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Enhancing speed of pinning 
synchronizability: low-degree 
nodes with high feedback gains
Ming-Yang Zhou1,2,3, Zhao Zhuo2, Hao Liao1,3, Zhong-Qian Fu2 & Shi-Min Cai4

Controlling complex networks is of paramount importance in science and engineering. Despite recent 
efforts to improve controllability and synchronous strength, little attention has been paid to the 
speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding 
pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, 
then build a linear matrix inequality related to the speed of pinning controllability. By solving 
the inequality, we obtain both the speed of pinning controllability and optimal control strength 
(feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to 
achieve large feedback gains, which suggests that they have high influence on controlling system. 
In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed 
of real systems is remarkably enhanced compared to that of traditional large-degree and large-
betweenness selections. Thus, the proposed approach provides a novel way to investigate the speed 
of pinning controllability and can evoke other effective heuristic pinning node selections for large-
scale systems.

Swarm, transportation, and many other natural and man-made systems can be represented by networks, 
in which the nodes correspond to the agents of systems and the edges describe the relations between the 
agents1–4. Some special parts of agents (or units) in these systems adjust their behaviors on the basis of 
their surroundings (e.g. location, temperature, taste), while the other parts of agents move according to 
their neighbors5,6. Consequently, these special agents could influence the dynamics through connectivity 
of the system and steer the system to a desired state (e.g. location, coordinate). For example, scouts guide 
a swarm to fly to a new nest site: When a swarm flies to a new nest site, only 5% scouts know the right 
direction and other common bees fly according to their neighbors. In most cases, the swarm reaches the 
new home5. Since network connectivity has profound influence on dynamic behaviors (e.g., synchroni-
zation, consensus), analyzing their interplay has attracted scientists from various fields, such as physics, 
computer science, sociology and others7–12. In control problem, controllability of a network relates to 
both the network connections and the set of driver nodes13–16. Thus, utilizing network connections to 
select appropriate driver nodes is a frontier area of research in complex networks5,17,18.

Beginning with the network perspective, there are two main approaches to assess controllability: alge-
braic control and structural control. The algebraic approach is the most general and is typically used to 
investigate control problems19, while structural controllability is a simplified analysis that is appropriate 
for large-scale networks6,13. Control problems in general are about steering each node to any arbitrary 
states. However, in some large-scale network scenarios, we are concerned with the network consensus 
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that is a sub-case of the general network control domain. Pinning control, therefore, which focuses on 
controlling all the nodes into the same time evolution, has attracted much attention recently19–21. In the 
past few years, Wang et al. studied the pinning control in scale-free model networks and showed that 
selection of high-degree nodes performed better than random selection5,22. But high-degree selection 
performs bad in real networks due to the clustering and hierarchical structures in the diffusion process23. 
Further, Jalili et al. explored optimal pinning control in scale-free model network and found pinning 
nodes had high centrality in scale-free model networks16,24. Liu et al. explored the structural controlla-
bility of real networks by measuring the minimum number of driver nodes and found that the number 
of driver nodes required for full control was determined by the degree distribution13,25,26. Tang et al. 
identified controlling nodes in neuronal networks and found a transition in choosing driver nodes from 
high-degree to low-degree nodes27. Other issues such as energy cost of controlling a network and the 
performance of a single controller have also been investigated6,21,28.

Our study takes a different, but complementary approach to controllability problem than previous 
researches that only concerns whether a network could be controlled and how to improve the range of 
coupling strength19,22,29–34. We focus on enhancing the speed of pinning controllability and determining 
corresponding pinning nodes, where speed of pinning controllability represents the rate of convergence 
in the control paths and is a more interesting problem in engineering. To enhance speed of pinning 
controllability, an effective way is controlling every node directly, yet it is only appropriate for small-scale 
networks35. Inspired by some natural flocking phenomena5, we only need to drive a small fraction of 
nodes to enhance the speed. To address this key issue, we investigate the speed of pinning controllability 
and the optimal feedback gains of nodes under restricted control cost in the paper. Our main results 
show that some low-degree nodes obtain high feedback gains. Further, by choosing pinning nodes with 
high feedback gains, the speed of pinning controllability is enhanced remarkably compared with that 
of traditional methods which select pinning nodes based on their degree or betweenness. Our method 
offers an opportunity to investigate the speed of pinning controllability and characteristics of efficient 
sets of pinning nodes, which may inspire other better fast heuristic approaches for large-scale complex 
networks in the future.

