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INTRODUCTION

Corals are often associated with tropical scenarios,
like the Great Barrier Reef, bordering the north-eastern
coasts of Australia, which is the largest reef in the
world, or evoke the view of tropical atolls of which the
Maldivian atolls are one of the most impressive
examples. In this context coral bioconstructions thrive
in warm-, well-illuminated and oligotrophic waters, and
are a ‘hot spot’ for marine biodiversity. The full
spectrum of biological and geological actors in these
ecosystems has been the subject of scientific studies for
many years. However, the investigation and public
awareness concerning cold/deep-water coral ecosystems
is a recent issue, which has been increasing in the last
two decades.

Cold-water corals have been known since the
eighteenth century. Pontoppidan (1755), Linné (1758),
and Gunnerus (1768) first documented their occurrence

in Norway and provided their taxonomic description.
Their detailed investigation began only recently, fueled
by the discoveries of giant deep-water coral mounds in
the Porcupine Seabight (e.g., Henriet and others, 2002).
Since then, the study of cold-water coral ecosystems has
largely increased as a result of the development of latest
generation technologies such as submarines (Figs. 2.1,
2.2) and Remote Operated Vehicles (ROVs) (Fig. 2.3,
2.5), that allow non-invasive investigations even at high
depths.

The knowledge of the functioning of cold-water coral
ecosystems is presently increasing in parallel with the
awareness that they might be under serious threat and
that damage and habitat losses may endanger their
existence (Fosså and others, 2002). Fishing activity,
hydrocarbon drilling, cable and pipeline placement,
bioprospecting, destructive scientific sampling, and
ocean pollution are perturbations influencing the coral
ecosystems as documented in the UNEP-WCMC Report
‘‘Cold-water Coral Reefs’’ (Freiwald and others, 2004).
Additionally, these ecosystems can be affected by cli-
mate change and ocean acidification (Guinotte and
others, 2006). Cold-water coral buildups might be one of
the most vulnerable marine ecosystem not only because
the main reef builders (Lophelia pertusa andMadrepora
oculata) are provided with aragonitic skeletons, but also
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because the solubility of CO2 in the water is higher at
low temperatures where these organisms develop
(Guinotte and others, 2006). Although recent studies
show that some cold-water corals can adapt to long-term
environmental modifications (Form and Riebesell,
2012), still too little is known about the ecophysiology
of these organisms. Further studies need to be promoted
in order to obtain an efficient reaction from governmen-
tal institutions and policy makers for the protection of
these vulnerable ecosystems.

The books ‘‘Cold-Water Corals and Ecosystems’’
(Freiwald and Roberts, 2005), ‘‘Deep-Water Coral
Reefs: Unique Biodiversity Hot-spots’’ (Hovland,
2008) and ‘‘Cold-Water Corals: The Biology and
Geology of Deep-Sea Coral Habitats’’ (Roberts and
others, 2009), and the Special Issues of Marine Geology
‘‘Cold-water Carbonate Researvoir systems in Deep
Environments – COCARDE’’ (Spezzaferri and others,
2011), and Deep-Sea Research II ‘‘The APLABES
Programme: Physical Chemical and Biological Charac-
terization of Deep-Water Coral Ecosystems from the
Ionian Sea (Mediterranean)’’ (Corselli, 2010) and
‘‘Biology and Geology of Deep-Sea Coral Ecosystems:
Proceedings of the Fifth International Symposium on
Deep Sea Corals’’ (Mienis and others, 2014) contain a
very detailed overview about our present knowledge on
modern and ancient cold-water corals. Despite these
summaries the functioning and the distribution of cold-
water corals is far to be fully understood as it is for the
warm-water reefs, although they occur at a worldwide

dimension. The cold-water coral L. pertusa, the main
reef builder (Figs. 2.2 A–C, E, 2.3 A, 2.4 A–D), is
cosmopolitan but it occurs very frequently in the NE
Atlantic Ocean and in Norway it reaches its highest
known density giving rise to very extensive reefs (e.g.,
Zibrowius, 1980; Freiwald and others, 2004) (Figs. 2.2
A–C, E).
Since the pioneering work of Hovland and others

(1994), many studies have been conducted on the
sedimentary setting of cold-water coral ecosystems. In
particular, cold-water coral ecosystems are described
and classified on the basis of their sedimentary facies
and type of coral coverage. In general, two main groups
of facies have been distinguished and named as (1) on-
reef and (2) off-reef facies. The former are located on
top/flanks of topographic highs (e.g., mounds, banks)
and dominated by live and dead frame-building corals
and coral fragments (Figs. 2.2, 2.3A-B). The latter are
typical of inter-mound areas where sand, silt, silty clay
locally associated with coarser elements, such as
boulders and pebbles, represent the dominant seafloor
features (Figs. 2.2; 2.3 C-D). In particular, Freiwald and
others (2002) recognized five on-reef and two off-reef
facies in the Sula Reef Complex (Norway). Foubert and
others (2005) introduced 12 different sedimentary facies
for seabed classification to interprete ROV video
surveys in the Belgica Mound Province. The study of
Dorschel and others (2007) reduced the number of the
different facies to seven from Galway Mound top down
to the basin. Margreth and others (2009) and Spezzaferri

