence in the various treatments (early = early succession; late = late succession), at the beginning (d0) and end of the experiment (d6), with and without top mosquitoes (mosq). The last column gives the mosquito effect on occurrence in percentage points [pp] measured on day 6. The list is organized by size classes: size class *I* (large species, 40µm-150µm); size class *m* (medium species, 8µm-40µm); size class *s* (small species < 8µm). Legend: LT = Les Tennasses; LE = Les Embreux; VS = Vallée des Sources; Lac R = Lac Rimouski

														d6	d6	mosq effect
												d0	d0	with	no	in [pp] on
Msp. Nr.	species-name	size	systematics	total	early	late	LT	LE	VS	Lac R	d0	early	late	mosq	mosq	occurrence
msp1	unknown Ciliate sp. A	1	Ciliophora	5	8	2	0	0	4	15	0	0	0	6	9	-3
msp2	cf. <i>Pleuronema</i> sp. A	1	Ciliophora	13	0	25	0	0	50	0	13	0	25	13	13	0
msp3	cf. Euplotes sp.	1	Ciliophora	37	23	50	0	89	58	0	30	10	50	41	41	0
msp4	Tetrahymena cf. pyriformis	1	Ciliophora	7	0	14	0	0	0	27	3	0	5	9	9	0
msp5	unknown Ciliate sp. C	1	Ciliophora	10	0	19	0	0	0	39	10	0	20	9	9	0
msp6	cf. <i>Pleuronema</i> sp. B	1	Ciliophora	3	0	6	12	0	0	0	8	0	15	0	0	0
msp7	<i>Bodo</i> sp. A	т	"Flagellata"	72	81	64	50	96	50	92	85	85	85	63	66	-3
msp8	Bodo cf. saltans	т	"Flagellata"	25	25	25	4	50	19	27	38	25	50	22	13	9
msp9	Chrysomonadida sp. A	т	"Flagellata"	47	73	21	58	62	27	42	70	95	45	31	34	-3
msp10	cf <i>Bodo</i> sp. C	т	"Flagellata"	38	46	29	31	54	31	35	3	5	0	63	56	7
msp11	Chilomonas sp.	т	"Flagellata"	12	0	23	0	0	46	0	13	0	25	13	9	4
msp12	Chrysomonadina sp. C	т	"Flagellata"	4	4	4	8	0	8	0	10	10	10	0	0	0
msp13	unknown flagellate sp. B	т	"Flagellata"	<1	2	0	0	0	4	0	3	5	0	0	0	0
msp14	Chrysomonadina sp. D	т	"Flagellata"	25	21	29	73	8	8	12	28	25	30	22	25	-3
msp15	Chrysomonadina sp. E	т	"Flagellata"	3	0	6	4	0	8	0	3	0	5	6	0	6
msp16	cf. Chlamydomonas sp.	т	"Flagellata"	17	0	35	0	42	15	12	8	0	15	25	22	3

Table S1 continued

NATURA NUT				to to l		la ta		15			-10	d0	d0	d6 with	d6 no	mosq effec in [pp] on
Msp. Nr.	species-name	size	systematics	total	early	late	LT	LE	VS	Lac R	d0	early	late	mosq	mosq	occurence
msp17	unknown Ciliate sp. B	т	Ciliophora	13	0	25	50	0	0	0	13	0	25	13	13	0
msp18	Cyclidium sp.	т	Ciliophora	5	10	0	19	0	0	0	13	25	0	0	0	0
msp19	unknown flagellate sp. E	т	"Flagellata"	6	10	2	0	15	0	8	0	0	0	19	0	19
msp20	Cercomonas sp.	т	"Flagellata"	13	25	0	0	0	19	31	5	10	0	13	22	-9
msp21	Euglena cf. gracilis	т	"Flagellata"	2	4	0	0	0	0	8	5	10	0	0	0	0
msp22	Euglenoidina sp.	т	"Flagellata"	<1	0	2	0	0	0	4	3	0	5	0	0	0
msp23	unknown flagellate sp. D	т	"Flagellata"	<1	0	2	0	0	0	4	0	0	0	1	0	1
msp24	HNF sp. A	S	"Flagellata"	12	14	10	8	4	15	19	15	25	5	0	19	-19
msp25	HNF sp. B	S	"Flagellata"	46	50	42	19	58	23	85	43	40	45	50	47	3
msp26	HNF sp. C	S	"Flagellata"	5	6	4	0	0	12	8	8	5	10	3	3	0
msp27	cf. Chrysocococcus sp.	S	"Flagellata"	38	54	21	46	4	46	54	25	45	5	44	47	-3
msp28	cf. Notosolenus sp.	S	"Flagellata"	18	27	10	23	0	15	35	10	0	20	28	19	9
msp29	HNF sp. D	S	"Flagellata"	10	15	4	0	0	19	19	10	20	0	6	13	-7
msp30	cf. Chlorella sp.	5	"Algae"	11	0	21	0	0	42	<1	8	0	15	13	13	0
msp31	HNF sp. E	S	"Flagellata"	9	10	8	0	12	0	23	10	0	20	6	9	-3
msp32	HNF sp. F	S	"Flagellata"	4	8	0	0	0	0	15	10	20	0	0	0	0
msp33	HNF sp. G	s	"Flagellata"	15	21	10	0	0	12	50	23	25	20	6	16	-10
msp34	HNF sp. H	S	"Flagellata"	2	0	4	0	0	0	8	5	0	10	0	0	0
msp35	HNF sp. I	S	"Flagellata"	<1	2	0	0	0	0	4	3	5	0	0	0	0
msp36	Microspora cf. abbreviata	S	"Algae"	5	0	10	0	0	19	0	0	0	0	9	6	3

Variable	Parameter	SE	t	p-value
Intercept	3145.4	560.5	5.612	<0.001
Mosquito	314.5	733.8	0.429	0.670
Succession	452.6	733.8	0.617	0.540
Naivety	-102.5	733.8	-0.140	0.889
Succession:Mosquito	219.9	847.4	0.26	0.796
Naivety: Mosquito	-478.5	847.4	-0.5650	0.574
Succession:Naivety	623.7	847.4	-0.736	0.465

to mosquito presence, successional state (early; late) and naivety (naive; non naive)

Table S3 Results from the linear model for respiration with respect to

successional state (early; late) and naivety (naive; non naive). See also Figure S4. This is the best model according to AIC, where the factor Mosquito was removed

Variable	Parameter	SE	t	p-value	
Intercept	0.05	0.005	8.6	<0.001	
Succession	0.012	0.008	1.49	0.1413	
Naivety	-0.017	0.008	-2.12	0.038	
Succession:Naivety	-0.024	0.011	-2.09	0.041	

Table S4Results from the full linear model for respiration with respect to

mosquito presence, successional state and naivety (note that the 3-way interaction was not included)

Variable	Parameter	SE	t	p-value
Intercept	0.045	0.007	5.795	<0.001
Mosquito	0.011	0.01	1.100	0.27
Succession	0.009	0.01	0.928	0.357
Naivety	-0.011	0.01	-1.16	0.249
Succession:Mosquito	0.0059	0.011	0.504	0.61
Naivety:Mosquito	-0.0116	0.011	-0.99	0.32
Succession:Naivety	-0.024	0.0110	-2.09	0.04