Results
In this section, we firstly describe the metrics for the speed of pinning controllability. Next, we introduce 
the restriction hypothesis of control efficiency and the approach to solve the problem. At last, to illustrate 
the validity of our method, the proposed approach is applied to both artificial model and real-world 
networks. The results not only demonstrate the effectiveness of the proposed approach but also uncover 
the characteristics of pinning nodes. Table 1 gives a list of symbols used in this paper.

Speed metrics of pinning controllability. We start by introducing the stable condition and the 
metrics to evaluate speed of pinning controllability. To analyze pinning controllability of complex net-
works, we denote that a connected network consists of N identical linearly and diffusively coupled nodes, 
with each node being a n-dimensional system. The state equations of a network are as follows22:

∑= ( ) + Γ , = , , ..., ,
( )=

 f c a i Nx x x 1 2
1

i i
j

N

ij j
1

where xi =  (xi1, xi2, ..., xin)′ , c, Γ  ∈  Rn×n and aij are the state variables of node i, the coupling strength 
(c >  0), a matrix linking coupled variables Γ  >  0 and the elements of the adjacency matrix A, respectively. 
For the matrix A, if there is an edge between node i and j (i ≠ j), then aij =  aji =  1; aij =  aji =  0 otherwise. 
Elements aii of the diagonal are aii =  − ki with ki the degree of node i.

In Eq. 1, states of nodes rely on both the intrinsic dynamics of nodes and connectivity of neighbors. 
Suppose that we want to stabilize the network on a homogeneous stationary equilibrium5,22,
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To achieve the homogeneous state, a typical approach is to select a small fraction δ (0 <  δ <  1) of 
nodes as pinning nodes (denoted by i1, i2, …, il) and apply local linear feedback injections to these pin-
ning nodes. State equations of pinning nodes are modified as

∑= ( ) + Γ − Γ( − ), = , ..., ,
( )=

 f c a cd k lx x x x x 1
3
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j

N

i j j i i
1

k k k k k

where dik
 is the control strength (Control strength refers to feedback gain in pinning control) of node ik 

( >d 0ik
). Note that Equation 3 is reduced to Eq. 1 if all feedback gains equal 0 ( =d 0ik

, for ∀  k, k =  1, 
2, ..., l).

To investigate the speed of pinning controllability, a necessary prerequisite is that the network is sta-
ble. A network can be stabilized onto x if the following condition are met16,19,22:
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where ρ, σ1 and σ2 are constants related to the nodal dynamics of the network25 and λi(B) are the eigen-
values of matrix B that is defined as

= − , = , , .., . ( )B A D D diag d d d{ } 5N1 2

Under the constraints of Eq. 2 and Γ  >  0, the stable condition used in the paper is ≥ = ρ
λ ( )

c cmin B1

5,22. 
For some other nodal dynamics, the stable condition may be σ1 <  cλN(B) <  cλ1(B) <  σ2 that is usually sim-
plified as <λ

λ
σ
σ

N

1

1

2

7,16,19. For more information about the stable condition, please refer to the supplementary 
or refs 5,16,29.