Figure 2.1. Submarine operated vehicle developed for sampling within the coral branches without damaging them (Scale: ~20 cm).
Picture taken by JAGO-Team, GEOMAR Kiel, from the Sula Reef, Norway.
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Figure 2.2 A-H. Seafloor images of Norwegian coral reefs taken by JAGO Team, GEOMAR Kiel. A) Lophelia pertusa, living coral facies,

Røst Reef, Northern Norway (ARK-XXII, dive 999), B) Living coral facies; note the rope and/or cable among Lophelia branches, Røst Reef
(ARK-XXII, dive 1001); C) Detail of Lophelia branches and associated sponges (probably Mycale lingua), living coral facies, Stjernsund,

Northern Norway (P325, dive 912); D) Large colonies of the octocoral Paragorgia arborea in a coral rubble facies, Stjernsund (P325, dive
912); E) Sponges, octocorals and live Lophelia branches, living coral facies, Stjernsund (P325, dive 912); F) Demospongiae, coral rubble

facies, Røst Reef (ARK-XXII, dive 999); G) Coral rubble facies characterized by very common tiny anemones, Stjernsund (P325, dive 914);
H) Dropstone facies dominated by Alcyonacea, Røst Reef (ARK-XXII, dive 1001). Scale bars: 20 cm in the foreground of images.
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and others (2013) summarized the sedimentary facies in

the Porcupine/Rockall region and along the Norwegian

margin keeping into account the models proposed by

Foubert and others (2005); Dorschel and others (2007);

Mortensen and others (2001); Freiwald and others

(2002) and related them to foraminiferal assemblages.

Rosso and others (2010), Vertino and others (2010) and

Savini and others (2014) highlighted the main features

and spatial distribution of cold-water coral thanatofacies

and video-detected macrohabitats from Mediterranean

mounds (Ionian Sea).

All authors use the amount of living corals as a main

parameter for ‘‘activity’’ of cold-water carbonate

ecosystems. For instance, if living corals are abundant,

the mound is considered as in a growing state - a so-

called ‘‘active’’ or ‘‘active growing’’ mound (Henriet and

others, 2002; Rüggeberg and others, 2007). If living

corals are absent and pelagic sediment covers the

mound, it is then defined as a ‘‘buried’’ mound and is

only visible on seismic sections (De Mol and others,

2002; Freiwald and others, 2002).

Below we present an example of cold-water coral
facies from active mounds: the Moira Mounds (MM),
small-scaled reliefs located at ~1000 m depth in the
Porcupine Seabight, NE Atlantic and colonised by cold-
water corals (e.g., Wheeler and others, 2011a, b;
Foubert and others, 2011; Spezzaferri and others,
2012). Three main facies groups have been so far
distinguished in the MM, but transitional facies are
rather common: Living Coral (LC) and Coral Rubble
(CR) Facies (Fig. 2.3 A-B); Sand and Dropstone Facies
(SD) (Fig. 2.3 C); Sand and Biogenic Gravel (S-BG)
Facies (Fig. 2.3 D). Further studies are currently
underway for a more detailed description of both
sedimentological and faunistic features of the Moira
Mounds.

LIVING CORAL AND CORAL
RUBBLE FACIES

Living Coral (LC) and Coral Rubble (CR) Facies are
typical of the Moira Mound tops. They are character-

Figure 2.3 A-D. Seafloor images of the Moira Mounds (Porcupine Seabight) acquired by the Holland 1 ROV during the Venture cruise

(Wheeler et al. 2011b). A) Live large colonies of L. pertusa, Living Coral Facies, dive 33. B) Coral rubble and dead coral colonies on
rippled sandy seafloor, Coral Rubble Facies, dive 30. C) Rippled sand and dropstones, Sand and Dropstone Facies, dive 33. D) Sand and

Biogenic Gravel Facies, dive 30. Scale bars: 50 cm in the foreground of images.
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ized by dense coverage of live and dead colonies (and/or