Since the stability of Eq. 3 is equivalent to n independent equations16,22:

η λ η= ∂ ( ) + Γ , ( ) f cx[ ] 6k k k

where ηk are variables related to states of nodes. ∂ ( )f x  is the Jacobian of f on x. Suppose that the system 
is stable, the speed of pinning controllability is determined by the largest eigenvalue λ11 of λ∂ ( ) + Γf cx[ ]k  
that takes over all λk(k =  1, 2, ..., N):

λ λ= ( ∂ ( ) + Γ ), = , , ... , < , ( )v max f c k N vx{ [ ] 1 2 } 0 7k11

where ∂ ( )f x  is the the Jacobian of f on x and λk (0 >  λ1 >  λ2 >  ... >  λN) are the eigenvalues of B. Note 
that, unlike previous researches about expanding interval of coupling strength in Eq. 4 that only requires 
v <  0. Equation 7 characterizes the rate of convergence that relate to all eigenvalues λi, i =  1, 2, ... N. 
Larger |v| represents higher rate of convergence of the system. Therefore, enhancing the speed is equiv-
alent to increasing |v|.

Variable Description

N Network size

xi The state variable of node i

A Adjacency matrix of a network

aij The element of matrix A

l Size of pinning nodes 

δ Fraction of pinning nodes with δ = l
N

Γ  Coupling matrix

c Coupling strength

f(x) Intrinsic dynamics of a node

di Control strength (feedback gain) of node i

D Feedback matrix with element dii being the feedback gain of node i

B A–D

ρ A constant related to a dynamical system

λi(B) ith largest eigenvalue of matrix B with λN <  ... <  λ2 <  λ1

ηk Variables related to the states of a network

∂f(x) The Jacobian of f on x

λ11(x(λk)) The largest eigenvalue of x(λk) with λk being the eigenvalues of B

wi Importance of node i

Ei Control efficiency of node i

w Vector of nodes’ importance, = , , ...,
′α α α

×
{ }w w ww n

N
1
2

2
2 2

1
 with α 

a tunable parameter 

Table 1.  Variable notations in the paper.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:17459 | DOI: 10.1038/srep17459

Further, since λ λ( ∂ ( ) + Γ ) = , ∀ ∈ , ≠
λ⋅ ( ∂ ( ) + Γ ) ⋅

⋅
×{ }f c max Rx y y[ ] 0k

f x c ny y
y y11

[ ] 1T
k

T
, under the 

constraints of Eq. 2 and Γ  >  0, for any two eigenvalues λi and λj (λi <  λj <  0),

( )

( )

( )

λ λ
λ

λ λ λ

λ

λ λ

( ∂ ( ) + Γ ) =






⋅ ( ∂ ( ) + Γ ) ⋅

⋅







=







⋅ ∂ ( ) + Γ ⋅

⋅
+
( − ) ⋅ ⋅ Γ ⋅

⋅








<







⋅ ∂ ( ) + Γ ⋅

⋅








= ∂ ( ) + Γ . ( )

f c max
f x c

max
f x c c

max
f x c

f x c

x
y y

y y

y y

y y

y y

y y

y y

y y

[ ]
[ ]

[ ]

[ ]

[ ] 8

i

T
i

T

T
j

T
j j

T

T

T
j

T

j

11

11

Thus, λ λ λ λ( ∂ ( ) + Γ ) > ( ∂ ( ) + Γ ), ( = , , ..., )f c f c i Nx x[ ] [ ] 2 3i11 1 11 . Equation 7 can be simplified 
as

λ λ= ( ∂ ( ) + Γ ). ( )v f cx[ ] 911 1

Since λ1 <  0 and v <  0, lower λ1 represents higher absolute |v| and higher rate of convergence in the 
control processes. λ1(B) determines the speed λ λ( ∂ ( ) + Γ )f cx[ ]11 1 . Thus, λ1(B) is positive correlated 
with the speed λ λ( ∂ ( ) + Γ )f cx[ ]11 1 . Therefore, lower λ1(B) is better.

In some master-slave natural and man-made systems, the states of pinning nodes are fixed to the 
homogeneous state, which could be represented by applying infinite feedback gains to the pinning nodes 
in mathematics22,36. Therefore, we apply infinite feedback gains to the pinning nodes (di →  ∞ for these 
nodes) and no feedback gains to the other nodes (di =  0 for other nodes)5,22. Then, the eigenvalue λ1(B) 
equals to λ ( )A1  22:

λ λ( ) = ( ),

( )
→∞,

∀ , = , ...,

B Alim

10
d

k k l1

1 1
ik

where A is obtained by removing the i1 −  th, i2 −  th, …, il −  th row and i1 −  th, i2 −  th, …, il −  th column 
of A22, and λ ( )A1  is the largest eigenvalue of matrix ( )A . In the following, based on the positive correla-
tion between λ ( )A1  and the speed v, we thus use λ ( )A1  as the metric to evaluate the speed of controlla-
bility for a specific set of pinning nodes.

Since the pinning node selection plays an important role in the speed of pinning controllability, to 
enhance the speed of pinning controllability, the key issue is how to select an appropriate set of pinning 
nodes. However, for the fixed size l of pinning nodes, it is computationally prohibitive to select l pinning 
nodes from a network of size N because there are CN

l  cases of different combinations. A feasible solution 
is to propose efficient heuristic approach that approximately matches optimal selection. Traditional 
approaches usually select pinning nodes according to nodes’ importance, such as degree and between-
ness. However, though a single important node has a great influence on the dynamics, multiple impor-
tant nodes may performs bad due to overlapping influences of these nodes. Thus, adding extra nodes 
with high importance does not benefit the speed of pinning controllability effectively. Consequently, to 
design heuristic approaches, we need to explore the characteristics of effective multiple pinning nodes. 
Thus, we propose a restriction about control efficiency and utilize linear Matrix Inequality (LMI) method 
to solve the problem.

Restriction of control efficiency and solution of optimal feedback gains. In this section, an 
approach is proposed to calculate the optimal λ1(B) and feedback gain di for each node. Our approach 
firstly build the relation between feedback gain di and importance (e.g., degree and betweenness) of node 
i with control efficiency. Based on that, an inequality is constructed and solved to obtain optimal λ1(B) 
and the corresponding feedback gains for all nodes.

The first step is to give the restriction about control efficiency. To control a network, it is usually effi-
cient to steer high important nodes16,22. The importance of nodes plays a significant role in controllability, 
where importance is usually characterized by degree, betweenness, etc. Besides, control cost of a node 
is directly related to its feedback gains with positive correlation. Thus, control efficiency Ei of node i is 
defined as follows:

= ⋅ , ( )αE d w 11i i i
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where wi is the importance of node i and α varies from − 1 to 0. We denote wi =  ki (degree) in the paper 
and wi =  gi (betweenness) in the supplementary, respectively. Lower Ei represent higher efficiency. For 
the fixed di, high-important nodes should have high efficiency.

Since important nodes play a key role in the dynamics of networks37–39, we propose a hypothesis that 
a network has limited control efficiency C, which follows

∑ ∑= = ⋅ = . ( )αE E d w C 12sum i i i

For the fixed Esum and α (α <  0), nodes with large wi tend to have low αwi  and large di. Thus, 
high-important nodes have more probability to be chosen as pinning nodes.

Based on the restriction of control efficiency, we then transfer the speed of pinning controllability 
problem into a LMI problem. For a given network, the aim is to find an optimal Dopt which minimizes 
the largest eigenvalue λ1(B) of matrix B:

λ= ( ), = − , ( )D D min B B A D{ } 13opt 1

where D is an unknown diagonal matrix variable in which elements on the diagonal are the feedback 
gains of the corresponding nodes.

Through some mathematical transition, the speed of pinning controllability and optimal feedback 
gains are also equivalent to a LMI function in which λ1(B)min =  λx,optimal:

λ= − < , ( )B A D I 14x

where I is the identity matrix. λx is the unknown variable and the aim is to search optimal D that min-
imizes λx.

If α =  0, wi reduces in Eq. 12 and ∑ =d Ci . The optimal solution for Eq. 14 is λ = −,x min
C
N

 and 
=D IC

N
 at α =  0, which implies that all nodes obtain identical feedback gains and the difference of nodes 

can’t be distinguished by feedback gains. For more details, please refer to Eq. 23–25.
The analytic solution Doptimal and λx are obtained merely at α =  0. For α ≠ 0, we get the numerical 

solution under the restriction Eq. 12. Equation 12 and 14 construct a standard LMI problem that can 
be solved by convex optimization methods40,41 and Interior-Point Methods40. Through the inequality 
optimization (Eq. 17–27), we obtain optimal feedback gains for each node and the optimal λ1(B) =  λx,min.