colony fragments) of frame-building corals (L. pertusa

and M. oculata) and subordinate sandy to muddy sandy

sediments (Figs. 2.3 A-B). In the LC Facies, Lophelia

colonies can exceed 80 cm in size (Fig. 2.3 A). Their

corallites show the typical flared shape (Fig. 2.4 C), but

in some samples may display a peculiar swollen aspect

(Fig. 2.4 D) (Beuck and others, 2007). In the CR Facies

exposed coral branches are mostly dead, bioeroded and

variably stained with brownish Fe/Mn oxides (Figs. 2.3

B; 2.4 E; 2.5 A). In both LC and CR Facies dead coral

skeletons serve as substrate for many other sessile

organisms: solitary corals, such as Desmophyllum

dianthus (Fig. 2.4 I) and Caryophyllia sarsiae, hydro-

zoans (including rare and tiny colonies of the skeleton-

ised species Pliobothrus symmetricus; Fig. 2.4 F-G),

gorgonians (Fig. 2.4 L), actinians (Fig. 2.5 C),

zoantharians, sponges (Fig. 2.4 E), agglutinant poly-
chaetes, serpulids, bryozoans (mostly Cyclostome erect
colonies), bivalves, brachiopods (Fig. 2.5 A), very tiny
stalked crinoids (Fig. 2.5 D) and other sessile
echinoderms (Fig. 2.5 E), cirripedes (Fig. 2.5 F) and
foraminifera. Moreover several boring organisms, such
as sponges, polychaetes and actinians (Fig. 2.5 A-B)
may highly infest the coral skeletons. The vagile fauna
of both LC and CR Facies is typically characterized by
Ophiuroidea (Figs. 2.4 E, 2.5 G), locally very abundant,
polychaetes such as the genera Eunice and Lumbrineris
and several species of gastropods (Fig. 2.5 H).

SAND AND DROPSTONE FACIES

The Sand and Dropstone (SD) Facies can be found in
the basal part of the mound flanks but it is typical of

Figure 2.4 A-L. Images of seafloor samples collected during the Eurofleets CWC-Moira Cruise, 2012, from Living Coral (LC) and Coral

Rubble (CR) Facies. A) Small colony of the frame-building scleractinian Madrepora oculata. B. Small colonies of the frame-building
scleractinians Lophelia pertusa (white arrow) and M. oculata (black arrow). C-D) Lophelia corallites; flared (C) and swollen (D)

morphotypes. E) Dead and black-coated scleractinian frame colonised by live epifauna: among which a tiny Madrepora colony (in the
centre), encrusting sponges (black arrow), hydroids, brachiopods, ophiuroids (white arrow). F) Small branch of the stylasterid Pliobothrus

symmetricus. G) Scleractinian corals as a substrate for hydrozoan colonies. H) Close-up of a hydrozoan. I) Live Desmophyllum dianthus.
L) Tiny gorgonian colony. Scale bar: 2 cm (D, I); 1cm (A, B, C, E, F, G), 0.5 cm (H, L).
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intermound areas. It is characterized by sandy to muddy
sediments and heterometric dropstones (from 1–2 cm up
to 13 cm in maximum diameter), from densely to loosely
distributed on the soft sediment (Figs. 2.2 H; 2.6).
Dropstones are mostly colonised by hydrozoans, agglu-

tinant polychaetes, benthic foraminifera and secondarily
by bryozoans and rare chitons. On the surface of the
sandy sediments mm- to cm-sized biogenic fragments are
generally common and locally abundant, mostly charac-
terized by cirriped and echinoid plates, gastropods,

Figure 2.5 A-I. Images of seafloor samples collected during the Eurofleets CWC-Moira Cruise, 2012, from Living Coral (LC) and Coral

Rubble (CR) Facies. A) Bioeroded and dark-coated coral frame showing cavities created by boring sponges (white arrow) and several
epizoans among which the brachiopod Terebratulina retusa (black arrow). B-C) Actinians, note the boring Fagesia sp. in B. D) Tiny

stalked crinoid on the sponge Aphrocallistes bocagei. E) Sessile echinoderm (Psolus sp.). F) Cirriped of the family Verrucidae. G-I)
Vagile fauna: an ophiuroid within a coral branch hole. G) The gastropods Amphissa acutecostata. (H) Calliostoma sp. Scale bar: 1cm (A,

E, F, G, I), 0.5 cm (B, C, D, H).

Figure 2.6 A-B. Images of seafloor samples collected during the Eurofleets CWC-Moira Cruise, 2012, from the Sand and Dropstone (SD)

Facies with A) densely and B) loosely packed dropstones. Scale bars: 4 cm.
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bivalves and dentaliids. Madrepora and Lophelia frag-
ments, as well as echinoid spines, can be rather abundant
in the millimetric fraction of the sediment.

SAND AND BIOGENIC GRAVEL
FACIES

The Sand and Biogenic Gravel (S-BG) Facies is
typical of inter-mound areas but can be found also along
the mound flanks. It is dominated by sandy to muddy
sediment and/or by bioclastic gravel (Figs. 2.3 D; 2.7 A-
B) locally including relatively large coral fragments
(Fig. 2.7 B-C). In the Moira Mound region the sandy
facies commonly show well developed ripples (Fig. 2.3
C; see also Foubert and others, 2011). They can even be
detected as micro ripples in box-corer samples with up
to 3 cm wavelengths (Fig. 2.7 A). The mm- to cm-sized
bioclastic fraction of the sediments belonging to the S-
BG Facies is normally dominated by coral fragments,
echinoid spines but includes also rather common
Cidaris and cirriped plates, benthic molluscs (typical
of both hard and soft substrates), pteropods and
otolithes. Peculiar agglutinant polychaete tubes (Fig.
2.7 C) may encrust large coral fragments.
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