Pinning node selection. In the selection process, we first calculate the optimal feedback gains for all 
nodes by LMI method. Furthermore, for the fixed size l of pinning nodes, nodes with high feedback gains 
are chosen as pinning nodes. Next, the selected pinning nodes are injected infinite feedback gains and 
other nodes obtain none feedback gains. The performance of our approach, which is evaluated by λ ( )A1 , 
is compared with large-degree selection method. The proposed approach on a small artificial network is 
illustrated in Fig.  1. Figure  1(d) shows that feedback gains of nodes are obviously different from their 
degrees and more interestingly some low-degree nodes (e.g., node 10, 11, and 12) obtain high feedback 
gains, which suggests that the feedback gains of nodes are determined by both degree and structure of 
the network. Based on the feedback gains, we then select pinning nodes according to feedback gains, in 
comparison with traditional high-degree selection (see Fig. 1(b,c)). Figure 1(e) shows the speed of pin-
ning controllability as a function of size of pinning nodes, in which the speed is obviously enhanced 
compared with large-degree selection when the size exceeds 6 (Number ≥  6).

Results in BA model and real networks. The validity of our proposed approach is verified in four 
undirected and unweighted networks with different backgrounds: a BA model network, a power grid 
network (PowerGrid), a biological network (PDZBase) and a social network (Jazz). The BA model net-
work is generated from a small number of connected nodes and every new node links m edges to m 
existing nodes with preferential probability42. The probability that a new node links to node i depends 
on the degree ki of node i, such that ∏ ( ) = ∑ ∈

ki
k

k
i

j N j
 (m =  3 in the paper). BA model network has 300 

nodes and 893 edges. PowerGrid is the power grid of the Western States of the United States of America43. 
In order to reduce computation complexity, we extract 3-core of PowerGrid that only reserves nodes with 
degree larger than 3. The extracted subnetwork has 116 nodes and 217 edges and keeps similar structures 
with primitive network due to self-similarity properties of complex networks44–46. PDZBase is a biological 
network of protein-protein interactions from PDZBase with 161 nodes and 209 edges47. Jazz is a coop-
eration social network with 198 nodes and 2742 edges48.

Given a network, the inequality (Eq. 14) is restricted by both the control efficiency and tunable param-
eter α. We firstly explore the influence of α on the results. For C =  10, Fig.  2 depicts the distribution of 
feedback gains with different α. In Fig.  2(a), if α ≠ 0, high-degree nodes tend to get high feedback gains 
and low-degree ones almost get no feedback gains (di ≈  0), which indicates that the feedback gains of 
nodes are associated with their degree and pinning nodes can be selected according to the degree in BA 
model networks. However, results in real networks are different from BA model network. Figure  2(b–d)  
show that some nodes with lower degree obtain largely positive feedback gains (di ≫  0). Moreover, according 
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to Eq. 12, it is easy to understand that high-degree nodes tend to obtain higher feedback gains when 
|α| increases. Obviously, it works well in BA model network. Whereas in real networks, as |α| increases, 
the feedback gains of some low-degree nodes increase remarkably. It’s because that BA model networks 
have no community structure, nor hierarchical organization. These structures in real networks lead to the 
overlapping influences of pinning nodes. The new results suggest that better set of pinning nodes should 
contain both high-degree nodes and those low-degree ones with high feedback gains.

The distribution of feedback gains is affected by not only α but also Esum. For fixed α, we study the 
relation between feedback gains and degree of nodes under different C (Esum =  C). Figure 3 depicts the 
relation with C =  1,10,100,1000 and α =  − 0.6, which shows that the gaps of feedback gains become 
smaller as C increases. More specifically, for C =  1,10,100, nodes have apparent different feedback gains: 
some nodes obtain large positive feedback gains, while other nodes get almost none feedback gains. 
However, when C =  1000, nodes have almost the same positive feedback gains. It suggests that if restric-
tion of control efficiency does not exist, controlling nodes directly is more efficient. When C is small 
(C <  1), only a small fraction of nodes could obtain high feedback gains. As C increases, the restriction 
of control efficiency influences the differences of feedback gains little by little and more nodes could 
obtain high feedback gains.

To meet real-world conditions, nodes with highest feedback gains are selected as pinning nodes and 
they are applied into infinite feedback gains δ( = )⌊ ⌋l N . Figure 4 shows λ ( )A1  as a function of δ and α 
with C =  10. Comparing method that selects pinning nodes by degree (large-degree selection), our 
approach has much better performance in real-world networks. Whereas in BA model network, the 
feedback gain and degree have a high positive correlation. Figure 4(a) shows that they have similar per-
formance. Different from BA model networks, real networks have hierarchical and community structures 
that results in overlapping influences23. So large-degree selection has poor performance in real networks. 
Our approach overcomes this problem and some low degree periphery nodes obtain high feedback gains. 
These low degree nodes with high feedback gains can also enhance the speed of controllability.

Meanwhile, we also test λ ( )A1  under different C. The proposed approach has similar results with 
large-degree selection in BA model network. However, it performs better than large-degree pinning 
control in real networks, which is due to the different topology between BA model and real-world 

(a ) (b) (c )

(d)

λ

(e)

Figure 1. Illustration of the optimal feedback gains for an artificial network (The size of pinning nodes 
is fixed Number = 6 for sub-figure (b,c)). (a) A simple undirected and unweighted network. (b) Six pinning 
nodes selected according to the feedback gains of nodes (Dark green represents higher feedback gains).  
(c) Six pinning nodes selected according to the degree of nodes (Dark red represents higher degree). (d) The 
relation between feedback gains and degree for the artificial network. Numbers in the subfigure represent 
labels of nodes. (e) The largest eigenvalue λ1 of A represents the speed of pinning controllability for the 
network. Lower λ ( )A1  indicates higher speed of pinning controllability and the proposed approach has better 
performance when Number ≥  6.
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networks. Since the result is similar in Fig. 4, more details of different C are shown in the supplementary 
Fig. S1.

Characteristics of pinning nodes. Extracting characteristics of effective pinning nodes is interesting 
when designing fast heuristical approaches. In this section, we mainly investigate two features of effective 
pinning nodes: the average distance between pinning nodes and average shortest paths from a common 
node to its nearest pinning node. The results show that increasing the sparsity between pinning nodes 
could enhance the speed of pinning controllability.

The average distance L between pinning nodes could describe the sparsity of pinning nodes, which 
follows

∑=
( − )

,
( ), ∈

L
N N

l1
1 15d d i j N

ij
d

where Nd represents the set of pinning nodes, lij is the shortest distance from pinning node i to j. Higher 
L indicates sparser pinning nodes.

Another metric to estimate the sparsity is the average of shortest distances from a common node to 
its nearest pinning node:

∑=
−

,
( )∉

∈L
N N

min l1 { }
16

min
d i N

j N ij
d

d

where ∈min l{ }j N ijd
 is the shortest distance from a common node i to the set of pinning nodes.

Figure  5 shows L of four networks at C =  10. In BA model networks (see Fig.  5(a)), the proposed 
approach has almost the same performance with large-degree selection. The reason is that large degree 

α
α
α
α

α
α
α
α

α
α
α
α

α
α
α
α

Figure 2. The distributions of feedback gains as a function of k for four networks in restriction of 
α = 0, −0.2, −0.6, −1 at C = 10. The results are obtained by LMI optimization, and accuracy of λx is 
1 ×  10−6 in the optimization process. A positive correlation exists between feedback gain and degree in BA 
model networks. However in real-world networks, many low-degree nodes have high feedback gains, which 
suggests that the feedback gains depend on not only their degree but also the connectivity of networks.
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nodes have large feedback gains in BA model network and the selected pinning nodes are also high 
degree nodes. So they have similar results for arbitrary α(α <  0) in BA model networks. However, in real 
networks, the proposed approach selects sparser pinning nodes than those of large-degree selection. 
Some periphery low-degree nodes obtain large feedback gains. Hence the sparsity is enhanced. 
Figure 5(b–d) show that the sparsity of pinning nodes first increases dramatically, then keeps stable or 
changes slightly. By synthesizing Figs 2 and 5, we find that the proposed approach first selects large-degree 
nodes, and then selects some lower-degree nodes. The low-degree pinning nodes increase the sparsity. 
Further, the influence of different C on the results are similar to that in Fig. 5. Details about the influence 
of C are shown in the supplementary Fig. S2.

Besides the average distance L, Fig.  6 shows Lmin of four networks at C =  10. Our approach and 
large-degree selection have similar performances in BA model network (see Fig.  6(a)). Because of the 
positive correlation between feedback gains and degree in Fig.  2(a), pinning nodes chosen by both 
approaches are the same. Apart from BA model network, both methods have similar results in PowerGrid 
and PDZBase networks except δ <  0.4, which is due to the restricted size of networks. When δ <  0.4, our 
proposed approach selects sparse pinning nodes, leading to a little lower Lmin. But as the size of pinning 
nodes increases, some high-degree nodes are selected, leading to that distances from pinning nodes to 
the other common nodes are 1. Thus, the differences can’t be observed in the two networks when δ >  0.4. 
However, in jazz network, the proposed approach has lower Lmin, which suggests that distance from 
common nodes to pinning nodes is reduced. Since lower distance benefits the spreading of control sig-
nals, the speed of pinning controllability is enhanced. Except the influences of α, we also explore the 
influence of C in the supplementary Fig. S3. The results are similar to Fig. 6.

Discussion
In summary, we systematically study the relations between the speed of pinning controllability and pin-
ning node selection. Based on the relation between feedback gains and the importance of nodes, we 
propose a restriction to limit the efficiency of networks. Then a LMI function is constructed (Eq. 17–22), 
from which we utilize convex optimization to solve the speed boundary of pinning controllability and 

Figure 3. The distributions of feedback gains as a function of degree k for four networks in restriction 
of C = 1,10,100,1000 at α = −0.6. The results are got by LMI optimization, and the accuracy of λx is 
1 ×  10−6 in the optimization process. The results suggest that restriction of control efficiency obviously 
affects the the distributions of feedback gains, especially when C is small.
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the optimal feedback gains for each nodes. Next, to meet the real-world conditions, we propose a new 
method to select a small proportion of pinning nodes with high feedback gains and apply infinite feed-
back gains to these nodes. The proposed approach achieves remarkable improvements in the speed of 
pinning controllability for real networks compared to traditional large-degree and and large-betweenness 
selections. The results suggest that optimal selection of pinning nodes should contain nodes with both 
high and low degree. Moreover, unlike previous investigations that only focused on one optimal con-
troller21, we study the characteristics of optimal feedback gains and near-optimal set of multiple pinning 
nodes.

Though the proposed approach investigates the problem in undirected and unweighted networks, 
it could also be extended to directed and weighted networks with minor modification. The presented 
results have many potential applications in the future. Characteristics of effective pinning nodes could 
inspire fast heuristic algorithms to choose pinning nodes for large-scale complex networks in the future. 
Besides, our method provides a step forward from the current research on controllability toward enhanc-
ing the speed of pinning controllability for complex networks.

Methods
LMI problems related to speed of pinning controllability. The speed of pinning controllability 
is evaluated by λ1(B) and the aim is to search an appropriate diagonal matrix D that minimizes λ1(B). 
The investigation about speed of pinning controllability and Equation 14 are also equivalent to a LMI 
function:

λ( ), ( )min 17x

which subjects to

λ

δ

α
α
α

λ

δ

α
α
α

λ

δ

α
α
α

λ

δ

α
α
α

Figure 4. The largest eigenvalue λ ( )A1  as a function of δ and α for four networks at C = 10. Note that, in 
large-degree pinning control, pinning nodes are obtained by selecting the largest δ⌊ ⌋N  degree nodes. The 
results show that the proposed approach can efficiently enhance the speed of pinning controllability.
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where dmax is the upper bound of feedback gains for all nodes. I is an identity matrix in which elements 
on the diagonal are 1, otherwise 0. w is a n ×  1 column vector relevant to the importance of the whole 

nodes ( = , , ...,
′α α α

×
{ }w w ww n

N
1

2
2
2 2

1

, wi =  ki in the paper and wi =  gi in the supplementary, where gi is 

the betweenness of node i). C represents the sum of Ei (C >  0) and Equation 21 is equivalent to Eq. 12. 
A −  D <  λxI means that (A −  D −  λxI) is negative definite. The constraint Eq. 19 and Eq. 20 confirm that 
the feedback gain of every node ranges from 0 to dmax (dmax =  C in the paper). λx is the desired variable 
and the aim is to search optimal D that minimizes λx.
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Figure 5. The average distance L as a function of δ and α for four networks at C = 10. Note that, large-
degree pinning (Degree) control where the pinning nodes are got by selecting the largest δ⌊ ⌋N  degree nodes.
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Speed boundary of pinning controllability. Under the restriction of control efficiency, the upper 
bound of speed could be obtained from Eq. 14. According to Eq. 21 and Eq. 22, the lower bound of λx 
could be obtained by modifying Eq. 22 as

λ− < . ( )A I D 23x

Since (A −  λxI −  D) is negative definite, we obtain

λ′ ′( − ) < . ( )A I Dw w w w 24x

Substituting Eq. 21 into Eq. 24, the boundary of λx follows as

λ λ ′> = −
∑

( − ).
( )α, k

C Aw w1
25x x min

i i

The lower bound of λx is given in Eq. 25, from which we can find that the minimum of λx is proportional 
to C. Note that, if α =  0, w =  (1, 1, ..., 1)′ . Since λ =  0 is an eigenvalue of A and the corresponding eigenvector 
is w =  (1, 1, ..., 1)′, w′Aw =  0. Thus, λ = −,x min

C
N

 when α =  0. Moreover, if all nodes have identical feedback 
gains ( =di

C
N

 and )=D IC
N , the lower bound of λx is λ = −,x min

C
N

. So the optimal feedback gains  
are =di

C
N

 and λ ( ) =B C
N1  when α =  0.

Though the lower bound of λx is given in Eq. 25, it’s difficult to get the analytic solution of matrix D 
for arbitrary α. It has been proven that only the numberical solution could be obtained under the restric-
tions in Eq. 17–22 due to its complexity40,41. Restrictions of Eq. 17–22 constitute a standard linear matrix 
inequality(LMI) problem that could be solved by convex optimization methods40,41,49. The LMI problem 
in Eq. 17–22 is the eigenvalue problem (EVP) that could be optimized by Interior-Point Methods40. 
Through the optimization, we can obtain the optimal numerical solution D.

δ

α
α
α

δ

α
α
α

δ

α
α
α

δ

α
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α

Figure 6. The average shortest distance Lmin as a function of δ and α for four network at C = 10. Note 
that, large-degree pinning control (Degree) where the pinning nodes are got by selecting the largest δ⌊ ⌋N  
degree nodes.
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Modification for computation. The constraint Eq. 21 limits the boundary of control efficiency. But 
it is not suitable for practical computation. For convenience of computation, the constraint Eq. 21 is 
replaced by

ε′ < + , ( )D Cw w 26

ε ′− < , ( )C Dw w 27

where ε is a small positive decimal (0 <  ε ≪  C). Equation 26–27 guarantee that Esum →  C when ε →  0. In 
the paper, we set ε =  0.001. By synthesizing Eq. 17–22 and Eq. 26–27, the optimal feedback gains for all 
nodes could be obtained under fixed precision.
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